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Abstract. The extended Kalman filter (EKF) is one of the most used nonlinear state estimation methods. How-
ever, in large-scale problems, the CPU and memory requirements of EKF are prohibitively large. Recently, Auvinen
et al. proposed a promising approximation to EKF called the variational Kalman filter (VKF). The implementation
of VKF requires the tangent linear and adjoint codes for propagating error covariances in time. However, the trouble
of building the codes can be circumvented by using ensemble filtering techniques, where an ensemble of states is
propagated in time using the full nonlinear model, and the statistical information needed in EKF formulas is esti-
mated from the ensemble. In this paper, we show how the VKF ideascan be used in the ensemble filtering context.
Following VKF, we obtain the state estimate and its covariance by solving a minimization problem using the limited
memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) method, which provides low-storage approximations to the
state covariances. The resulting hybrid method, the variational ensemble Kalman filter (VEnKF), has several attrac-
tive features compared to existing ensemble methods. The model error and observation error covariances can be
inserted directly into the minimization problem instead of randomly perturbing model states and observations as in
the standard ensemble Kalman filter. New ensembles can be directly generated from the LBFGS covariance approx-
imation without the need of a square root (Cholesky) matrix decomposition. The frequent resampling from the full
state space circumvents the problem of ensemble in-breeding frequently associated with ensemble filters. Numerical
examples are used to show that the proposed approach performs better than the standard ensemble Kalman filter,
especially when the ensemble size is small.
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1. Introduction. Since the introduction of the Kalman filter (KF) in [21] and its nonlin-
ear extension, the extended Kalman filter (EKF), many approaches to overcome the problems
with computational complexity present in KF and EKF have been proposed; see, e.g., [6, 9,
13]. In these approaches, the state vector is often projected onto a fixed, low-dimensional
subspace. It is known that a fixed projection operator might not correctly capture the dynam-
ics of a nonlinear system; see [14]. In particular, such reduced rank Kalman filters tend to
suffer from covariance leakage; see [20].

In [2, 3], a low-storage variational approach to approximate KF andEKF was proposed
called the variational Kalman filter (VKF). In VKF, the largematrices in KF formulas are re-
placed with a low-storage approximation provided by the quasi-Newton optimization method
called limited memory Broyden-Fletcher-Goldfarb-Shanno(LBFGS). The applicability of
VKF is hindered by the requirement of tangent linear and adjoint codes for the evolution
model, which require a considerable development effort separately for every model.

In ensemble filtering methods, the problems related to standard EKF (large matrices,
need for tangent linear and adjoint codes) are circumventedby representing uncertainty in
the model state as a number of samples instead of covariance matrices. Instead of moving the
covariance in time using the linearized model, uncertaintyis propagated simply by moving the
ensemble members in time with the full nonlinear evolution model. The simplest version of
this idea is the ensemble Kalman filter (EnKF), first proposedin [11], where the covariance
matrices in the KF formulas are essentially replaced with sample statistics calculated from
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the ensemble. However, EnKF suffers from some problems, e.g., sampling errors due to
random perturbation of model state and observations and from ensemble in-breeding that
results in a similar covariance leakage as that associated with reduced rank Kalman filters;
see [23, 26, 28].

In this paper, we show how VKF ideas can be used in the ensemblefiltering context to
overcome some problems related to existing ensemble methods. In our approach, the model
error and observation error covariances are inserted directly into the minimization problem
instead of randomly perturbing model states and observations as in EnKF. New ensembles
can be efficiently generated directly from the LBFGS covariance approximation without ex-
plicitly constructing the large covariance matrix. We callour hybrid approach thevariational
ensemble Kalman filter (VEnKF)and show by numerical examples that the hybrid method
performs well compared to the standard EnKF, especially when the ensemble size is small.

The paper is organized as follows. In Section2, we recall the basics of Kalman filtering
and ensemble methods. We introduce the VEnKF algorithm in Section 3 and demonstrate its
performance with numerical examples in Section4. In Section5, we discuss some specific
topics related to our approach and the differences to existing ensemble filters. Section6
concludes the paper.

2. Filtering methods. In this section, we provide an overview of some existing Kalman
filtering methods that are related to our approach. We start by recalling how the basic Kalman
filter and some of its variants work and continue with an introduction to ensemble filtering
methods.

2.1. Kalman filtering and variants. The Kalman filter can be used to estimate the state
xk at discrete timesk from observationsyk, when the model and observation equations are
linear:

xk = Mkxk−1 + εp
k

yk = Kkxk + εo
k.

In the above system,Mk is thed × d evolution model andKk is them × d observation
operator. Thed × 1 vectorxk represents the model state, and the observed data are denoted
by them × 1 vectoryk. The model errorεp

k and the observation errorεo
k are assumed to

be normally distributed zero mean random variables with covariance matricesCε
p

k
andCεo

k
,

respectively. The Kalman filter algorithm for estimating states and their error covariances can
be written as follows.

The Kalman filter algorithm
1. Move the state estimate and covariance in time:

(a) Computexp
k = Mkx

est
k−1.

(b) ComputeCp
k = MkC

est
k−1M

T
k + Cε

p

k
.

2. Combine the prior with observations:
(a) Compute the Kalman gainGk = C

p
kK

T
k (KkC

p
kK

T
k + Cεo

k
)−1.

(b) Compute the state estimatexest
k = x

p
k + Gk(yk − Kkx

p
k).

(c) Compute the covariance estimateCest
k = C

p
k − GkKkC

p
k.

3. Setk → k + 1 and go to step 1.

The extended Kalman filter directly uses the Kalman filter formulas in the nonlinear case
by replacing the nonlinear model and observation operatorswith appropriate linearizations:
Mk = ∂

∂x
M(xest

k−1) andKk = ∂
∂x

K(xp
k).
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In the variational formulation of the Kalman filter, the state estimation at stepk is viewed
as an optimization problem, where a quadratic function

(2.1) l(x|yk) =
1

2
(x − x

p
k)

T
(Cp

k)−1 (x − x
p
k) +

1

2
(yk −K(x))

T (

Cεo
k

)−1
(yk −K(x))

is minimized with respect tox. In the VKF method, introduced in [2], the minimization
is done with the LBFGS optimization method, that produces both the state estimate and a
low-storage approximation of the covariance (inverse hessian at the minimizer). In the VKF
algorithm, the inverse of the prior covarianceCp

k is also approximated using LBFGS by
setting up an auxiliary optimization problem

(2.2) argmin
u

1

2
uTC

p
ku.

Thus, the LBFGS optimization routine provides low-storageapproximation for both(Cp
k)−1

andCest
k . All computations with the covariances can be carried out efficiently using the

implicit low-storage representation without forming the full matrices. The VKF method is
given as an algorithm below.

The variational Kalman filter algorithm
1. Move the state estimate and covariance in time:

(a) Computexp
k = Mkx

est
k−1.

(b) DefineCp
k = MkB

#
k−1M

T
k + Cε

p

k
.

(c) Apply LBFGS to (2.2) to get an approximationB∗
k of (Cp

k)−1.
2. Combine the prior with observations:

(a) Minimize expression (2.1) using LBFGS to get the state estimatexest
k and co-

variance estimateB#
k .

3. Setk → k + 1 and go to step 1.

Note that while VKF can solve the storage problem related to EKF, it requires a way to
evolve the covariance in time (step 1(b) in the algorithm above). Propagating the covariance
using a direct linearization, as in EKF, is infeasible in high dimensions. In VKF, covariance
propagation is done using tangent linear and adjoint codes that implement differentiation
at the “code level”. This is a standard technique in variational data assimilation; see, e.g.,
[15, 22]. These codes must be prepared separately for every model and their construction is
laborious, although automatic code generators have been recently developed; see, e.g., [8]. In
the ensemble filters that we discuss next, tangent linear andadjoint codes are not needed.

2.2. Ensemble filtering. In ensemble filtering, the uncertainty in the state estimatexk

is represented asN samples, here denoted assk = (sk,1, sk,2, . . . , sk,N ), instead of a co-
variance matrix. The first ensemble filtering method was the ensemble Kalman filter (EnKF)
introduced in [11] and implemented in operational numerical weather prediction, e.g., in [19].
The ensemble Kalman filter essentially replaces the state covariance matrices in EKF with the
sample covariance calculated from the ensemble. The samplecovariance can be written as
Cov(sk) = XkX

T
k , where

Xk =
1√

N − 1
((sk,1 − sk), (sk,2 − sk), . . . , (sk,N − sk)) .

The sample mean is denoted bysk. Using our notation, the EnKF algorithm can be formulated
as follows.



ETNA
Kent State University 

http://etna.math.kent.edu

274 A. SOLONEN ET AL.

The ensemble Kalman filter algorithm
1. Move the state estimate and covariance in time:

(a) Move ensemble forward and perturb members with model error:
s
p
k,i = M(sest

(k−1),i) + e
p
k,i, i = 1, . . . , N .

(b) Calculate sample meansk and covarianceCp
k = XkX

T
k .

2. Combine the prior with observations:
(a) Compute the Kalman gainGk.
(b) Update ensemble memberssest

k,i = s
p
k,i + Gk(yk − Kks

p
k,i + eo

k,i).

(c) Calculate state estimate as the sample meansest
k,i.

In the above algorithm, the vectorsep
k,i andeo

k,i are realizations of the model error and ob-
servation error distributions (Gaussians with covariancesCε

p

k
andCεo

k
, respectively).

The ensemble Kalman filter is very simple to implement and it does not require tangent
linear and adjoint codes. However, EnKF has various problems and numerous variants have
been developed to overcome these issues; see, e.g., [1, 10, 19, 32]. In Section5, we discuss
these variants in light of the proposed VEnKF algorithm, which we introduce in the next
section.

3. Variational ensemble Kalman filtering. Here we follow the VKF ideas and show
how they can be implemented in the ensemble filtering context, resulting in a filter that we call
the variational ensemble Kalman filter (VEnKF). As in VKF, the state estimation in VEnKF
is based on minimizing the cost function in Equation (2.1). The prior covariance needed in
the cost function is defined here as

(3.1) C
p
k = Cov

(

M(xest
k−1) + εp

k

)

= Cov
(

M(xest
k−1)

)

+ Cov (εp
k) ≈ XkX

T
k + Cε

p

k
.

Note that the above formula contains the common assumption that the model error and model
response are uncorrelated. The same assumption is made in KFand EKF. In VEnKF, we
calculate the sample covariance using the state estimate evolved from the previous time as
the expectation instead of the sample mean used in EnKF. Thus, we define

Xk =
1√
N

((sk,1 − x
p
k), (sk,2 − x

p
k), . . . , (sk,N − x

p
k)) ,

wherex
p
k = M(xest

k−1) andsk,i = M(sest
(k−1),i). Note that the ensemble members now do

not contain random perturbations; the model error is included directly in Equation (3.1).
The inverse of the prior covarianceCp

k = XkX
T
k + Cε

p

k
, needed when evaluating the

cost function (2.1), can be obtained in two ways. Following the VKF derivation,we can
approximate the inverse by applying LBFGS to the artificial optimization problem

(3.2) argmin
u

uT(XkX
T
k + Cε

p

k
)u.

The sample covariance matrix in the above expression naturally does not have to be handled
as a full matrix – in order to evaluate the cost function, we can just keep the covariance in
“ensemble form”XkX

T
k and evaluate the cost function in the formuTXkX

T
k u + uTCε

p

k
u.

For the computation to remain efficient, we assume (as in VKF)that the model error covari-
anceCε

p

k
can be efficiently multiplied with a vector, which is the case, for instance, if the

covariance is assumed to be diagonal. As a result of the aboveoptimization, we obtain an
LBFGS representation of the inverse of the prior covariance(Cp

k)−1. We can use the LBFGS
representation to evaluate the first term when optimizing the cost function (2.1). For comput-
ing the matrix-vector product when the matrix is in the LBFGSform, there exists an efficient
recursive algorithm; see AppendixA and [27] for details.
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An attractive alternative way to proceed is to calculate theinverse of the prior covariance
using the Sherman-Morrison-Woodbury (SMW) matrix inversion formula; see, e.g., [18].
The inverse of the prior covariance can be written as

(Cp
k)−1 = (XkX

T
k + Cε

p

k
)−1

= C−1
ε

p

k

− C−1
ε

p

k

Xk(I + XT
k C−1

ε
p

k

Xk)−1XT
k C−1

ε
p

k

.
(3.3)

This representation of the inverse can be directly insertedinto Equation (2.1) when it it min-
imized. The computation of the quadratic expression(x − x

p
k)T(Cp

k)−1(x − x
p
k) can be

organized so that we do not have to store full matrices of sized × d. With this formulation,
the first LBFGS approximation can be avoided and the prior canbe included ’exactly’ in the
second optimization. The application of the formula requires that the inverses of the model
error covariancesCε

p

k
are available. If the model error is assumed to be constant (same for

all k), this matrix inversion needs to be computed only once. In addition, the inversion of
I + XT

k C−1
ε

p

k

Xk needs to be computed at every step. However, this matrix is only of size
N × N, whereN is the ensemble size, which is always very small compared to the dimen-
sion of the state space in large-scale applications. In the examples of this paper, we use the
SMW formula for inverting the prior covariance.

When the LBFGS optimization is applied to minimize the function (2.1), we get a low-
storage approximation for the covarianceCest

k . After that, we sample a new ensemble of state
vectors fromN(xest

k ,Cest
k ). Samples can be drawn efficiently, since the LBFGS representa-

tion for Cest
k can be written in the form

Cest
k = B0B

T
0 +

n
∑

i=1

bib
T
i ,

whereB0 is ad×d matrix andbi ared×1 vectors. From this representation one can produce
a zero mean random vectorr ∼ N(0,Cest

k ) simply by calculating

r = B0z +

n
∑

i=1

ωibi,

wherez ∼ N(0, I) andωi ∼ N(0, 1). The matrixB0 does not have to be stored explicitly,
since the productB0z can be computed implicitly using the stored LBFGS vectors. See
AppendixA for details about constructingB0 andbi.

Finally, we are ready to present ourvariational ensemble Kalman filter(VEnKF) as an
algorithm. After setting the initial guesses for the state and its covariance toxest

0 andCest
0 ,

respectively, and settingk = 1, we write our algorithm as follows:

The VEnKF algorithm
1. Move the ensemble forward and build the prior:

(a) Compute prior center pointxp
k = M(xest

k−1).
(b) Compute prior ensemblesp

k,i = M(sest
(k−1),i), i = 1, . . . , N .

(c) Define(Cp
k)−1 using SMW formula (3.3)

(Alternatively: apply LBFGS to (3.2) to get(Cp
k)−1).

2. Calculate the posterior estimate and generate the new ensemble:
(a) Apply LBFGS to minimize (2.1) to getxest

k andCest
k .

(b) Sample new ensemblesest
k,i ∼ N(xest

k ,Cest
k ); see AppendixA for details.

3. Setk → k + 1 and go to step 1.
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Since the optimization tasks are both quadratic, only a quadratic version of the LBFGS
method is needed. The LBFGS algorithm is given in AppendixA, for a detailed analysis
we refer to, e.g., [27].

The proposed VEnKF algorithm has several attractive features. First of all, it does not
suffer from ensemble in-breeding that is often encounteredwith many ensemble filtering
methods, since the new ensemble is re-generated at each step. The ensembles are gener-
ated from dynamically changing covariances that are not restricted to any fixed subspace as
in reduced rank methods. The ensemble generation is performed directly by the low stor-
age LBFGS construction without the need of any further matrix (Cholesky) decomposition.
Moreover, the model error covariance term can be added explicitly to the optimization prob-
lem in step 1(c) of the algorithm, whereas in EnKF it is handled by randomly perturbing the
prior ensemble with the model error. In addition, VEnKF usesthe state estimate given by
the optimizer as the expectation in the sample covariance calculations instead of the sample
mean. Mainly due to these reasons, VEnKF has a better performance than EnKF in our exam-
ples, when the ensemble size is small (see Section4). Note that VEnKF especially applies to
high dimensional problems, since all calculations are performed using the LBFGS covariance
representations without handling full covariance matrices.

It is worth noting that the covariance matrices produced by LBFGS (with a diagonal ini-
tial inverse Hessian) are full rank and VEnKF is therefore not a “reduced rank” method. Thus,
the new ensemble members generated in VEnKF perturb also thedirections of small eigen-
values. This is not the case for many other covariance approximation/optimization methods
that could be used instead of LBFGS. For example, Lanczos andconjugate gradient methods
operate on a low-dimensional subspace.

4. Numerical experiments. In this section, we demonstrate the performance of VEnKF
with two synthetic examples, adopted from [2]. The first example is the well-known Lorenz 95
benchmark problem (a low-order nonlinear chaotic ODE system) that shares some character-
istics with weather models. The second example is a linear system, where the dimension of
the problem can be controlled by changing the discretization.

For comparing methods, we use the root mean square error (rms), written as

[rms]k =

√

1

d
||xest

k − xtrue
k ||2,

wherexest
k is the filter estimate andxtrue

k is the truth used in the data generation at iterationk.

4.1. Lorenz 95. In this example, we consider the well-known nonlinear and chaotic
Lorenz 95 model introduced in [24] and analyzed in [25]. The model shares many charac-
teristics with realistic atmospheric models and it is oftenused as a low-order test case for
weather forecasting schemes. We use a 40-dimensional version of the model, given as an
ODE system

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + 8, i = 1, 2, . . . , 40.

The state variables are periodic:x−1 = x39, x0 = x40, andx41 = x1. Out of the 40 model
states, measurements are obtained from 24 states. We define the observation operator (fol-
lowing [2]) asK(x) = Kx, where

[K]rp =

{

1, (r, p) ∈ {(3j + i, 5j + i + 2)}
0, otherwise

,
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wherei = 1, 2, 3 andj = 0, 1, . . . , 7. Thus, we observe the last three states in every set of
five. To generate data, we add Gaussian noise to the model solution with zero mean and co-
variance(0.15σclim)2I, whereσclim = 3.641 (’climatological’ standard deviation computed
from long model simulations). In the filtering methods, we use Cε

p

k
= (0.05σclim)2I as the

model error covariance andCεo
k

= (0.15σclim)2I as the observation error covariance. As
initial guesses in the filtering, we usexest

0 = 1 andCest
0 = I. For more details about the

example, we refer to [2].
We run experiments with varying ensemble sizeN and varying number of LBFGS it-

erations. In Figure4.1, we compare the performance of EKF, EnKF, and VEnKF with
N = (10, 15, 20, 40) in terms of the rms error. Since EnKF and VEnKF are stochasticmeth-
ods, we display rms errors averaged over 10 repetitions. In VEnKF, the number of LBFGS
iterations and the number of LBFGS vectors stored was the same as the ensemble size. From
the results it is clear that VEnKF works better when the ensemble size is small. When the
ensemble size gets large, the performances of VEnKF and EnKFapproach each other.

In Figure4.2, we compare the forecast skills given by different methods using the same
ensemble sizes as above. The forecast skill is here defined asthe mean squared difference
between the “truth” and the forecast made with the model scaled with σclim; see [2] for
details. Again, VEnKF performs better, especially whenN is small. For instance, VEnKF
with N = 10 performs equally well as EnKF withN = 20. Even with largerN , VEnKF is
better on average.

FIG. 4.1. Comparison of EnKF (red), VEnKF (black), and EKF (green) with ensemble sizes
N = (10, 15, 20, 40) in the Lorenz 95 example. Increasing ensemble size leads to monotonically decreasing er-
ror levels for both EnKF and VEnKF.

To further demonstrate the behavior of VEnKF, in Figure4.3we compare the rms errors
(averaged over time) with varying ensemble sizes and varying number of the LBFGS itera-
tions used. As a reference, we also plot the EnKF performance. One can see that 30 LBFGS
iterations practically give an as good performance as 40 or 100 iterations, and EnKF starts to
produce acceptable results whenN ≥ 30.
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FIG. 4.2. Forecast skill comparison of EnKF (red), VEnKF (black), andEKF (green) with ensemble sizes
N = (10, 15, 20, 40) in the Lorenz 95 example. Increasing ensemble size leads to monotonically increasing forecast
skill for both EnKF and VEnKF.

4.2. Heat equation. The purpose of this example, adopted from [2], is to demonstrate
the behavior of VEnKF when the dimension is large. The example is linear, so we can di-
rectly compare the results with KF. However, as the dimension of the problem is increased,
KF cannot be run anymore due to memory issues. Note that whilethis example does illus-
trate some computational aspects related to the methods, this system is well-behaved and we
cannot conclude much about how the methods work in a high-dimensional chaotic case such
as numerical weather prediction, for example.

The model describes heat propagation on a two-dimensional grid and is written as a PDE

∂x

∂t
= −∂2x

∂u2
− ∂2x

∂v
+ α exp

(

− (u − 2/9)2 + (v − 2/9)2

σ2

)

,

wherex is the temperature at coordinatesu andv over the domainΩ = {(u, v)|u, v ∈ [0, 1]}.
The last term in the equation is an external heat source, whose magnitude can be controlled
with the parameterα ≥ 0.

We discretize the model using a uniformS×S grid. This leads to a linear forward model
xk+1 = Mxk + f , whereM corresponds to the heat diffusion andf to the external forcing;
see [2] for details. The dimension of the problem can be controlledby changingS. The
observation operatorK is defined as in [2]: the measured temperature is a weighted average
of temperatures at neighboring points atS2/64 evenly spaced locations.

The data are generated by adding normally distributed random noise to the model state
and the corresponding response:

xk+1 = Mxk + f + N(0, (0.5σev)2I)

yk+1 = Kxk+1 + N(0, (0.8σobs)
2I).

In the data generation we useα = 0.75 and chooseσev andσobs so that the signal to noise
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FIG. 4.3. Rms error averaged over time for EnKF and for VEnKF with varying ensemble sizes and LBFGS
iterations in the Lorenz 95 example.

ratios at the initial condition defined by||x0||
2

S2σ2
ev

and ||Kx0||
2

m2σ2

obs

are both 50. The initial condition

for the data generation is

[x0]ij = exp
(

−(ui − 1/2)2 − (vj − 1/2)2
)

.

For the filtering we use a biased model, where the forcing termis dropped by settingα = 0.
The error covariances used for model and observations areσ2

evI andσ2
obsI, respectively. We

start all filters from the initial guessx0 = 0. For ensemble filters, all members are initialized
to the same value and for KF we set the initial covariance estimate toCest

0 = 0.
In our first test, we takeS = 2j and choosej = 5, which is the largest integer so

that KF can still be computed on a standard desktop computer.Thus, the dimension of the
initial test wasd = S2 = 1024. In Figure4.4, we compare KF, VEnKF, and EnKF using
ensemble sizesN = (5, 10, 20, 50, 100) for VEnKF and EnKF. In VEnKF, we always take 20
LBFGS iterations and store 20 LBFGS vectors. The performance of VEnKF approaches that
of KF as the ensemble size increases, but EnKF performs poorly: only with larger ensemble
sizes we get acceptable results. We think that such a dramatic difference between VEnKF
and EnKF is related to the handling of the measurement error in the method. In this case,
we have a simple linear dynamic and a rather good guess about the model error, and just a
plain “3D-Var” method, where the prior covariance is kept constant, performs rather well.
This is the lower limit of the performance of VEnKF upon whichwe can improve by adding
ensemble members. In EnKF, the model error can be added only by perturbing the (few)
samples randomly, which can lead to large errors. In addition, in EnKF the state estimate
is calculated as the sample mean, whereas VEnKF uses the MAP estimate. In this case this
might produce the large errors in EnKF.

Next, we compared VEnKF to EnKF in a case, where the dimensionis much higher
(j = 7, d = S2 = 16384) using the same ensemble sizes and the same LBFGS settings. In
this case, KF cannot be used anymore due to memory issues. As it can be seen in Figure4.5,
the difference between EnKF and VEnKF is even more dramatic in this case: the EnKF
performance is poor, whereas VEnKF is able to improve the simple 3D-Var results.
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FIG. 4.4.Performance comparison of KF (solid green), VEnKF (black),and EnKF (red) with different ensem-
ble sizes in the case whered = 1024. The dashed green line is 3D-Var, where only the fixed model error covariance
is used. Increasing ensemble size leads to monotonically decreasing error levels for both EnKF and VEnKF.

5. Discussion.In the past decade, a wide literature about ensemble filtering has emerged.
We start this section by reviewing some of it and discuss the existing approaches in light of
our VEnKF method. Later, we discuss some specific topics related to VEnKF.

The standard EnKF is criticized in many papers because of theadditional sampling er-
rors brought in by randomly perturbing the observations. Inso called square root ensemble
filters (SRFs) this is not needed; see, e.g., [12] and the review of SRF methods given in [29].
Similar approaches include the ensemble adjustment Kalmanfilter (EAKF) and the ensemble
transform Kalman filter (ETKF) given in [1] and [5], respectively. In SRF methods, the prior
ensemble is deterministically transformed so that the posterior statistics match with the theory
in the linear case (Kalman filter equations). This is done basically by writing the Kalman for-
mulas for matrix “square roots” (symmetric decompositions) instead of covariance matrices
in a manner that avoids forming full covariance matrices. This transformation is non-unique
leading to various SRF formulations; see [29] for a comparison. One difficulty in SRF meth-
ods, as pointed out in [29], is the handling of the model error. A simple way is to include it
by perturbing the ensemble (as in EnKF), but this potentially leads to sampling errors much
in the same way as with perturbed observations in the standard EnKF. Dropping the model
error altogether leads to underestimation of errors and possible divergence issues, and differ-
ent “covariance inflation” mechanisms need to be developed for this purpose. In our VEnKF
algorithm, both the model error and the observation error covariances are explicitly present in
the minimized cost functions, and these problems do not appear here. Moreover, the square
root filters operate, as for the standard EnKF, only in the subspace spanned by the ensemble
vectors, whereas the VEnKF samples from the full state space.

Hybrid EnKF methods that incorporate features from both EnKF and variational meth-
ods (as VEnKF) have been found appealing in many studies. In [16], a hybrid approach is
adopted, which combines elements of ensemble filtering and 3D-Var. However, the hybrid
method uses perturbed observations and makes the perfect model assumption; model error
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FIG. 4.5.Performance comparison of VEnKF (black) and EnKF (red) withdifferent ensemble sizes in the case
whered = 16384. The dashed green line is 3D-Var, where only the fixed model error covariance is used. Increasing
ensemble size leads to monotonically decreasing error levels for both EnKF and VEnKF.

covariance cannot be easily incorporated. The prior covariance is defined as a linear combi-
nation of the sample covariance and the static model error covariance used in 3D-Var, which
is rather ad-hoc and introduces a tuning parameter (the weight given for the sample covari-
ance). Similar approaches are introduced in [10] and [30]. In [31], the hybrid approach is
extended so that it can be used with the 4D-Var method, but thesame problems remain.

Probably the closest method to our VEnKF approach is the maximum likelihood ensem-
ble Filter (MLEF) proposed in [32]. In MLEF, an iterative optimization method is used to
optimize a 3D-Var type of cost function, and the found optimum is used as the state estimate
instead of the sample mean. However, the model error term is neglected and the method
operates only in the ensemble subspace.

One criticism that is faced by all Kalman filter based methodsare the Gaussian approx-
imations: in all of the methods discussed so far in this paper, a Gaussian form is used for
the prior. The ensemble methods are more nonlinear than EKF in the sense that the covari-
ance information is propagated using the nonlinear model instead of the linearized model.
Purely nonlinear filtering methods exist as well; see, e.g.,[7] for a recent introduction to par-
ticle filters. Their benefit over the linear methods can be easily shown in small-dimensional
cases, but they become infeasible in large systems. Some nonlinearity in the prior formu-
lation can be induced, e.g., by representing the prior as a mixture of Gaussians or a kernel
density estimate fitted to the ensemble; see, e.g., [1, 4] for some discussion. We note that
different, nonlinear prior and likelihood formulations can be rather easily incorporated into
the cost functions used in the proposed VEnKF method. The only complication is that the
cost function is no longer quadratic and one has to use the full LBFGS algorithm instead
of the quadratic version used in this paper and to worry aboute.g., the Wolfe conditions in
the optimization. Extending VEnKF to this type of nonlinearfiltering is a topic for further
research.

In the VEnKF algorithm, we sample new ensemble members at each iteration. Tradition-
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ally, sampling from a multivariate Gaussian distribution is done by performing a symmetric
decomposition on the covariance matrix,C = LLT, for example using the Cholesky de-
composition, and then producing random vectors asLz, wherez ∼ N(0, I). The work
in [17] comes close to our approach as it employs the BFGS covariance approximation for
the proposal distribution in the Metropolis MCMC algorithm, but using again the Cholesky
decomposition. In high dimensions, performing these decompositions is infeasible, since
we cannot even store the full covariance matrix. However, asshown in this paper, random
sampling can be done directly using the LBFGS vectors. This is potentially useful in other
contexts as well, where high dimensional random sampling isneeded, for example in the field
of inverse problems.

Although we have shown that VEnKF performs well, the approach has its downsides. In
particular, the LBFGS optimization is sensitive to certain“parameters” and therefore VEnKF
requires some case specific tuning. One tuning parameter is the preconditioner for the inverse
Hessian used in the LBFGS optimization. In this paper, we usea heuristic given in [27]
that eliminates this tuning parameter (see AppendixA for details). Other tuning parameters
remain, such as the choice of the initial guess, the number ofLBFGS vectors that we store,
and the number of LBFGS iterations that we take. At present, we have not found any general
way to define these parameters other than “trial and error”.

Naturally, the performance of VEnKF depends on the accuracyof the LBFGS covari-
ance approximations. In [2], the quality of LBFGS covariances was found to be good in
low-dimensional numerical examples. However, the LBFGS performance in approximating
covariance in high dimensions and realistic data assimilation problems remains a topic of
future research.

6. Conclusions. In this paper, we propose a hybrid method called the variational en-
semble Kalman filter (VEnKF) for high-dimensional data assimilation that combines ele-
ments from ensemble filtering and variational methods. VEnKF is based on the variational
Kalman filter (VKF) method [2], where the memory issues related to EKF are solved by
low-storage approximations of the state covariances obtained using the LBFGS optimization
method. The proposed approach can solve some problems oftenencountered with ensemble
methods, such as sampling errors due to random perturbationof states and observations and
ensemble in-breeding. All of the calculations in VEnKF, noting especially the generation of
new ensembles, can be made using the LBFGS covariance representation without handling
full covariance matrices. Since VEnKF is an ensemble method, it does not need tangent lin-
ear and adjoint codes. We show with synthetic examples that the method can perform better
than the standard ensemble Kalman filter. Testing the applicability of the method on real data
assimilation problems remains a topic of future research.

Acknowledgements.The work was supported by the Centre of Excellence in Inverse
Problems of the Academy of Finland.

Appendix A. In this appendix, we give details of some computational issues in VEnKF.
First, we recall how the LBFGS optimization algorithm for quadratic minimization problems
works. Then, we shown how random samples can be produced fromthe LBFGS covariance
representation.

The LBFGS algorithm for minimizing a quadratic functionq(u) = 1
2u

TAu, given an
initial guessu0, reads as

LBFGS algorithm for quadratic problems
1. Choose an inverse Hessian approximationH0

k.
2. Compute the gradientgk = ∇q(uk) = Auk.
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3. Compute a search directionpk = Hkgk, whereHk is the LBFGS approximation of
the inverse Hessian (details below).

4. Compute step sizeαk = (gT
k pk)/(pT

k Apk).
5. Setuk+1 = uk − αkpk andk → k + 1 and go to step 1.

The LBFGS algorithm uses the BFGS formula for approximatingHk, which is recursively
defined as

Hk+1 = VT
k HkVk + ρksks

T
k ,

where

ρk = 1/(yT
k sk)

Vk = I − ρkyks
T
k

sk = uk+1 − uk

yk = gk+1 − gk.

In LBFGS only a certain numbern of the vectorssk andyk are used in the above formula.
Writing out the recursive formula and storing onlyn most recent vectors leads to the following
formula for the LBFGS inverse Hessian approximation:

Hk = (VT
k−1 . . .VT

k−n)H0
k(Vk−n . . .Vk−1)

+ρk−n(VT
k−1 . . .VT

k−n+1)sk−nsT
k−n(Vk−n+1 . . .Vk−1)

+ρk−n+1(V
T
k−1 . . .VT

k−n+2)sk−n+1s
T
k−n+1(Vk−n+2 . . .Vk−1)

+ . . .

+ρk−1sk−1s
T
k−1.

Note that in the LBFGS formulation, the initial inverse Hessian approximationH0
k can vary

from one iteration to another. One can choose, e.g., a fixed diagonal covarianceH0
k = γI,

but then the issue of tuningγ emerges. We use a heuristic from [27] in which H0
k = γkI and

γk = (sT
k−1yk−1)/(yT

k−1yk−1), which attempts to estimate the size of the covariance along
the last search direction; see [27].

In our applications, we never want to calculate and store thefull inverse Hessian, but to
keep it in the above “vector form”. There exists an efficient iterative algorithm for computing
matrix-vector products with the inverse Hessian needed, e.g., when calculating the search
direction in the LBFGS algorithm; see, e.g., [27] for details.

Assuming that the initial inverse Hessian can be decomposedinto H0
k = L0L

T
0 , the

above LBFGS inverse Hessian formula can be written in the form

Hk = B0B
T
0 +

n
∑

i=1

bib
T
i ,

where

B0 = (VT
k−1 . . .VT

k−n)L0

b1 =
√

ρk−1sk−1

bi =
√

ρk−i(V
T
k−1 . . .VT

k−i+1)sk−i, i = 2, . . . , n.

Note that the square roots
√

ρi can always be calculated, since in the LBFGS algorithm we
choose the step length so thatρi ≥ 0 for all i; see [27] for details. Thus, we can sample zero
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mean random variables from the covarianceHk by calculating

r = B0z +

n
∑

i=1

ωibi,

wherez ∼ N(0, I) andωi ∼ N(0, 1). It is simple to verify thatCov(r) = Hk. The needed
products can be calculated efficiently without storing fullmatrices of sized × d. For the first
productq = B0z, we can use the iteration

• Setq → L0z.
• For i = 1 . . . n

1. ρk = 1/(yT
k sk).

2. Setq → q − (ρky
T
k q)sk.

• Returnq.
For the other productsωibi we can first calculate the vectorsbi explicitly using a similar
loop as above and then take sums of the vectors, weighted by random numbersωi.

REFERENCES

[1] J. L. ANDERSON, An ensemble adjustment Kalman filter for data assimilation, Mon. Wea. Rev., 129 (2001),
pp. 2884–2903.

[2] H. AUVINEN , J. M. BARDSLEY, H. HAARIO , AND T. KAURANNE, The variational Kalman filter and an
efficient implementation using limited memory BFGS, Internat. J. Numer. Methods Fluids, 64 (2009),
pp. 314–335.

[3] , Large-scale Kalman filtering using the limited memory BFGS method, Electron. Trans. Numer. Anal.,
35 (2009), pp. 217–233.
http://etna.math.kent.edu/vol.35.2009/pp217-233.dir

[4] T. BENGTSSON, C. SNYDER, AND D. NYCHKA , Toward a nonlinear ensemble filter for high-dimensional
systems, J. Geophys. Res., 108 (2003), 8775 (10 pages).

[5] C. H. BISHOP, B. J. ETHERTON, AND S. J. MAJUMDAR, Adaptive sampling with the ensemble transform
Kalman filter. Part I: theoretical aspects, Mon. Wea. Rev, 129 (2001), pp. 420–436.

[6] M. A. CANE, R. N. MILLER , B. TANG, E. C. HACKERT, AND A. J. BUSALACCHI, Mapping tropical Pacific
sea level: data assimilation via reduced state Kalman filter, J. Geophys. Res., 101 (1996), pp. 22599–
22617.

[7] O. CAPPE, S. GODSILL, AND E. MOULINES, An overview of existing methods and recent advances in
sequential Monte Carlo, Proc. IEEE, 95 (2007), pp. 899–924.

[8] Q. CHENG, J. CAO, B. WANG, AND H. ZHANG, Adjoint code generator, Sci. China Ser. F, 52 (2009),
pp. 926–941.

[9] D. P. DEE, Simplification of the Kalman filter for meteorological data assimilation, Q. J. R. Meteorol. Soc.,
117 (1990), pp. 365–384.

[10] B. J. ETHERTON AND C. H. BISHOP, Resilience of hybrid ensemble/3DVAR analysis schemes to model error
and ensemble covariance error, Mon. Wea. Rev., 132 (2004), pp. 1065–1080.

[11] G. EVENSEN, Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo
methods to forecast error statistics, J. Geophys. Res., 99 (1994), pp. 10143–10162.

[12] , Sampling strategies and square root analysis schemes for the EnKF, Ocean Dynam., 54 (2004),
pp. 539–560.

[13] M. FISHER, Development of a simplified Kalman filter, ECMWF Technical Memorandum n. 260 (1998),
European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading RG2-9AX, UK.

[14] M. FISHER AND E. ANDERSSON, Developments in 4D-var and Kalman filtering, ECMWF Technical Mem-
orandum n. 347 (2001), European Centre for Medium-Range Weather Forecasts, Shinfield Park, Read-
ing RG2-9AX, UK.

[15] R. GIERING AND T. KAMINSKI , Recipes for adjoint code construction, ACM Trans. Math. Software, 24
(1998), pp. 437–474.

[16] T. M. HAMILL AND C. SNYDER, A hybrid ensemble Kalman filter-3D variational analysis scheme, Mon.
Wea. Rev., 128 (2000), pp. 2905–2919.

[17] K. M. HANSON AND G. CUNNINGHAM , Posterior sampling with improved efficiency, in Medical Imaging
1998: Image Processing, K. M. Hanson, ed., Proceedings of SPIE, 3338, SPIE, Bellingham WA, 1998,
pp. 371–382.

[18] N. HIGHAM , Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia, 2002.

http://etna.math.kent.edu/vol.35.2009/pp217-233.dir


ETNA
Kent State University 

http://etna.math.kent.edu

VARIATIONAL ENSEMBLE KALMAN FILTER 285

[19] P. HOUTEKAMER AND H. L. M ITCHELL, Data assimilation using an ensemble Kalman filter technique,
Mon. Wea. Rev., 126 (1998), pp. 796–811.

[20] L. I SAKSEN, M. FISHER, E. ANDERSSON, AND J. BARKMEIJER, The structure and realism of sensitivity
perturbations and their interpretation as ’Key Analysis Errors’, Q. J. R. Meteorol. Soc., 131 (2005),
pp. 3053–3078.

[21] R. E. KALMAN , A new approach to linear filtering and prediction problems, Trans. ASME Ser. D J. Bas.
Engrg., 82 (1960), pp. 35–45.

[22] F. X. LE DIMET AND O. TALAGRAND , Variational algorithms for analysis and assimilation of meteorologi-
cal observations: theoretical aspects, Tellus Ser. A., 38 (1986), pp. 97–110.

[23] H. L I , E. KALNAY , AND T. M IYOSHI, Simultaneous estimation of covariance inflation and observation
errors within an ensemble Kalman filter, Q. J. R. Meteorol. Soc., 135 (2009), pp. 523–533.

[24] E. N. LORENZ, Predictability: a problem partly solved, in Proceedings of the Seminar on Predictability,
Vol. 1, T. Palmer, ed., ECMWF, Reading, UK, (1996), pp. 1–18.

[25] E. N. LORENZ AND K. A. EMANUEL , Optimal sites for supplementary weather observations: simulation
with a small model, J. Atmospheric Sci., 55 (1998), pp. 399–414.

[26] Z. MENG AND F. ZHANG, Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimi-
lation. Part II: imperfect model experiments, Mon. Wea. Rev., 135 (2007), pp. 1403–1423.

[27] J. NOCEDAL AND S. WRIGHT, Numerical Optimization, Springer, Berlin, 1999.
[28] W. SACHER AND P. BARTELLO, Sampling errors in ensemble Kalman filtering. Part I: theory, Mon. Wea.

Rev., 136 (2008), pp. 3035–3049.
[29] M. K. T IPPETT, J. L. ANDERSON, C. H. BISHOP, T. M. HAMILL , AND J. S. WHITAKER, Ensemble square

root filters, Mon. Wea. Rev., 131 (2003), pp. 1485–1490.
[30] X. WANG, D. M. BARKER, C. SNYDER, AND T. M. HAMILL , A hybrid ETKF-3DVAR data assimilation

scheme for the WRF model. Part I: observing system simulation experiment, Mon. Wea. Rev., 136 (2008),
pp. 5116–5131.

[31] F. ZHANG, M. ZHANG, AND J. A. HANSEN, Coupling ensemble Kalman filter with four-dimensional data
assimilation, Adv. Atmospher. Sci., 26 (2009), pp. 1–8.

[32] M. ZUPANSKI, Maximum likelihood ensemble filter: theoretical aspect, Mon. Wea. Rev., 133 (2005),
pp. 1710–1726.


