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The Ramanujan continued fraction

Rη(a, b) =
a

η +
b2

η +
4a2

η +
9b2

η +
...

is interesting in many ways; e.g., for certain complex param-
eters (η, a, b) one has an attractive AGM relation Rη(a, b) +

Rη(b, a) = 2Rη

(
(a + b)/2,

√
ab

)
. Alas, for some parameters

the continued fraction Rη does not converge; moreover, there
are converging instances where the AGM relation itself does
not hold. To unravel these dilemmas we herein establish con-
vergence theorems, the central result being that R1 converges
whenever |a| �= |b|. Such analysis leads naturally to the conjec-
ture that divergence occurs whenever a = beiφ with cos2 φ �= 1

(which conjecture has been proven in a separate work) [Bor-
wein et al. 04b.] We further conjecture that for a/b lying in
a certain—and rather picturesque—complex domain, we have
both convergence and the truth of the AGM relation.

1. BACKGROUND

In a companion treatment [Borwein et al. 04a] we focused
on evaluation of the continued fraction

R1(a, b) =
a

1 +
b2

1 +
4a2

1 +
9b2

1 + ...

(1–1)

for real parameters a and b. Note that, formally,
Rη(a, b) = R1(a/η, b/η) so that with impunity we may
focus upon the fraction displayed in the abstract, with
η := 1; thus, we have a two-complex-parameter problem.
For complex parameters (a, b) convergence of R1 turns
out to be—both historically and currently—problematic.
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A formal AGM relation—known to be true at least for
positive real a and b [Borwein et al. 04a]—reads

R1

(
a + b

2
,
√

ab

)
=

R1(a, b) + R1(b, a)
2

. (1–2)

Yet, one wishes the three relevant fractions to converge
prior to any resolution of the truth of such an AGM re-
lation. So, we are primarily concerned with a precise
determination of the convergence domain

D0 := {(a, b) ∈ C × C : R1(a, b) converges on Ĉ},

where Ĉ := C ∪ {∞} denotes the extended complex field.
It is important to note what is meant by “convergence”
on Ĉ in the modern complex-continued-fraction context.
If pn/qn is the nth convergent to R1 (we remind ourselves
in Section 3 of the definition of such convergents), we say
that R1 converges if pn/qn has a limit in Ĉ. Thus, diver-
gence (nonconvergence) must be oscillatory—say bifur-
cated or chaotic (later, we exhibit examples of such diver-
gence scenarios). This modern definition of convergence
conveniently handles situations, such as the instance that
b2/(1+4a2/+ . . . ) converges to a value (−1) ∈ C, whence
R1 = ∞ still converges on Ĉ.

Some preliminary nomenclature is relevant. We shall
often refer to real cuts, that is sets (α, β) for reals α < β;
when we say a complex number z belongs to (α, β),
we mean z must be real with z ∈ (a, b) in the usual
sense of real-interval membership. For example, z is
pure-imaginary—i.e., z = 0 + iy with real y �= 0—iff
z2 ∈ (−∞, 0). Also the cut (−∞,−1/4) (and its closure
(−∞,−1/4]) will loom importantly in our convergence
analysis.

We are eventually motivated to consider a special set
H that turns out to be the open exterior of a cardioid-
knot (the picturesque character of H is exhibited in the
companion treatment [Borwein et al. 04a]) as

H := {z ∈ C : |√z/(1 + z)| < 1/2},

where we note for the moment that the classical AGM
inequality (a+b)/2 >

√
ab for positive real a �= b is true in

the sense of magnitude—i.e., |(a + b)/2| >
∣∣∣√ab

∣∣∣—when
a/b ∈ H.

We next establish two-complex-parameter domain def-
initions

D2 := {(a, b) ∈ C × C : |a| �= |b|},
D3 := {(a, b) ∈ C × C : a2 = b2 �∈ (−∞, 0)},

D1 := D2 ∪ D3.

Our central result will be that

D1 ⊆ D0,

and we are eventually led to conjecture that, in fact,
D1 = D0, which would establish the precise conver-
gence domain for R1(a, b). As intimated in our abstract,
this conjecture has been resolved in a separate treat-
ment [Borwein et al. 04b] that employs apparatus from
Section 5.

It is a tribute to the profundity of the Ramanu-
jan construction that in the following treatment we
need to rely upon some of the deepest theorems in
complex-continued-fraction theory, including Stieltjes-
fraction theorems, convergence-set results such as the
“parabola-sequence” and “oval” theorems, and yet other
results from the finest of the complex-fraction literature.

2. THE INSTANCE a2 = b2

Assume a2 = b2. Clearly, if R1(a, b) converges then, by
the very definition of the R1 fraction, each of the four
constructs R1(±a,±b) converges (to ±R1(a, b)). So, it
suffices to analyze just

a

R1(a, a)
= 1 +

α1z

1 +
α2z

1 +
α3z

1 +
α4z

1 + ...

= 1 + S(z),

where αn := n2, z := a2, and S is a classical Stieltjes
fraction (as all αn are positive real). We are led immedi-
ately to the following theorem:
Theorem 2.1. a/R1(a, a) converges to a holomorphic
function of a2 on either half-plane Re(a) > 0 or Re(a) <

0, and so, for a2 = b2, R1(a, b) converges for all
(a, b) ∈ D3.

Remark 2.2. Thus, R1(a, a) converges on Ĉ for all a not
pure-imaginary: i.e., a2 �∈ (−∞, 0).

Proof: This all follows from the Stieltjes theorem
[Lorentzen and Waadeland 92, Theorem 22, page 138].

We can go further, to establish convergence bounds in
the following form:
Theorem 2.3. For (a, b) ∈ D3, so that b = ±a and a is
not pure-imaginary, the convergents to S satisfy∣∣∣∣S(a2) − pn

qn

∣∣∣∣ <
2|a|2 sec θ

n
4/

(
1+

√
1+16|a|2 sec2 θ

) .

where θ = min(|arg(a)|, |arg(−a)|).
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Proof: This follows directly from the Gragg-Warner
bounds [Lorentzen and Waadeland 92, page 140] for
Stieltjes fractions.

This result can be compared to similar convergence
bounds for R1(a, a), for real a, in the companion treat-
ment [Borwein et al. 04a]. The situation is, when
a2 = b2, and a is not pure-imaginary, we do have conver-
gence, but said convergence is “poor,” i.e., not geometric
(by geometric we mean the error relevant to the pn/qn

approximant would be O (θ−n) for some real θ > 1).

3. EVEN/ODD FRACTIONS

For a continued fraction

x :=
a1

1 +
a2

1 +
a3

1 +
a4

1 + ...

a convenient formula with which one may ignite conver-
gence analyses is the classical relation (for n ≥ 1)

pn

qn
− pn−1

qn−1
= (−1)n−1

∏n
j=1 aj

qnqn−1
, (3–1)

with the standard assignments (p0, q0) := (0, 1) and
(p1, q1) := (a1, 1), and recurrences (for n ≥ 2) in the
form (pn, qn) = (pn−1, qn−1) + an(pn−2, qn−2). We shall
say that any continued fraction converges absolutely if

∞∑
n=1

∣∣∣∣pn

qn
− pn−1

qn−1

∣∣∣∣ < ∞.

As pointed out in [Lorentzen and Waadeland 92, page
128], if a fraction converges absolutely, then it converges
to a finite limit. Similarly, if x has a finite value and∑ |x−pn/qn| < ∞, then x is absolutely convergent, since
|pn/qn − pn−1/qn−1| ≤ |x − pn/qn| + |x − pn−1/qn−1|.

Now, a typical scenario for divergence of x is that the
even convergents p2n/q2n (to the “even part” of x) and
the odd convergents p2n+1/q2n+1 (to the “odd” part) ap-
proach distinct limits. If, however, the even/odd parts
converge absolutely, that is we have both

∞∑
n=0

∣∣∣∣p2n+2

q2n+2
− p2n

q2n

∣∣∣∣ < ∞,
∞∑

n=0

∣∣∣∣p2n+3

q2n+3
− p2n+1

q2n+1

∣∣∣∣ < ∞,

(3–2)
then much can be gleaned in regard to convergence of
the original fraction x, especially if one also knows the

Stern-Stolz construct
∞∑

n=1

n∏
k=1

|ak|(−1)n−k+1

. (3–3)

A powerful result in this regard is the following lemma
[Lorentzen and Waadeland 92, Lemma 19, page 127],
[Jones and Thron 80]:

Lemma 3.1. (Jones-Thron.) If the even/odd parts of
x converge absolutely in the sense of (3–2), then x con-
verges if and only if the Stern-Stolz series (3–3) diverges
to infinity.

To employ the Jones-Thron result for the Ramanujan
fraction, we first write for positive odd integer M

R1(a, b) =
a

1 +
b2

1 +
4a2

1 + · · · + SM (a, b)

(3–4)

where

SM (a, b) :=
M2b2

1 +
(M + 1)2a2

1 +
(M + 2)2b2

1 +
(M + 3)2a2

1 + ...

.

We shall focus upon these “tail fractions” SM (a, b), first
dispensing with the Stern-Stolz series issue. Happily, for
these tails SM we always have divergence to infinity of
(3–3), as stated in the following theorem:

Theorem 3.2. For any positive odd M , the Stern-Stolz
series (3–3) for SM (a, b) diverges to infinity.

Remark 3.3. The companion treatment [Borwein et al.
04a] gives precise, equivalent asymptotics for M = 1.

Proof: The nth summand of the Stern-Stolz series (3–3)
is, for n even,∣∣∣∣∣

(
Γ(M/2 + n/2)Γ(M/2 + 1/2)
Γ(M/2)Γ(M/2 + n/2 + 1/2)

)2

(b/a)n

∣∣∣∣∣ ,

while for odd index n the summand is∣∣∣∣∣
1

Mb2

(
Γ(M/2 + n/2)Γ(M/2 + 1)

Γ(M/2 + 1/2)Γ(M/2 + n/2 + 1/2)

)2

(a/b)n−1

∣∣∣∣∣ .

Now, by the standard Stirling formula, each of the
squared-gamma factors is asymptotic to (constant)×1/n,
so that the sum (3–3) is divergent to infinity.
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cM (n) := − a2b2(M + 2n − 1)2(M + 2n)2

(1 + (M + 2n)2b2 + (M + 2n + 1)2a2)(1 + (M + 2n − 2)2b2 + (M + 2n − 1)2a2)
,

dM (n) := cM (−M − n + 1).

FIGURE 1.

We now establish exact expressions for the even and
odd parts of SM (a, b) for positive odd M . Using standard
even/odd decompositions [Lorentzen and Waadeland 92,
pages 83–85], we have

Seven
M (a, b) =

M2b2

1 + (M + 1)2a2 + (1 + (M + 1)2a2 + M2b2)FM
,

Sodd
M (a, b) = M2b2 + (1 + (M − 1)2a2 + M2b2)GM ,

where we define

FM :=
cM (1)

1 +
cM (2)

1 +
cM (3)

1 +
cM (4)
1 + ...

and

GM :=
dM (1)

1 +
dM (2)

1 +
dM (3)

1 +
dM (4)
1 + ...

,

with the definitions of cM (n) and dM (n) as in Figure 1.
With a view to Lemma 3.1, our aim is to show that,

for certain parameter pairs (a, b), both Seven
M and Sodd

M

converge absolutely (and hence to finite values in C). In
such cases we have Seven

M = Sodd
M as well.

A key function of which we shall make both computa-
tional and theoretical use is

c(a, b) := − a2b2

(a2 + b2)2
, (3–5)

for this is the asymptotic large-n limit of either cM (n) or
dM (n) when a2 + b2 �= 0. In fact, for a2 + b2 �= 0 we have

cM (n), dM (n) ∼ c(a, b) + O(1/(M + n)). (3–6)

A useful collection of straightforward results is the
following:

Lemma 3.4. We have c(a, b) �∈ (−∞,−1/4] if and only
if |a| �= |b|. In particular, if a/b = eiφ, then c(a, b) =
−(1/4) sec2 φ. Finally, if c(a, b) �∈ (∞,−1/4], then the
two roots of ω2−ω−c(a, b) = 0 are unequal in magnitude.

Proof: If a real ρ has −ρ ∈ (∞,−1/4], the supposition

a2b2/(a2 + b2)2 = ρ

means, with ρ ≥ 1/4,

a/b =
(

1 − 2ρ ± i
√

4ρ − 1
2ρ

)1/2

,

so that |a/b| = 1. For the converse, with a = beiφ

(and so the sec-identity is immediate from Definition
(3–5)) and in the case where φ is real, we have c(a, b) =
− 1

4 sec2 φ ∈ (−∞,−1/4]. Finally, the quadratic roots are

ω = (1/2)
(
1 ± √

1 + 4c(a, b)
)
. It is a simple geometric

observation in the complex plane that |1− z| = |1 + z| if
and only if Re(z) = 0. Thus, the roots can only be equal
in magnitude if c(a, b) is real and ≤ −1/4.

4. γ-FRACTIONS

With a view to the even/odd decompositions FM and
GM of the previous section, we introduce the concept of
a γ-fraction, as

x :=
γ1

1 +
γ2

1 +
γ3

1 + · · ·

(4–1)

where the γ elements approach a finite complex limit, say
γn → c ∈ C. For our analysis, it is a welcome property of
the Ramanujan fraction R1 that both FM and GM of the
previous section are, for a2 + b2 �= 0, gamma-fractions,
with γn → c(a, b).

It is instructive to consider first the canonical case in
which the gamma-fraction x has γn = c for all n ∈ Z+,
whence we have the classical result (see, e.g., [Wall 48]):

Theorem 4.1. Assume that every γn = c with c �∈
(−∞,−1/4) (note here the real cut is open). Then x

given by (4–1) converges absolutely to the value r − 1,
where r is the larger (in magnitude—see Lemma 3.4) of
the roots

(
1 ±√

1 + 4c
)
/2 of ω2 − ω − c = 0. In partic-

ular, the convergents of x satisfy
∣∣∣∣pn

qn
− pn−1

qn−1

∣∣∣∣ =
∣∣r(1 − s/r)2

∣∣ ∣∣∣s
r

∣∣∣n ,
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where s �= r is the other quadratic root (and by Lemma
3.4, |s| < |r|).

Remark 4.2. For c = −1/4 exactly, the fraction x does
converge (to the value x = −1/2), but not absolutely.
In fact, |1/2 + pn/qn| = 1/(2n + 2) for all n ≥ 0, and
this slow convergence is a hint as to how nonabsolute
convergence might occur for some continued fractions
(4–1) with γn → c more intricately.

Proof: All follows from a closed form for the convergents
pn/qn to x, namely

pn = c(rn − sn)/(r − s),

qn = (rn+1 − sn+1)/(r − s),

and from the fact that |r| > |s|.

It turns out that, for any c ∈ (−∞,−1/4), we have
divergence [Wall 48]; for example, with c := −1/2 one
has

pn

qn
= − 1√

2
sin(nπ/4)

sin((n + 1)π/4)
,

whose values oscillate endlessly though {0,−1/2,−1,∞}.
Such observations and Theorem 4.1 completely settle the
convergence problem for γ-fractions with all γn = c.

A computational digression is relevant here: it is of
interest that the function c(a, b) defined in (3–5) can be
used to accelerate rather sluggish situations, in the fol-
lowing way (a similar idea is enunciated in our compan-
ion treatment [Borwein et al. 04a] for Gauss continued
fractions). We use (3–5) as an approximation to cM (n)
for some large n, so that, when a2 �= b2, the continued
fraction R1(a, b) can be calculated according to the chain
starting with (3–4), and M = 1—but at a key juncture—
using the fact that a periodic fraction defined as

x(a, b) :=
c(a, b)

1 +
c(a, b)

1 +
c(a, b)
1 + · · ·

is given (via Theorem 4.1) by

x(a, b) = − a2

a2 + b2
or − b2

a2 + b2
,

whichever is larger in magnitude. We may therefore
attempt to calculate

R1(a, b) =
a

1 + b2

1+4a2+(1+4a2+b2)F1

,

with an approximation presumed accurate for suitably
large n; namely, we use the finite continued fraction de-
velopment

F1 ≈ c1(1)

1 +
c1(2)

1 + · · · c1(n − 1)
1 + x(a, b)

.

That is, in this computational procedure the tail fraction
from c1(n) inclusive is replaced by the number x(a, b).
This expedient of tail approximation really does improve
matters when |a| ≈ |b|. For example, for a = b = 1 and
the known evaluation R1(1, 1) = log 2 (see [Borwein et
al. 04a]), we found that p1000/q1000 is correct only to
about 3 good decimals for the original continued fraction
(1–1); yet, the same amount of work using the even con-
vergents p2000/q2000, but also doing the tail-substitution
with x(1, 1) = −1/2, yields ten good decimals. Inciden-
tally, rate-bounding in regard to the “oval” theorems in
the literature [Lorentzen and Waadeland 92, pages 141–
146] can be used to effect good bounds on the rate of
convergence of such approximations.

We now revert to the theoretical avenue by observing
that a relevant set of complex numbers not on a certain
real cut can be characterized by

{c ∈ C : c �∈ (−∞,−1/4]} =

{c ∈ C : |c| < 1/4} ∪ {c ∈ C : |arg(c)| < π}.

There is overlap in this union, but convenient theorems
are possible for each component of said union.

Theorem 4.3. Assume |c| < 1/4 and set ε := 1/4− |c|. If
in the γ-fraction (4–1) we have

|γn − c| < ε/2

then x is absolutely convergent, with
∣∣∣∣pn

qn
− pn−1

qn−1

∣∣∣∣ <
2

(1 + 2ε)2n
.

Proof: Employing the Śleszyński-Pringsheim expedient
[Lorentzen and Waadeland 92, page 35] for such bounded
elements γn, we write the equivalent form

x :=
2γ1

2 +
4γ2

2 +
4γ3

2 + · · ·
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and observe for this continued fraction that

|qn| > 2|qn−1| − (1 − 2ε)|qn−2|.
Thus, |qn| > (1 + 2ε)|qn−1| and so, by (3–1),∣∣∣∣pn

qn
− pn−1

qn−1

∣∣∣∣ <
4n

2

∏n
k=1 γk

(1 + 2ε)2n−3
,

and the result follows.

To complete this foray for the set {c �∈ (−∞,−1/4]},
we now establish the following theorem:

Theorem 4.4. Assume θ := |arg(c)| < π and that for the
γ-fraction x (4–1) we have

|γn − c| < h :=
2
9

cos2(θ/2).

Then x is absolutely convergent, with∣∣∣∣x − pn

qn

∣∣∣∣ <
1√
h

|c| + h

(1 + h/(|c| + h))n−1
.

Proof: This follows quickly from the parabola-sequence
theorem [Lorentzen and Waadeland 92, Theorem 21,
pages 136–137], with the multiplier assignment gk := 1/3.

Now we have the central result of the present treat-
ment:

Theorem 4.5. For |a| �= |b|, the Ramanujan fraction
R1(a, b) converges on Ĉ.

Proof: By Lemma 3.4, |a| �= |b| implies c(a, b) �∈
(−∞,−1/4]. By Lemma 3.1 and Theorems 4.3 and 4.4,
and by the observation that for sufficiently large odd M

the bounds on |γn−c(a, b)| in the two stated theorems are
indeed met either for γn := cM (n) or for γn := dM (n), we
have absolute convergence of the even/odd parts of SM ;
hence, convergence of the original fraction R1(a, b).

Corollary 4.6. D1 ⊆ D0, that is, R1(a, b) converges on Ĉ
if |a| �= |b| or a2 = b2 with a not pure-imaginary.

Proof: This follows from Theorems 2.1 and 4.5.

5. DIVERGENCE

A special case of divergence of R1 runs as follows:

Theorem 5.1. If a is pure-imaginary, that is a2 ∈
(−∞, 0), then the fraction R1(a, a) diverges. In particu-
lar, R1(i, i) diverges.

Proof: We have in this case

c1(n) = −1
4

+
1

16n2

(
1
a2

− 1
)

+ · · · .

Now, the Jacobsen-Masson theory (see [Lorentzen and
Waadeland 92, Theorem 32, page 159] and references
therein) shows that, if negative-real fraction elements
c1(n) are eventually less than − 1

4 − r
16n2 for some real

r > 1, then the fraction diverges. Thus, Seven
1 (a, a)

diverges, and so R1(a, a) cannot converge. (Similarly,
the odd part Sodd

1 diverges.)

In attempting to establish divergence for other param-
eter pairs, in particular the cases a = bi, we developed
means to combine computation and theory and prove in-
equality of the even/odd parts, even though both parts
often themselves converge. The technique starts with the
assumption of a fraction (4–1), but not a gamma-fraction,
as γn → ∞; instead,

γn := (n + δn)2,

which assignment—when we know c1(n) and d1(n) for
cases a = bi—implicitly defines the pertubations δn. An
attractive recurrence-transformation results if we define
ρn implicitly by

qn = ρn

n+1∏
j=1

(j + δj),

while the usual recurrence qn = qn−1 + γnqn−2 for q0 =
q1 = 1 yields

ρn =
ρn−1 + (n + δn)ρn−2

n + 1 + δn+1
.

In turn, we have an exact formula

∆n :=
pn

qn
− pn−1

qn−1
=

(−1)n

ρnρn−1

1
n + 1 + δn+1

.

For suitably bounded |δn| and for ρn confined to, say,
a circle in the proper right half-plane, the series for the
fraction x =

∑
n≥1 ∆n is convergent; moreover, we can

establish bounds on the error relevant to the pn/qn ap-
proximant. Our technique, then, is to calculate the
even/odd parts to some level n and bound the error such
that we know rigorously the inequality of said even/odd
parts.

An exemplary application of this computational-
theoretical fusion is the following:

Theorem 5.2. Both R1(1, i) and R1(eiπ/4, e−iπ/4)
diverge.
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Remark 5.3. The second case of the theorem contra-
dicts previous literature claims that convergence occurs
for Re(a),Re(b) > 0; see [Borwein et al. 04a].

Proof: For (a, b) = (1, i) we have

Seven
1 (1, i) =

−1
5 + 4F1

,

where

F1 :=
c1(1)

1 +
c1(2)

1 +
c1(3)

1 + ...
with, here,

c1(n) :=
n(2n + 1)2

4(n + 1)

(and note that relation (3–6) does not apply, as a2 +b2 =
0). This F1 does converge to a finite value according to
the above analysis involving the ρn or to the “parabola”
theorem [Lorentzen and Waadeland 92, Theorem 20,
page 130]. In this particular case, (a, b) = (1, i), the er-
ror analysis can be simplified. We have n2 < c1(n) <

n2 + 1/4, so the recursion qn = qn−1 + c1(n)qn−2 >

qn−1 + n2qn−2 tells us that, in fact, qn ≥ (n + 1)!/2.
Thus, we have (the first inequality here is allowed when
all fraction elements are positive real)

∣∣∣∣F1 − pn

qn

∣∣∣∣ ≤
∣∣∣∣∣
∏n

j=1 c1(j)
qnqn−1

∣∣∣∣∣ <
d

n + 1
,

for a positive constant d. The convergence is “slow” and
nonabsolute, but one may use this convergence bound to-
gether with computation up to appropriate n to establish

Seven
1 (1, i) ∈ [−0.15,−0.14].

On the other hand, one may show in similar fashion that

Sodd
1 (1, i) = −1 +

−1

1 +
c1(−2)

1 +
c1(−3)

1 +
c( − 4)
1 + ...

∈ [−1.5,−1.4],

so S1(1, i) is shown to have distinct even/odd parts. Since
R1(a, b) = a/(1+S1(a, b)), we thus see that the even/odd
parts of R1 are known as

Reven
1 (1, i) ≈ 1.167,

Rodd
1 (1, i) ≈ −2.38 . . . ,

both provably correct to the implied precision; thus,
R1(1, i) diverges.

For (a, b) = (eiπ/4, e−iπ/4) the parabola theorem ap-
plies with

c1(n) :=
2n2(2n + 1)2

−2 − i + (4 − 4i)n + 8n2
, d1(n) := c1(−n);

so, both F1 and G1 converge to finite values. This conver-
gence can also be shown via the aformentioned definition
γn := (n + δn)2 with

δn =
√

i/8 + O(1/n2).

The computation-bounding technique for, say, n = 105

and a suitable error bound (we omit the details on bound-
ing of ρn) yields

Reven
1 (eiπ/4. e−iπ/4) ≈ 0.8185 + 0.867i,

Rodd
1 (eiπ/4. e−iπ/4) ≈ −0.103 + 0.583i,

both approximations correct to the implied precision.
Thus, R1 does not converge for the given parameter pair.

Such isolated divergence results, together with exten-
sive computations, have led us to the following conjec-
ture. (Again, a separate work has resolved a good deal
of conjecture; in particular, Conjectures 5.4 and 5.5, and
the implicit conjecture in Remark 5.6, are now proven
[Borwein et al. 04b]).

Conjecture 5.4. D0 = D1. Equivalently, given Corollary
4.6, R1(a, b) diverges if a/b = eiφ with cos2 φ �= 1.

We have been able to refine Conjecture 5.4—which
would completely settle the convergence question for the
Ramanujan fraction—down to the following (experimen-
tally motivated) form, amounting to a dynamical equiv-
alent for divergence:

Conjecture 5.5. For complex nonzero a and real φ with
cos2 φ �= 1, or a ∈ I and cos2 φ = 1, and any complex
initial values (r0, r1), the sequence (rn) determined by the
recurrence (n > 1),

rn =
1

a(n + 1/2)
rn−1 +

n2

n2 − 1/4
rn−2, n even,

rn =
1

a(n + 1/2)
rn−1 +

n2e2iφ

n2 − 1/4
rn−2, n odd,

is bounded in C.
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Remark 5.6. One could also posit that a recurrence

ρn =
ρn−1 + nωnρn−2

n + 1
,

with ωn = a2 or ωn = a2e2iφ as n is even/odd respec-
tively, has ρn = O(an/

√
n), yielding an equivalent anal-

ysis. The advantage of the particular recurrence form
in Conjecture 5.5 is the simple goal of boundedness of
the |rn|, while the advantage of the ρ-recurrence sug-
gested here is that the algebra is less recondite. We note
that Conjecture 5.5 has been indirectly settled, via The-
orems 5.1 and 5.2 (and the analysis in the following The-
orem 5.6), for the cases a pure-imaginary and φ = 0,
(a, φ) = (1, π/2), and (a, φ) = (

√
i,−π/2). Also, though

we believe the boundedness of the rn is independent of
initial values, we could, if necessary, posit a conjecture
having r0 := 1/Γ(3/2) and r1 := 1/(aΓ(5/2)) (or for the
alternative ρ sequence, ρ0 := 1 and ρ1 := 1/2), for such
initial values are consistent with q0 = q1 := 1 for the
original fraction.

The fascinating recurrence in Conjecture 5.5—or its
various equivalent recurrences as in Remark 5.6—give
rise to the next theorem:

Theorem 5.7. Conjecture 5.5 implies Conjecture 5.4, i.e.,
that D0 = D1.

Proof: Let pn/qn be the convergents to the fraction

S1(a, b) :=
b2

1 +
4a2

1 +
9b2

1 +
16a2

1 + ...

,

where a/b = eiφ with real φ and cos2 φ �= 1. We have
q0 = q1 = 1. Now define

rn :=
qn

anΓ(n + 3/2)
,

so that the rn satisfy the recurrences of Conjecture 5.5.
For the S1 fraction, we have, for n even, via relation
(3–1),

∆n :=
∣∣∣∣pn

qn
− pn−1

qn−1

∣∣∣∣ =
n!2

Γ(n + 3/2)Γ(n + 1/2)

∣∣∣∣ aeinφ

rnrn−1

∣∣∣∣ .

Thus, by Conjecture 5.5, ∆n is thus bounded below, and
so S1, and hence R1, is divergent.

Conjecture 5.5—which would completely settle the
convergence problem for the Ramanujan fraction—is mo-
tivated by extensive numerical experiments: the rn of
said conjecture appear to be bounded (alternatively, the
ρn/an decay like 1/

√
n) in every case we have studied.

One thing we can say at this juncture: the theory of Gill
on Möbius transforms [Gill 73] implies that, for a/b = eiφ

with cos2 φ �= 1, then both even and odd parts of R1(a, b)
do converge. (Indeed, we saw two manifestations of this
in Theorem 5.2.) We are saying via our conjectures that
such even/odd parts should converge to distinct limits.
Thus, there is a kind of “bifurcation” for a/b = eiφ with
cos2 φ �= 1. For the parameter instances a2 = b2 for
b ∈ I, it turns out that both even/odd parts of R1(a, b)
are always bifurcated or in some way chaotic. The reso-
lutions of these various conjectures and ideas follow the
spirit of Theorem 5.7 as applied to specific recurrence
relations [Borwein et al. 04b].

6. AGM RELATION REVISITED

The remarkable AGM relation (1–2) that motivated both
this and the companion [Borwein et al. 04a] treatments
can now be put in perspective:

Theorem 6.1. If a/b ∈ H then each of the three fractions

R1(a, b), R1(b, a), and R1

(
(a + b)/2,

√
ab

)

converges on Ĉ.

Proof: For a/b ∈ H none of the relevant parameter pairs
enjoy equal magnitudes, so Theorem 4.5 settles the issue.

It is fascinating that, in spite of Theorem 6.1—and
as suggested in the abstract—there are parameter pairs
(a, b) where all three fractions converge and yet the AGM
relation (1–2) is false. For example,

R1(2i, 1) + R1(1, 2i) �= 2R1(1/2 + i, 1 + i),

which can be gleaned easily via some computation and
the relatively strong bounds of Theorem 4.4.

Conjecture 6.2. For a/b ∈ H the AGM relation (1–2)
holds on Ĉ (with, as we know, all fractions converging
on Ĉ).

In regard to Theorem 6.1 and Conjecture 6.2, one must
take care to observe certain anomalies. For example, it
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turns out that R1 (a, b) converges to infinity when

a := i
Γ2(1/4)
4π3/2

, b := i
Γ2(1/4)
4π3/2

√
2
,

even though a/b ∈ H; here Conjecture 6.2 remains intact,
in the sense that the AGM relation for this pair (a, b) then
reads ∞ = ∞. Note that for this peculiar parameter pair
(and certain others) the fraction

S1(a, b) :=
b2

1 +
4a2

1 +
9b2

1 +
16a2

1 + ...

actually converges to the finite value −1. Such singular-
ities in the AGM relation can also be inferred from the
sech identities (3–1) and (3–2) in the treatment [Borwein
et al. 04a] that reveal the possibility of infinitely many
poles in the summation.

We believe it very likely that Conjecture 6.2 would
follow from careful examination of the analyticity prop-
erties (in η, a, b) of the aforementioned sech series and
the corresponding properties for the continued fractions
with |a| �= |b|.

7. OPEN ISSUES

• We still do not know an exact evaluation—in the
sense, say, of closed forms as in [Borwein et al. 04a]
for R1(a, a) with certain a—for unequal a and b;
except, as we state in Section 6, we do know some
(a, b) with R1(a, b) = ∞.

• Since the conjectures of Section 5 have been resolved
in a separate treatment [Borwein et al. 04b], there
remains Conjecture 6.2, which is open. Aside from
the difficult problem of correctly analyzing sech iden-
tities (see end of Section 6), there is also the dilemma
of what points on the closure of H are valid AGM
points.

ACKNOWLEDGMENTS

We thank Bruce Berndt, Joseph Buhler, Greg Fee, William
Jones, Lisa Lorentzen, and Stephen Rayhawk for useful dis-
cussions and observations. The reserach of the first author
was supported by NSERC, the Canada Foundation for Inno-
vation, and the Canada Research Chair Program.

REFERENCES

[Borwein et al. 04a] J. Borwein, R. Crandall, and G. Fee.
“On the Ramanujan AGM Fraction, I: The Real-
Parameter Case” Exper. Math. 13:3 (2004), 275–286.

[Borwein et al. 04b] D. Borwein, J. Borwein, R. Crandall,
and R. Mayer. “On the Dynamics of Certain Recurrence
Relations.” Preprint, 2004. Available from World Wide
Web (http://www.cecm.sfu.ca/preprints).

[Gill 73] J. Gill. “Infinite Compositions of Mobius Trans-
forms.” Trans. Amer. Math. Soc. 176 (1973), 479–487.

[Jones and Thron 80] W. Jones and W. Thron. Continued
Fractions: Analytic Theory and Applications. Reading,
MA: Addison-Wesley, 1980.

[Lorentzen and Waadeland 92] L. Lorentzen and H. Waade-
land. Continued Fractions With Applications. Amster-
dam: North-Holland, 1992.

[Wall 48] H. S. Wall. Analytic Theory of Continued Fractions.
New York: Van Nostrand, 1948.

J. Borwein, Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia B3H 1W5, Canada
(jborwein@cs.dal.ca)

R. Crandall, Center for Advanced Computation, Reed College, Portland, OR 97202 (crandall@reed.edu)

Received June 17, 2003; accepted August 29, 2003.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


