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LOCALLY SUPPORTED EIGENVECTORS OF MATRICES ASSOCIATED WITH
CONNECTED AND UNWEIGHTED POWER-LAW GRAPHS *

VAN EMDEN HENSON' AND GEOFFREY SANDERS$

Abstract. We identify a class of graph substructures that yields lpcaipported eigenvectors of matrices
associated with unweighted and undirected graphs, sucheagatious types of graph Laplacians and adjacency
matrices. We discuss how the detection of these substrgagiwes rise to an efficient calculation of the locally sup-
ported eigenvectors and how to exploit the sparsity of siggreectors to coarsen the graph into a (possibly) much
smaller graph for calculations involving multiple eigenv@st This preprocessing step introduces no spectral error
and, for some graphs, may amount to considerable computatiavialgs when computing any desired eigenpair.
As an example, we discuss how these vectors are useful farasig the commute time between any two vertices
and bounding the error associated with approximations fiavespairs of vertices.
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1. Introduction. Network scientists study complex systems from a diversefssti-
entific fields p3]. Currently, there are great efforts in the study of comroation networks,
social networks, biological networks, chemical netwokks,, and the sizes of the networks
being studied are growing exceptionally large. Such appibos demand several computa-
tionally intense tasks such as clustering the network mesnibevarious waysZ7], ranking
network members by significancé]] measuring the distance between two network mem-
bers [L(O], counting triangles between network membe&i§] [ or visualizing the topology of
the network in some low-dimensional spadé]] One common approach to the study of a
complex network is to model the network as a graph and use #tieematical properties of
the graph to estimate a quantity of interest. This approételn teads tepectral graph calcu-
lations, where one or more eigenvalues or eigenvectors of a masocéged with the graph
are approximated by an eigensolver. The approximate egenare then used to estimate
the quantities of interest.

An attractive advantage of the spectral approach is thatomanon linear algebra tool,
the eigensolver, may be employed to address a wide classmdler network calculations.
Another advantage is that the spectrum is a tool for quantfgrrors incurred when sim-
plifying graphs. However, there are many challenges betiggigning eigensolvers that are
efficient for all these calculations due to the variety ofgiréopologies present in large, real-
world networks and the many types of eigenproblems thabuarcalculations require. Our
primary goal is to enhance existing eigensolvers so thgtaheemore efficient and thus more
useful for network science applications. A secondary gotd Use spectral properties to sim-
plify the graph with only little change in the eigenvectarpbtentially increase the efficiency
of non-spectral methods as well.

Many real-world networks of interest have a laqgeriphery where many vertices of
very low degree(number of connections) are present. Moreover, the grapbldagy often
has gpower-law degree distributignmeaning that the number of vertices with a given degree
is approximately proportional to some negative power oftbgree (cf. 23] and Figurel.?2).
This type of topology is highly challenging for large-scieative eigensolvers, such as those
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available in many of the common high-performance compytimckages]2, 13, 17]. Many

of the preconditioning techniques that are highly sucegésf mesh-like graphée.g., graphs
coming from local discretizations of PDES) are less sudokfs power-law graphs due to
the limitations posed by the communication properties sfriiutive computing with matri-
ces having some high degree vertices. Any graph simplifina8uch as grapboarsening
that introduces little spectral error will improve thisusition. Our long term research inter-
ests are to further develop the techniquesdinif, 16] to better address power-law graphs.
These techniques automatically generate multilevel rehras from which accurate approx-
imations to eigenpairs are calculated.

This paper describes a technique that aids spectral catmdaby taking advantage of
specific types of local substructures that are often pretseatighout the periphery of un-
weighted and undirected graphs in real-world networks. We g few examples in Fig-
ure 1.1 The existence of such substructures implies that the xnh&$ eigenvectors that
are nonzero only within the local substructure. Typicathe associated eigenvalues have
extraordinarily high multiplicity (for some classes of ghes, the multiplicity can b&(n)).
We adopt the terminology of functional analysis (whereshpportof a function means the
subset of the function’s domain where the function is nomand call the eigenvectors that
are nonzero only on a local substructlweally supported eigenvecto(6 SEVs). Detect-
ing substructures that supports LSEVs allows one to effilyieralculate some parts of the
spectrum (and the associated LSEVs) and to reduce the sibe gfaph without any loss of
accuracy for the rest of the spectrum (and the associatedwaigtors). When such substruc-
tures occur many times in a graph, this technique providgsfsiant computational savings
in the calculation of the other eigenvectors that have nehbéentified as LSEVSs.

This paper is organized in the following manner. In the redar of Sectionl, we
put this work into historical context, relating it to preu®work on eigenpairs arising from
special structures in the graph. We also provide a conmefttiand motivation from the field
of multigrid, and then describe the matrices of interesttaedigenproblems that arise from
them. In Sectior?, we define LSEVs and establish algebraic conditions thadl yiSEVs.
We develop theoretical results regarding the existenceS&f\L's of matrices associated with
graphs and show the relation of the spectra of the originalirnaith the coarsened version
that results after removing the structures generating BEe\ls. We give several examples of
classes of LSEVs that are common in real-world graphs. Wegpiteresults that demonstrate
how the knowledge of LSEVs is applied to the calculation ahoaute time in Sectior3.

In Section4, we demonstrate the application of our theory to severgilggaboth synthetic
and real. We show that in some graphs, the LSEVs make up aastibstportion of the
spectrum and further that they can be used to create a cedrgeaph having substantially
fewer vertices and edges giving rise to a more tractablel@nobf computing the remaining
(non-LSEV) spectral components. We give concluding remard a statement regarding
further work in Sectiorb. Finally, we present a pseudocode for the algorithms usddtext
LSEVs in AppendixA.

1.1. Background. We note that some observations related to this work have tisen
cussed previously in the spectral graph theory literatuke least as far back as the mid
1980's, Faria §] was aware that graphs with many vertices that are exclyseannected
to the same vertex give rise to eigenvalues of high muliiglifor adjacency matrices and
graph Laplacians. Eigenvectors that are positive at onexenegative at another vertex,
and zero everywhere else are referred t&asa vectors and their properties are described
in [2, 20, 22]. These papers concentrate on the multiplicity of the eigkres associated
with these eigenvectors. Also, Faria vectors are used age@xamples to lower bounds on
the number of nodal domains that the sign structure of eggovs inducesy. Recently,
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FiGc. 1.1. A visualization of theopt el graph from [L9] (see Sectior? for a description). The detail on
the right displays two common types of substructures in émg@pery of this graph that can be exploited for more
efficient eigenvalue computations: (a) many vertices traeaclusively connected to the same vertex and (b) chains
of the same length connected to the same vertex.

eigenspaces of extraordinarily high multiplicity were eb&d in many power-law graphs of
large, real-world networksifl]. The connection of considerable portions of these eigarep
with LSEVSs is verified.

In this work, we emphasize the computational importancéefdparsity of the LSEVs
and demonstrate that these vectors can be used to efficiedilge the original graph into
a smaller graph that perfectly represents all other eiggove that have not been identified
as LSEVs. We generalize the concept of a Faria vector by gialgebraic conditions that
fully classify all types of substructures that admit LSE\We describe a few substructure
families that support local eigenvectors which are comnmoreal-world graphs and provide
algorithms to detect various types of them.
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FiG. 1.2. Two common types of degree distribution pldi8][for the opt el graph [19].
The process of detecting locally supported eigenvectorbedhought of as a specialized

version ofaggregationor combining localized groups of verticemggregatesfrom within a
graph. Aggregation multigrid2g] is a class of coarsening approaches where aggregates are
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formed, and the number of degrees of freedom in each aggregegduced so that a certain
portion of the operator’s spectrum is well represented bgnaller matrix. These methods
are typically used to build multilevel solvers for linearsggms or eigensystems and can be
quite effective for problems posed on mesh-like graphsdkample, for a problem that is a
discretization of an elliptic PDE in a low-dimensional sppf].

1.2. Graph associated matrices and common eigenproblem# graphG(V, &) is a
collection ofn vertices V = {1,...,n}, and relationships between pairs of vertices, or
edge<t. If there exists an edge between two verticesdj, then(i, j) € £. Here, we look
at a specific class of graphs. Assume thag(i} simple it contains ncself loops (i,4) ¢ &,
and nomultiple edges(ii) G is undirected (i,j) € £ if and only if (4,7) € &, (iii) G is
unweighted the distance or cost of each edgeéris the same, and (iv) that the graph is
connectedmeaning that there exists at least one path between anyestioes in the graph.
Thedegreeof a vertexi, writtend;, is the number of edges that share

We recall several commonly used matrices associated withghg

DEFINITION 1.1. The structure of graplg(V, £) is used to define several useful matri-
ces.

(i) Adjacency matrix: letd € R™*™ with entries given by

1 if(i,5)eé
Aij = . .
0 otherwise

(i) Degree matrix: letD be a diagonal matrix ilR™*"™ such thatD;; = d;.
(iii) Combinatorial graph Laplacian: let. = D — A, or

;o fdi =]
Y1 if (i) e €&

(iv) Normalized graph Laplacian: lek = I — D=1/24D~'/2 or

. 1 ifi=j
(L)ij = _\/;T] if (i,7) €€

(v) Signless graph Laplacian|L| = D + A.

The spectrum and the associated eigenvectors of the adjas&itrix and various graph
Laplacian matrices are all of interest. However, to be cmocive only explicitly describe
LSEVs for eigenproblems associated with the combinatgriaph Laplacian and an asso-
ciated application. We include a few remarks regarding theratypes of graph-associated
matrices to emphasize that LSEVs apply to a broader clas®bfens than we describe.

A (normalized) eigenpaifvy, A;) of L is a nontrivialeigenvectow;, € R™ and a scalar
eigenvalue\, that satisfy

(11) LVk = /\kV}c~

The properties of. offer several simplifications tal(1). Because&j is undirected L is sym-
metric, L = Lt, which implies that the eigenvalugg are all real and there exists a complete
set ofn orthogonal eigenvectors;i v; = &, whered,, = 1fork = [, and0 for k& # 1.
Gershgorin’s theorem implies that the spectrum is nondinega\, € [0,2max; d;]. Let

1 andO0 be the vector of all ones and all zeros, respectively, and tiatt the definition of
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the graph Laplacian implies1 = 0 such thatvy, A\;) = (1,0) is a known eigenpair. The
assumption that the graph is connected implies that thepticity of A\; = 0 is 1. We order
the eigenvalues in increasing order,

(12) 0:)\1</\2§/\3S~-~§/\n—1S)\nSQmaXdi~

For largen, itis computationally overwhelming to calculate all eigairs. For the eigen-
problem (L.1), the eigenpairs associated with tRelowest eigenvectors are typically sought.
Our computational task is to approximate solutions to

LVk = /\ka

fork,1=2,3,..., K.
V};Vz = 6kl

We note that a vector-scalar pair is an eigenpair if and drilye pair has a zereigen-
residual (L— X, I)vy = 0. For an approximate eigenpdit, 1), the size of the eigenresidual
is used to gauge the accuracy of the approximation. 34ddr standard results regarding
the connection between the sizd|6f. — 1:.1)x|| and the quality of the approximatiops= Aj
andx = vyi. In this work, we employ eigenresiduals as a theoreticdlttbdemonstrate the
accuracy of estimating eigenvectors on graphs coarseriregl the knowledge of LSEVs.

2. Locally suported eigenvectors (LSEVs)Here we give the algebraic conditions for
a portion of a graph having locally supported eigenvectbisst, we define a few concepts
and then proceed with our main observations.

DEFINITION 2.1. A subset of verticeS C V is connectedf for every pair of vertices
andj € U there exists a path of verticeshfromi to j. Let thedilation of S be defined as

dilate(S) :=SU{i eV : (i,j) € € forsomej € S}.

We says is nearly-connected dilate(S) is connected buf is not connected.
DEFINITION 2.2. LetS(x) denote thesupportof a vectorx € R”,

S(x):={ieV: x #0}.

We say the support of is local if S(x) is connected or nearly-connected and contains a
small number of vertices (much less than

DEFINITION 2.3. Assumer is an eigenvector of. If S(v) is local, then we say is a
locally supported eigenvector (LSEGJ L.

LetS be a small local subset of the vertice3inWe decomposé in the following way.
Organize all the vertices into an ordering wétfirst, {S,V \ S}, and then write

I I Ly1 represents edges withii
(1) L= [ LH L12 ] ., where L1, represents edges frofito V \ S,
21 =22 Ly, represents edges within\ S.

Note that the undirected edges ¢nimply that L! = [, so we havel}, = L,
Lb, = Lo, and Ly; = L%,. We state necessary and sufficient conditions for a LSEV to
exist for the ses.

THEOREM 2.4 (LSEV existence)Let a matrixL € R"*™ be decomposed as if.()
with respect to a subse. Letu be a nonzero vector iiRlSl. A local subsetS contains

t
a locally supported eigenvectc{ut, OTV\SJ of L corresponding to an eigenvalueif and
only if

(22) Liju=Au and Loju = O\V\S\-
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t
Proof. This result follows by applyind. (via (2.1)) to v = [ut, OTV\SJ and showing

that 2.2) is equivalent taLv = Av. a

We point out thatZ.2) is a smaller eigenproblem of siz§| with a set of additional
linear constraints imposed. There is an extra constranedch linearly independent row
of L. The fact that the graph is connected gives # O and at least one extra constraint.
For generalS C V, there is no guarantee that a solutioexists. However, there are several
types of graph substructures common to many real-worldawssuch that the kernel @,
does contain eigenvectors bf;; see P, 20, 22] and we discuss a few more general types of
these in the next few sections. A general approach to test@&fee LSEVs is to fully solve
Ly1u = A\u and check each eigenspace to see if it contains vectorsatisflyd..;u = 0.
Clearly, inspecting all vertex sets of a certain size or Wweak computationally intractable.
We provide a few algorithms in Appendix that detect specific types of substructures and
give a framework for algorithms that detect more generats$yp

For now, we assume that we are able to identify a collectioR dfsjoint (non-overlap-
ping) subsets of verticegS, } ,, that each havé/, > 1 orthogonal LSEVs. For each
define some permutatiofi) of V such that(TI("))* orders the vertices is,. first. Then,
let L{") and L{?) correspond to the decompositich ) of (I1(")* LII") (where the columns
and rows corresponding t§, appear first). Also, define an injection Bf- into R” as

P = 5,1, O)s,1xw\s.|])- Then, denote the local portion of tii€, eigenvectors that are
supported inS, by {u,(ﬁ) fff;l. Eachu%’;) is an independent eigenvectorbﬁ) such that

Léﬁ)uﬁﬁ) = 0. We can collect each locally supported eigenvector intcsasgpmatrix

23)  z=[nOPOuy, . n PO n@ PO, @ PRI

2.1. Partitioning of spectra. Now we consider how to use the enumeration of LSEVs
in Z to calculate the other eigenvectorsiomore efficiently. The matrix. is symmetric and
therefore has a complete orthogonal basis of eigenvecitis.eigenvectors in the columns

of Z are all orthogonal to the injections of eigenvectorslé’i) that are not in the kernel

of Lg'i). Additionally, the support of each eigenvectorZnis entirely contained in one of
the setsS,.. Therefore, it is inexpensive to compute a spargerpolation matrix @ that
completely spans the orthogonal complement to Réfiggeontaining all eigenvectors not in

the columns ofZ. This is accomplished by collecting the eigenvectorsLﬁ? that are not
in the kernel ofLé’l') forr = 1,..., R and adding the columns of thex n identity matrix
associated with vertices that are not containe@ﬁ; 1Sr.

Q= { z+t o } «—— sparse basis orthogonal to LSEVs, restricted)fo | S,
o I — identity operator on \ {U%, S, }.

Letn, =n— Zf;l M, and define an aggregation to contain all the groups we hanéfiée
with locally supported eigenvector§S, } |, and singletons of verticegs}, that are not
present in any of these groups

A - S, forr=1,...,R
"\ {s} forr=R+1,...,R+(n-" S
An n x n. binary aggregation matrix is given by

1 ifvertexi € A,
Wi; = . .
0 ifvertexi ¢ A,
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The matrix W serves as a template @}, which has a similar block structure. The local
vectors that are orthogonal to locally supported eigemsdeigenvectors af; that are in
the range ofl5;) are injected into the structure &F. For example, say we have identified
two sets that contain locally supported eigenvectors (oitie twree vertices and two locally
supported eigenvectors, the other with four vertices amddeally supported eigenvectors).
Then(@ has the same block structureldswith one column for the three vertex set and two
columns for the four vertex set. Letting denote a (possibly) nonzero entry, then

1 X
1 X
1 X
W = 1 — Q= X X
1 X X
1 X X
1 X X

The columns of the matriced € R™*("—"c) and@Q € R™*" form a complete orthogonal
decomposition oR™. Additionally, the columns o are all eigenvectors aof. In order to
compute eigenvectors that have not been collecteddntwe make use of ecarsened,. x n.
matrix

L.:=Q'LQ.

In the remainder of this section, we present a result thawstioat all eigenvectors df
not collected intaZ are obtained by solving for eigenvectorsiaf and mapping them back
into R™ using Q. Additionally, we show that accurate approximations to ¢igenvectors
of L. interpolate to approximations to the eigenvectorg afithout a loss of accuracy. First
we state several properties of the matrices involved.

LEMMA 2.5.GivenZ and(@ as described above, then we have
(i) Q'Q=1I,, (i) Z'Z=1I,_,, (i) IL,=QQ'+ZZ!
(IV) ZtQ = O(nfnc)xnC (V) ZtLQ = O(nfnc)xnc-
Proof. Because the columns g, Q] are orthonormal ifR™, (i), (ii), and (iv) hold. Also,
because the columns df are eigenvectors, we have Raff€) C RangéZ), implying

that Q°LZ = O,—p,)xn,- Thus, (v) holds by the symmetry df. Finally, we have the
orthogonal decomposition (iii) due to the completenessetiasis. a

Now we show that all eigenvectors not collected igtare perfectly represented by the
eigenvectors of the coarser matfix.

THEOREM 2.6 (Coarse graph spectral representatidh).(vy, A\x)},<, are all eigen-
pairs not enumerated i then{(Q'vy, \;)};<, is the complete set of eigenpairsiaf.

Proof. Let (v, \) be an eigenpair of that is not in spaf¥). Employing Lemma2.5 (i),
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(iii), and (v) gives

(L — \,)v=0,
Q' (L — ML) (QQ"'+ ZZ")v = Q'0, by Lemma2.5 (iii)
QYL — M) (QQ")v =0, by Lemma2.5 (v)
Q'(LQ - \Q)Q'v =0,
(Q'LQ - XQ'Q)Q'v =0,
v=0

(Le — M,)Q" e by Lemma2.5 (i).

Therefore,(Q'v, \) is an eigenpair fol.. Additionally, letv andw be any two orthogonal
eigenvectors of_ that are not in spai). Due to the orthogonality of the eigenspaces of
L = L' we haveZ'w = Z'v = 0,,,. Using this fact and Lemmz2.5 (iii) gives

<Qtv,Qtw> = <QQtv,w> = <(ZZt + QQt)V,W> =(v,w)=0.

The completeness of the eigenbasid.afivesn. orthogonal eigenvectors not enumerated in
Z and thereforg (Q'vy, i) } <, is a complete set of eigenpairs bf. O

COROLLARY 2.7.1If {(xk, k) }ec, is acomplete set of eigenpairs of the mattix then
{(@xk, \p) } 1o, are all eigenpairs not enumerated in

Proof. Consider any two orthogonal eigenvectors Iof paired with their eigenval-
ues,(xx, i) and(x;, A;) for k& # 1. First we show tha)x,, is an eigenvectors of cor-
responding to\;, using Lemma2.5 (iii) and (v),

LQxy, = (ZZ"+ QQ")LQx), = Q(Q'LQxk) = \pQxy.

Next we show that)x; andQx; are orthogonal,

(Qxk, Qx)) = (Q'Qxp, x1) = (xp,%;) = 0.

Thus,{(Qxx, \) } .2, is a set ofn. orthogonal eigenvectors df, which must be all eigen-
pairs not enumerated ii € R"*("~"<) by a counting argument. [

This result shows that we can obtain any eigenvector noesemrted irZ by an eigen-
solve involvingL.. We have effectively reduced the problem to a coarser grattout loss
of accuracy. The following result shows that a computatibtine eigenmodes spanned §y
does not have to return to the original graph (until the mademselves are needed) because
coarse eigenresidual error measures are equal to thear@genresidual error measures of
the interpolated approximations.

THEOREM 2.8. Let w, be a vector inR™. For approximate eigenpairs aof of the
form (Qw., ), we have

H(L — ,uln)QWc” — H(L — :U’I )WCH
[Qwe| [well
Proof. For the denominato)’@ = I implies ||Qw.|| = ||w.||. For the numerator, we

use similar techniques as in the previous theorem to shaw tha
(L — nD)Qw|? = |QQN(L — pD)Qw.|* + |22 (L — nI)Qw.|?

= ||Q(LC - UInc)Wc”Q + ”ZtLQWc - NZtQWc||2
= [|(Le — NInC)WC||2~ o
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REMARK 2.9 (Several observations regardihg). It is important to realize that, in
general, the graph associated with the mafrixnay not have some of the graph properties
that the original grapl$ enjoys. The nonzero, off-diagonal entries are no longer-al.
Depending on the choice of the basis@nor the type of LSEVs in question, some of the
off-diagonal entries may be positive. Because many of thedegree vertices have been
removed from the graph, a power-law is often not retainedHercoarser graph. However,
the important algebraic properties of the mattiare kept forL., such as symmetry and the
preservation of eigenvalues that are not associated weth$tVs that have been detected.

Due to the lack of a perfect hierarchical structure in reaHd graphs,L. typically
has few LSEVs and we have observed little computational rdge in applying LSEV-
based coarsening recursively. However, if a graph of istéseexpected to have a repeated
hierarchical symmetry, then this coarsening process dhmitepeated as well.

2.2. The simplest example: Faria’s shared leavesThis section discusses Faria’s ex-
ample P] of locally supported eigenvectors in detalil.

ExampPLE 2.10 (Faria’s shared leaves). Assume dtas the following substructure:
there are some vertices that have only one connection ddafige3 and some of these leaves
are connected to the same vertex (theiren). Note that the graph theory community often
calls leavependantsand parentguasipendantsee Figure.1for two examples of this type
of substructure. We demonstrate that this substructuratadocally supported eigenvec-
tors.

Rest Of Graph Rest Of Graph

FiG. 2.1. Leaves that share a parent. Left: two leavek have pareny. Right: parent; hasq leaves. Edges
from j into the rest of the graph are depicted by lines into the sHadgions.

For any eigenpaifv, \) of L, we have the system of equatioiis— A\I)v = 0. Consider
the simplest case first. Assume we have a paievith two child leaves andk (see the left-
hand side of Figur@.1). Thei-th equation of L — A\I)v =0 is

(2.4) (I—-Xv; —v; =0.

Similarly, thek-th equation is

(2.5) (1—XNv, —v; =0.

Assume for the moment that= 1 is an eigenvalue. To satisfy ¢), we see that; = 0 is
necessary, in turn implying tha?.¢@) and @.5) are both automatically satisfied for any values

of v; andvy. If we choose these values so that jhih equation is also satisfied, then we have
an eigenvector associated with the eigenvalue 1 that is nonzero only ohandk. Thej-th
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equation is

(2.6) (dj = Nvj = Y v, =0,
PEN;

whered; is the degree of and.\V; is the set of vertices connected tdexcluding; itself).
Usingv; = 0 reduces this constraint § - v, = 0. Because,k € N for the Faria
vector

v= [ -1 0 0 0 ],
J

i k else
we haveLv — v = 0, i.e., (v,1) is an eigenpair fol.. Note that all other equations are
satisfied because is zero over all variables that are involved in these equnatidt is easily
verified that the conditions of Theorezv are satisfied by = {i, k} andu = [-1, 1]%.

Now assumg is connected tq leavesS = {i1,i2,...,i,} C N; as on the right-hand
side of Figure2.1. For each leaf i, we have an equation similar t8.6) that is automatically
satisfied forA = 1 andv; = 0 independent of the value efon the leaf. Following the same
argument as above, any vector that satisfies Equati@hnd is nonzero only at the leaves
connected tgj is an eigenvector associated with= 1. In terms of the decomposition
in (2.2), Ly; = I, andLy; = [-1,0]'. RestrictingS to R?, we have an orthonormal
basis{u,}, forp =1,2,..., (¢ — 1). Thei-th entry of thep-th vector is given by

capcos (PEDT)if pis odd

(27) (11 )i = R )
: Cq,p SiN (%) if pis even

where the normalization constants agg, = +/2/q (except for the special case whetis
even antp = ¢q — 1, thenc,, = 1/,/g). Invoke Theoren?.4to show that thes¢g — 1)
vectors are locally supported eigenvectors,

I |-1 0 .
L=|-1]d | Tu=1-wu, and [_5 }up:O.
o |

Thus, there arég — 1) orthogonal eigenvectors that are locally supported loprresponding
to the eigenvalue. = 1. The only eigenvector of.1; = I that is not in the kernel of.5; is
the constant vector. Furthermore, these LSEVs give a lowend) on themultiplicity of the
eigenvalue\ = 1, denoted multh = 1,0(L)).

PROPOSITION2.11 (Faria’s star degreé]). LetP be the set of nodes connected to 2 or
more leaves. For any € P, let ¢, be the number of leaves connectedtand collect these
leaves into a sef,.. Repeating the above argument yields

(2.8) multx =1,0(L)) > > (g; — 1).
JEP
Let Z; be then x (¢; —1) matrix whosep-th column represents the valuesdf’ injected
into R™ over thegq,. leaves. Then the matrix

Z=21,2Z9,....2,,..]
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gives a (possibly partial) orthogonal and sparse decortiposif the eigenspace df associ-
ated withA = 1.

REMARK 2.12. Note that it is possible to have a graph witk- 1 having larger multi-
plicity than the bound given in Equatiofi.g). Consider the followin@ x 8 example of this:

1 -1 1 0 1

1 -1 -1 0 1

-1 -1 3 -1 0 0 0

-1 2 -1 0 0 -2

(29) L= -1 2 -1 ’ 0/ 0| -2
-1 3 -1 -1 0 0 0

-1 1 0 1 1

-1 1 0 -1 1

The vectors on the right form a complete set of independg@neiectors corresponding to
A = 1. Our counting of the locally supported basis vectors givethe first 2 vectors. The
third vector is an additional, nonlocal vector. Relatednegkes are given ind, 20].

FIG. 2.2.Graph corresponding to EquatioR ().

We continue to describe the shared-leaves example by Higgthe process of obtaining
a coarser graph from identifying shared leaves. The métixdetermined by collecting the
local eigenvectors ot(lﬁ) that are not in the kernel dfgi) and adding columns of the identity
matrix corresponding to the vertices that are not in any efgbtsS,.. For A # 1 itis
immediately evident that vectors that are constant oveln &acshould be included int@).
Reconsidering Equationg.¢) and @.5), we see that
Vi = - Vk

1—A

for any two leaves, k& with the same parent. The eigenvectors that are not enumerated
in Z and have\ # 1 will be in the range ofp. For eigenvectors corresponding o= 1
that are not enumerated i (if they exist), an orthogonality and counting argument tmus
be employed to see that they must be in the rang@.ofVe coarsen the graph with a full
representation of these vectors by forming a group for eatcbfdeaves belonging to a single
parent and lettind.. = Q*LQ.

2.3. Further examples. There are many types of substructures that have locally sup-
ported eigenvectors. Here we describe three differentstyipat are commonly observed in
real-world graphs. However, this short list is not exhaugstSee Appendi for algorithms
that detect the following types of substructures and foraanBwork that could be used to
detect more general ones. The first example is a generalizatithe shared leaves.

ExAMPLE 2.13 (Hanging duplicate structures). l&tomprise of; identical subgraphs,
each having: vertices with each of the subgraphs connected by a single &dg common
vertexj ¢ S (which, in turn, has connection(s) into the rest of the graph {j U S}).
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Rest Of Graph . 7
1/

NG

FiG. 2.3.Example of aggregating leaves that share a parent and altleames in singlets.

(@) (b) (© (d)

Rest Of Graph Rest Of Graph Rest Of Graph Rest Of Graph

Rest Of Graph Rest Of Graph Rest Of Graph Rest Of Graph

(i) 0 (k) o

Rest Of Graph Rest Of Graph Rest Of Graph Rest Of Graph

FIG. 2.4. Further examples of common substructures associated v8t&EMs: (a—d) hanging cycles (see
Example2.16), (a), (e—i) hanging cliques (see Exampld5), (j—k) hanging duplicate structures (see Example0
and Remark2.12), and (I) vertices of degree 2 that share the same neighlmatho

ThenL; is block-diagonal

B.

Ct ...
L = and Loy = { 6 0

Q QOH-
— 1
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with ¢ = [-1,0,---,0]*. Let {(w,,pu,)}:_, be thec eigenpairs ofB. and defineu, as
in (2.7 forp =1,...,q. Also, let Ps be the appropriate injection frol°! into R™. There
are(q — 1)clocally supported eigenpairs éfon S,

(Ps(up, @ w,.), i) for r=1,...,c and p=1,...,(¢g—1),

where® denotes the Kronecker tensor product. The eigenvectdrdiadt are not enumerated
here are in the span of

{Pg(l(q)®wr),r:17...,c}U{ej , V5 e V\SY,

where1(? is the vector of all ones and lengilande; denotes theé-th column ofI,,.
ExampLE 2.14 (Duplicate chains). A version of Examplé 3 that commonly occurs in
real-world graphs having tree-like structure is given bgtso$ chains of length all connected
to a common vertex. The cage= 1 corresponds to the shared leaves from Exar@plé
We have
2 -1
-1 2 -1

-1 2 -1

-1 1

We make the following amusing observation: several chafdergth 2 hanging from
the same vertex yield eigenspaces of large multiplicitiesoeiated with the eigenvalues
(355} = {1 + ¢*}, wheregp® = 12Y5 and¢ is the famougolden ratio

EXAMPLE 2.15 (Hanging cliques). Letand! be integers witle > 3andl <[ < ¢ — 2.
A clique of sizec that has exactly vertices with edges connecting to the rest of the graph
has(c — 1) — 1 locally supported eigenvectors éf associated with the eigenvalue= c.
Their supportS is the set of théc — 1) vertices without external edges.

In the context of Theorend.4, we have alc — 1) x (¢ — 1) matrix L1; = ¢l — 11!
and anl x (c — I) matrix of all negative ones, which makes up the nonzero rowssj .
Lettingq = (¢ — 1), it is straightforward to verify that

Lllup :cup and LQlup =0 f0r P = 1,,(61— 1)7

where{u,}\"") is the basis given in 7).

ExAaMPLE 2.16 (Hanging cycles). Letbe an integer such that> 3. A cycle of sizec
that has exactly one vertex with edges connecting to theofdbe graph has <5 L] locally
supported eigenvectors dfwhose suppors comprises théc — 1) vertices without external
edges.

Let ;5 be the one vertex in the cycle that is connected to the resteofytaph. The

subsetS C G contains th¢c—1) vertices in the cycle excluding Define the basi$up}};%1J
such that

(up); =sin (223)  for i=1,...,c—1.

Again, decompose L as i2(1). Verify that L, u,, = [2 — 2 cos (222)] u,, where

2 -1
-1 2 -1
Ly =

-1 2
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which is the portion ofl. corresponding to the hanging cycle without verjexAlso, verify
thatLyiu, =0forp=1,..., chlj because the nonzero row b§; is [-1,0,---,0,—1]
andsin(272) = — sin( 22~ for these values of.

We conclude this subsection by providing TaBld, which contains various types of
substructures common to real-world graphs and their sgentintributions for four of the
graph matrices listed in Definitioh. L

TABLE 2.1
The eigenvalues corresponding to common LSEVs for variowphepssociated matrices, where
&p,c := cos (Q"T”) (Note: when mentioning-cycles, we have =1, ..., chlj.)
A L L |L|
Leaves {0} {1} {1} {1}
; 3 1 5 1 34 V5
2-Chains| {41} { + } {li ﬂ} {iiT}
c-Cliques| {-1} {1+; {c—2}
c-Cycles {2£p,c}p {2 251) c} {1- c}p {2+ 251),6},,

2.4. The slightly weighted case Consider a graph with weights that differ slightly from
one. Use the weight + ¢,; for each edgéi, j) € £, wherele;;| < ¢/(2max{d;,d;}) with
a small positive constamt Let the matrixZ be the graph Laplacian for the unweighted case,
and introducel’ € R™*™ to represent the perturbations from one in the edge weights,

g 1 e Hi=]
* —éij ifitj’
so that(L + F) is the graph Laplacian of the weighted graph. Using Gersehiggheorem,
we have
IE] <e

Consider seeking the eigenpairs(df + E) associated with théX — 1) smallest nonzero
eigenvalues.

(L+E)yvi = AV

2.10
(2.10) Vivi = O

for k,0=2,3,..., K.

Let Z be a collection of LSEVs of. that have been identified and @the a sparse matrix that
spans the orthogonal complementf The following theorem and corollary show th@t
can be used to approximate the eigenpairs we seekif)(within an eigenresidual tolerance
of e.

THEOREM2.17.Let (w,, i) be an eigenpair fo)* (L + E)Q. Then

”(L +E— ,UCI)QWCH
[Qw.|
Proof. We have||Qw. | = ||w.|| and||Q*EQ| < ||E|| due toQ'Q = I,,_. Rearranging
the equatioQ!(L + E)Qw. = u.w,. and taking norms, we see the quality(ef.., 1) as an
eigenpair forQ*LQ,
||(QtLQ — pelp )wel = | - QtEchH
< Q'EQ|lw.l = Q" EQ||@w-|
< ENQw.| = ellQwe.

< 2e.
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Using the triangle inequality, the result in Theor@ms, and the previous estimate, we prove
the inequality,

”((L + E) - MCI)QWCH = ”(L - /’I’CI)QWC + EQWCH
<L = peD)Qwe|| + [ EQw||
= |(Le = pele)we|| + [EQwe|| < 2¢[|Qw.[|. D

COROLLARY 2.18.Let(w,, ) be an eigenpair fol.. Then

H((L+ E) B MCI)QWCH <e.
[Qw.|| -

The implications of these theorems are: (i) for a slightlgighted grapld;, the knowledge of
LSEVs of the unweighted version ¢fis useful for obtaining accurate initial approximations
to the eigenvectors of the graph Laplacian and (i) for a gr@pvith time-dependent edge
weights that vary slightlyw;; (t) = 1+ €;,(¢), the same eigenvectors serve as accurate initial
approximations independent©fThese results apply only to applications where the topolog
of a network remains fixed, but the weights of their edgeslatet slightly over time.

2.5. The edge principle forL. We conclude this section with an interesting property
of the LSEVs associated with the combinatorial graph Laptathat is not shared by the
other common graph-associated matrices. Certain typesS&MVs (e.g., those associated
with shared leaves or hanging cliques) span the local oathaigcomplement of the constant
vector restricted to the local subset Therefore, all other eigenvectors are constant acfoss
We can use the following result to demonstrate that we can @deldte, or reweight edges
within S without changing the global eigenvectdrs

THEOREMZ2.19 (Edge principle 41]). Let L be the combinatorial graph Laplacian of a
given graphG. For any eigenpair\, v) of L, consider a vertex paifs, t) for whichvgs = v;.
Let L’ be the combinatorial Laplacian associated with the gra@@hwhich is obtained by
adding (or deleting) the edge between the two vertiges). Then,(), v) is an eigenpair
of L' as well.

Proof. The tuple(), v) is an eigenpair, so all equations\v = Lv hold. Thes-th row
of this system of equations is

Avg = Z (vs — vj).

JEN,

We rewrite this equation as

A = wgr(vs — vp) + Z (vs —vy),
JEN\{t}

which demonstrates thatdf, = v, then this equation holds independent of the value Gf
(and the absence or presence of the €dgg). Similarly, the validity of thet-th equation is
unaffected by changes regarding the efige). All the other(n — 2) equations are trivially
unaffected so that’v = Av holds as well. 0

COROLLARY 2.20. Let Z be the matrix(2.3) containing the LSEVs af correspond-
ing to shared leaves or hanging cliques over a collectioroofll subsets{S,}2 ;. LetQ
be the orthogonal complement #. Let I’ be any combinatorial Laplacian obtained by
adding, deleting, or reweighting edgés ¢) in G such thats, ¢ € S, for somer. Then any
eigenpair(\, v) of L such thatv € spar(Q) is also an eigenpair of.’.
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Proof. Examples2.10and 2.15 demonstrate that every vector in sp@n is constant
over eachs,.. Theorem2.19demonstrates that we can change edges such that, ¢t € S,
without changing the eigenvectovse spar{@) or the associated. a

ExamMPLE 2.21. Consider three shared leaves in an unweighted graph.aA edge
between leaf one and leaf two. The LSEVsIohave changed, yet the global eigenvectors
have not. Note that there are two LSEVs on this new structuréf, yet there is only one
for the respective adjacency matrix (associated with tmgimg triangle).

The property given in Corollarg.20may allow for more aggressive coarsening in many
real-world graphs than the techniques used in Sectiorlowever, the success of such an
approach requires a clever method for efficiently detedtigywide class of graph substruc-
tures.

3. Application of LSEVs to commute time. Any network science computation that
has connection with the eigenpairs of a graph-associatéikmaay potentially benefit from
detecting the existence of LSEVs. There are quite a few camadata mining related com-
putations that have spectral formulas: query rankings eimferred from eigenpairs],
partitioning and clustering can be performed using eiggapa7], triangles can be counted
with eigenvaluesZq], etc.

We focus on employing LSEVs to aid in the calculationcoimmute timea distance
measure for pairs of vertices, due to recent interest in & wadge of application areas. As
a distance measure, commute time can be used to perfornakdaéa mining related tasks,
such as query ranking and clustering.

DEFINITION 3.1. Thecommute timédetween verticesandj, denoted” (i, j), is defined
to be the expected length of random walks that start fromexérisit vertex;, and return
to vertexi.

Recall that the full eigendecomposition of a graph Laplaésal = VAV, whereV
is an orthogonal matrix with the eigenvectorsiofn its columns,V = [vy,va,...,v,], A
is a non-negative diagonal matrix with = diagh; = 0, \z,...,A,], and the eigenvalue
ordering given in {.2). We introduce the notationfk) = Vik, i.e.,vl(k) is thei-th entry of
the k-th eigenvector of... It is well-known that the commute time is given by the spaictr
formula [10]

n

(3.1) Ci.3) =vol(@) Y - (1 = o)

k=2

where vo(G) = >"}_, di is thegraph volume This can also be written as the quadratic
form,

C(Z,j) = VOI(Q')(eZ- — ej)tL+(ei — ej),

wheree; is thei-th column of the identity and.* is the Moore-Penrose pseudo-inverse of
the combinatorial graph Laplacidgii- = VATV, There is a similar formula based on the
pseudo-inverse of the normalized graph Laplacidi. |

An interesting property of the spectral commute time forrslthat it is a sum of posi-
tive terms, meaning that any partial sum gives a lower bourtthe actual value. We consider
approximating the commute time by truncating the sun8id)( which would amount to cal-
culating theK — 1 eigenpairs corresponding to the lowest eigenvalues exgud = 0. For
the arguments presented here, assume that we calculagediigespairs exactly (including
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numerical errors is beyond the scope of this work)

. 1 k) _ (0>
C(i,§) =~ Ck(i,j) = vol(G Z)\—k( ) .

k=2
The truncation error, 7k (i,5) := C(i,7) — Ck(4,7), is bounded in a simple way by
2
noting that||v,|| = 1 implies (vi(k) — v§k)> < 2 for any: andj

2(n - K)
Ak+1

i (1,7) < vol(G)

This bound is not sharp: there is 6 < n with verticesi andj such that equality is
reached. In fact, the use ofthtler’s inequality gives us anothé}(1/\k1)-bound where
the constant is quite a bit better.

THEOREM 3.2 (Uniform truncation error for commute timefjor all pairs of vertices
andj, we have

2v0l(G)

AK+1

Tr (1, J) <

Proof. Using Holder's inequality||fg||; < ||f]|~|lg|/1, the fact that’*e; (the rows ofl’)
are orthonormal(V* = I), and the ordering of the eigenvalues, we have

= 1 2
C(i,§) = Ck(i,j) = vol(G) > © (%gm _ v§.’“>)

k=K+1

1 - 2
< vol(G) L_}}lflxn /\k] [ Z (Uz(k) 7vj(k)> ]

k=K+1
n 2

2 : (k) (k)

k=1

IViei — V'e;

vol(G)

AK+1

<

~ vol(g)

Aka1
2v01(G)

= . O
AK+1

If the decay ofl/)\ is fast enough a% increases, then these types of bounds are im-
mediately useful. However, if a graph has a large number &\'S then the decay df/ A,
may be quite slow and this bound is not useful unless the LSiE¥ sletected and all known
eigenvectors are used to improve the truncation error holedgive the following corollary
to the previous theorem.

COROLLARY 3.3 (Pair-wise truncation error for commute timel)et IC be the set of
indices of all known eigenpairs (the LSEVs detected andhpijes that have been computed).
LetCx(i,7) be the estimation of commute time using all the known eigesipehen, for any
pair of verticesi and j, we have

(i) 1= Clin ) — Creli, ) < “09) [2 =3 (o - @’“)ﬂ |
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Proof. Using||V'e; — V'e;||? = 2, we have

2 2
Z (vgk) — Uj(k)> + Z (vgk) — vj(»k)> = 2.
kgK

kex

Inserting this equation into the proof of Theor@&m®?, we obtain the result. O
The assumption that there is no numerical error associatedive eigenpairs is realistic
for a wide class of LSEVs. For the other eigenpairs, this mggion is not met in practice,
and the estimates involved should depend on the residudie afigenpair approximations.
Below we give an example of a common practical situation whle truncation error is
known to be zero for certain pairs of vertices by using onl¥EMS as known eigenvectors.
Additionally, bounds or('(4, j) are easily obtained by the detection of LSEVs. We use
the shared-leaf example to illustrate this.
THEOREM 3.4. For a graph with shared leaves, we have the following results
(i) If neither vertex; or j are shared leaves, thefi(i, j) can be obtained froni..
(i) If the vertexi is a shared leaf of a parent with > 1 shared leaves, then
=1 iy < (fz—l 1)
vol(G) i C(i,7) < vol(G) . +1+ i)
(iii) If the verticesi and j are both shared leaves of different parenisand p;, each
with ¢;, ¢; > 1 shared leaves, then

i —1 g —1 . g—1 g —1 1 1
I G- L ><C ,j) < vol <+ I+ +>.
voi(g) (£ —2)<0lig) <volg) (Tt tte

(iv) If the verticesi and j are both shared leaves of the same parent with 1 shared
leaves, then

C(i, §) = 2vol(G).

Proof. For (i), note that all the LSEVSs i#¥ are zero-valued atandj. The only nonzero
terms in B.1) are associated with the eigenvectors in the orthogonaptamentd). These
eigenvectors are perfectly represented by eigenvectors..olUsing the basis inZ.7), we
prove the lower bounds in (ii) and (iii). Because the entigerspace associated withhas
eigenvalue\ = 1, we haveC(i,j) > vol(G)||Z%(e; — e;)||*. If i is in a shared leaf bytis
not, thenZ‘e; = 0 and

(g—1)

qg—1
1Z8(e; — e))II” = [ Z'eill> = D [(wp))* = PR
p=1

from which the lower bound in (ii) follows. For part (iii), asme: and; are shared leaves
from different parents. LeZ(!) be the columns of associated with the LSEVs that are
nonzero over the leaves pf. DefineZ() similarly with respect tg,. Then(Z(M)te; = 0
and(Z®)te; = 0, implying

124 e — eI = (20l + (2 ey 7 = L B L

q; 4q;

The upper bounds for (ii) and (iii) are realized by applyingr@lary 3.3. We prove (iv)
by noting that(e; — e;) is orthogonal to the constant vector and therefore it is éringe
of Z. This ImplleSHZt(el — ej)||2 = <(QQt + ZZt)(ez — ej),el— — 6j> = Hel — ej||2 = 2.
The other terms involved if'(i, j) are all zero because the eigenvectors in the rangg of
satisfyvfk) = v](.k). 0
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3.1. LSEVs as counterexamples to conjectures regarding deafree graphs. In [28],
it is stated that "The raw commute distance is not a useft&dee function on large graphs.”
It is important to note that, out of context, the scope of ttedement seems very wide. The
authors do not consider all large graphs in their theorytebrs, they assume a class of graphs
common to machine learning applications (so caliedrest neighbor graphsnde-graphg
with the following properties: (i) the minimal degree slgwhcreases with the number of
verticesand (i) random walks are quickly mixing. Given such graphs, tbenmute time be-
tween two vertices is well-approximated by a function of degree density of both vertices,

(3.2) C(i,5) ~ vol(G) (1 + 1) ,
d; d;
and the quality of the approximation is better for largerpni® We review the conjecture
that some members in the research community seem to have thadgpproximation3.2)
is highly accurate foany large scale-free graph.

Many scale-free graphs of interest do not have propertarij, the results ing] do not
apply for such graphs. For example, there are scale-freghgnaith billions of vertices that
have many vertices of degree one and two. If certain typesS&\s are present in a graph,
then this demonstrates that the error in the approxima@a®) ¢an be bounded from zero
independent of the size of the graph. We give the simpleshpla

ExAMPLE 3.5 (Hanging triangles). Consider the class of graphs wri @r more tri-
angles that have only a single vertex with any connectiorettioes not in the triangle (Ex-
ample2.16with ¢ = 3 andl = 1). Let the verticeg, j, andk comprise a connected triangle
that hangs off the rest @ (d; = d; = 2 andk contains at least one connection with ver-
tices inV \ {i,7,k}). Equation 8.2) suggests that ifV| is sufficiently large, the commute
time C (4, j) should be well-approximated by

vol(G) (ai + dlj> =vol(G).

However, there is a LSEV supported 8n= {i, j }. Define the vector with the coefficients

beingv; = 1/v/2, v; = —1//2, and zero-valued for all other vertices. The decomposition
in (2.1 yields
-1 -1
2 -1
L= [ 1 9 } ; and Lo = 00

Itis easy to verify that is a LSEV associated with the eigenvalue- 3 (see Exampl@.16).
Due to orthogonality, all other eigenvectors are equal @tvtirticesi andj. Therefore, the
commute time betweehand; only involves the LSEV, and

1N/ 1 -1\> 2
C(i,j) = vol - |J—=—-—=] = =vol(G).
i) =wol©) (3) (75~ 5) = 3wl
The error in the approximation offered b§.9) is not arbitrarily small for largéV| within
this class of graphs.
We remark that this example does not prove that commute Sraggbod distance mea-

sure for all scale-free graphs, it only serves to show thatagbproximationd.2) is not ac-
curate for all vertex pairs in this class of graphs. Th the authors demonstrate that the
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closest vertices to a source vertex, using commute tim8&.4dy, ¢end to be quite similar for
a few prototypical scale-free graphs provided thas a big enough number. The example
rankings are often quite different for lists of length= 5 but tend to be highly similar for
largerk. A revised conjecture is that the quality of the approximai3.2) is high for pairs
of large-degree vertices and that this property can explegrcorrelation in the rankings as
an exceptionally large number of paths involve the high degertices.

4. Numerical experiments. We present a series of experiments designed to demon-
strate the use of LSEVs to facilitate the computation of ejigérs of graph Laplacian matri-
ces. These tests are intended to be illustrative rathereklaustive. Principally, we show
that LSEVs can be identified by detecting their associataglysubstructure and that they
can subsequently be used to generate coarse graghsith significantly reduced complex-
ity, which can be used to compute eigenpairs in the remaiporgon (non-LSEVSs) of the
spectrum of the original graphs. We do this for a selectiographs including both a syn-
thetic graph generator and some real-world graphs to itelicdustness of the method. We
also demonstrate that in addition to reducing the complefithe coarse graph, the method
in some cases also noticeably reduces the computatiorat éffumber of iterations) and
computational time required to compute the Laplacian spett

4.1. Graphs. Our tests are conducted on graph Laplacian matrices forored €lass
of synthetic graphs as well as two well-known real-worldgyrs The graphs we employ are
the following.

1. ThePreferential Attachment Mod@&mploys a synthetic graph generated using a
common random graph model, a version of the preferentiatlathent (PA) model
proposed in 3]. Here, random graphs are generated by starting with a srosdl
graph and successively adding new vertices, each with otwveoanew edges. These
edges are randomly attached to old vertices with a prolpaliiat is proportional
to the degrees of those existing vertices. This graph géaenaethod is often de-
scribed aghe rich getting richer.lt results in a graph with a power-law degree dis-
tribution but without well-developed internal commungtieOur examples all have
essentially the same number of edges as vertices. We entpiey such graphs,
with, respectively, 33,000, 66,000, and 131,000 verticesages.

2. TheOpte Internet Graplidenoted Optel), shown in Figutel, is the result of scan-
ning connections between class C networks on the intermetgfaph and the visu-
alization were downloaded froni§]. The Optel graph contains just under 36,000
vertices and 43,000 edges. We note that this graph has chittefa tree-like struc-
ture in its periphery and there are many LSEVs associatddshibrt, shared chains.

3. TheEnron Email Correspondence Graptiownloaded from18], was created using
emalil traffic from employees of the Enron corporation. Theadaere originally
released by the investigators of the Enron scandal thatdedan 2001. Vertices
in the graph are either Enron email accounts or non-Enrornl @teounts that sent
(or received) one or more messages to (or from) an Enron atcéun undirected
edge(i, j) is assigned if there was any email communication betweerl; during
the span of time the data represents. This is an example tdtéodiof aninduced
subgraphof a larger graph, namely the graph of all email accounts hegtesence
of communication between two email accounts. (The subgiragiiced by the set
of all Enron email accounts would give all Enron accounts aregence of commu-
nication between Enron-only accounts.) Graphs of this gqgeprone to a highly
simplistic periphery in cases where many of the verticesidatthe inducing set are
only connected to few vertices within. The Enron graph ha®@2 vertices and
181,000 edges.
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4.2. LSEVs for graph coarsening. For the graphs described in Sectibrd, we demon-
strate the reduction in graph complexity offered by the ciéda of LSEVs. The results of
detecting LSEVs and forming coarsened matricgare presented in Tabiel For all of the
graphs, we see that a large porti@3% — 46%) of the Laplacian spectrum is made up of the
detected LSEVs. Moreover, with the exception of the Enrapbr the complexity of... (i.e.,
the number of edges in the coarse matrix) can be considerediliced as welll§% — 46%).
While in the Enron graph we do see a significant portion of tleespm made up of LSEVS,
the complexity reduction is onl§% — 5%.

The graph substructures that induce LSEVs are detected tigralgorithms described
in AppendixA. Specifically, shared leaves (LF) and shared chains of heBd2C) are de-
tected using Algorithn2. Hanging triangles (T) are detected using AlgoritAm

It is natural to ask for the computational cost of these d&tealgorithms. Combi-
natorial mathematicians are well aware that rigorous diete@lgorithms can be extremely
difficult and expensive. We note, however, that we are newargdan expensive combina-
torial search. For example, consider the case where we seEk'4 supported on hanging
cliques of sizec. We are not looking foall cliques of size: in the graph, which would amount
to aO(n) cost without employing heuristics (or additional graphpeies). Instead, we
are looking for cliques of size that contain at least two vertices of degree equdtte 1).
This constraint allows us to narrow the search greatly, fordsmall ¢, this search is fairly
inexpensive.

We give an example that demonstrates some potential cotignahsavings of detect-
ing LSEVs and using them to coarsen the graph before appbingigensolver. First, we
apply several instances of MATLAB's iterative eigensojv&rgs( ) , to the original graph
LaplacianL (associated with the Optel graph) and monitor the numbeteddtions and
wall-clock time. We ask for several different numbers of Bes eigenvaluespev, and
associated eigenvectors for a few different error tolegaricol . We seedei gs() with
the same random non-negative initial vector each time dod dhe algorithm to determine
how many storage vectonsv are appropriate. Secondly, we coarsen the graph by degectin
shared-leaves, which takes about 0.46 seconds, and wethppigme eigensolver fq. using
similar parameters as we use for the corresponding eigarsal/olving L, again monitoring
the number of iterations and wall-clock time. TaBl@ displays the performance for each of
these solves, where detecting the LSEVs amounts to sigmifszavings in time and storage
and additionally computes a large number of interior eigres and associated eigenpairs
(over0.22n+nev eigenpairs are calculated using the LSEV approach).

From the vertex and edge reductionsof displayed in Tablet.1, we know that the
storage cost involved in retainings v storage vectors is reduced by ovef2and the com-
putational cost of applying a matvec is reduced by aroLg8¥d. Additionally, the number of
iterations thakei gs() uses is also greatly reduced fbg, which can be attributed to remov-
ing a very large number of eigenvectors associated with 1, allowing the Krylov process
to select polynomials that concentrate on the low eigemgalu

Note that we use theSA' (smallest algebraic) option i gs() , which does not em-
ploy a preconditioner, whereas th&M (smallest magnitude) would use a Cholesky pre-
conditioner. Our reason for not using the preconditionéwis-fold: (i) for a large enough
real-world graph this type of preconditioner runs out of negynand (ii) we aim to demon-
strate the potential computational savings in graph coamgewhich are magnified by a less
efficient method.

5. Conclusion and further work. Our primary contributions are to characterize a class
of graph substructures that admits locally supported ewgenors, to demonstrate how to de-
tect such structures, and to calculate the associatedpEigenWe develop a fairly extensive
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TABLE 4.1
Five different examples of using detected LSEVs to redueedmplexity of graphs. The original graphs
are from a preferential attachment model (PA), internettesiconnections (Optel), and electronic communications
(Enron). The original number of vertices and edges are dmhpY| and |£|, respectively. The types of LSEVs
detected are shared leaves (LF), shared chains of length2®, @hd hanging triangles (T). The numbers of edges
and vertices in the coarsened gragh.| and|E.|, are reported as well as the percentages of eigenpairs ifiketht
and edges reduced.

. Epairs Edge
Graph [V €] Detection| |V, |Ee| Identified Red.
PA 32,768 32,767 LF 20,515 20,514 37.4% 37.4%
LF, 2C 17,651 17,650 46.1% 46.1%
PA 65,536 65,536 LF 41,190 41,189 37.2% 37.2%
LF, 2C 35,476 35,475 45.9% 45.9%
PA 131,072 131,071 LF 82,346 82,345 37.2% 37.2%
LF, 2C 70,656 70,655 46.1% 46.1%
Optel| 35,635 42,822 LF 27,548 34,735 22.7% 18.9%
LF, 2C 25,686 32,873 27.9% 23.2%
Enron| 33,696 180,811 LF 24,981 172,096 25.9% 4.8%
LF T 24564 171,262 27.1% 5.3%

TABLE 4.2
Iteration counts and timings (in parentheses) of MATLABjeesolverei gs() applied toL and L. (coars-
ened using shared leaves) for the Optel graph for severf@reift numbers of lowest eigenvaluesy, and eigen-
residual tolerance leveld,ol . The valuensv is the number of vectors the algorithm chooses to store tguttef
with the exception foriev = 10, wherensv = 30 was chosen. DNC means the method did not converge in 25,000
iterations.

tol =1e-3 tol =1e-5 tol =1e-8
nev nsv L L. L L. L L.
1 20 336 132 1130 354 3262 826
(20.2s) (5.5s) (66.0s) (14.3s)| (189.2s) (33.0s)
5 20 5297 1258 8459 2135 17257 3006
(388.7s) (67.3s)| (618.9s) (110.1s) (1246.0s) (156.7s)
10 30 2180 1010 4159 1046 5229 1601
(262.9s) (81.3s)| (522.1s) (92.3s)| (670.9s) (134.4s)
o5 50 14366 2653 15768 3767 15514 4813
(2512.1s) (334.6s) (2672.3s) (474.3s) (2704.8s) (642.85s)
50 100 DNC 840 DNC 1206 DNC 926
(14300.6s) (381.4s) (15150.6s) (517.1s) (14968.2s) (437.2s)

theory of these structures showing the spectral partitgptiey give rise to, and we demon-
strate how the sparsity of the local eigenvectors may beoérpl to reduce the complexity

in calculations for the other (non-LSEV) eigenpairs. Wecilate the theory governing the
relationship between the original and coarsened matrivés.give an example where the
knowledge of locally supported eigenvectors helps to gtetde accuracy of spectral calcula-
tions. We also present numerical experiments illustratiegpotential efficacy of employing

LSEVs in practice, demonstrating both the efficient comiiorteof sizeable fractions of the

Laplacian spectrum and the significant reduction in size @mdplexity of the coarsened

graph used to find the remainder of the spectrum. These ncaheeisults quantify the re-

ductions of graph size and complexity for small graphs franegators and a few real-world
networks and demonstrate the computational savings iaddlv coarsening a graph before
employing an eigensolver.
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Our future work will be geared towards the use of LSEVs in thetext of many diverse
types of spectral calculations for undirected, scale-freghs and exploiting the knowledge
of LSEVs to improve bounds on the numerical error incurredigh computations. In addi-
tion, we are working on generalizing this theory to eigetwecofessentially local suppart
that is, to eigenvectors that are not strictly local in tlseipport but whose nonzero entries de-
cay rapidly away from a local subset of the vertices. Our érations of more general graph
spectra have shown that such eigenvectors likely existakibeory of the graph properties
that give rise to them and methods for detecting them havioye discovered. Developing a
better understanding of the graph and matrix charactesigiat admit essentially locally sup-
ported eigenvectors will allow us to further study graphrseaing and quantify the spectral
error associated with coarsening processes.

Acknowledgments. We thank Panayot Vassilevski for many useful discussionthisn
subject and for his invaluable help editing this manuscript

Appendix A. Algorithms to find LSEVS. We propose a general algorithm, Algoritim
that could be used to find out if individual sets within a famsupport LSEVs. For each

Algorithm 1: Framework for finding locally supported eigenvectors.

input : aconnected, unweighted, and undirected g@ph, &)
output : locally supported eigenvectofsand orthogonal complemett
Identify a family of small subset§S, }Z_; to check.
Z ]
Q ]
Initialized unvisited verticegd «— V.
forr=1,...,Rdo
Q]
M —0
UseS, to defineL;; andLs; asin @.1).
LetII and P be defined as in3).
SolveL;ju = A\u.
for each eigenspacg of L, do
SolveU'Lb, Loy Uy = py.
for eachy; with 11; = 0 do
M—M-+1
Z « [Z,1IPUy}]

end
for eachy; with 11; # 0 do

| Q< [Q.IIPUy;]
end
end
if M > 1then
Q—[Q, 4]
U—U\S,
end
end
for i € U do

‘ Q o [Q»ei]

end
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Algorithm 2: Detecting shared chains of identical length.

input  :a connected, unweighted, and undirected gi@ph &), max chain
lengthc,,q.

output : collection of subset$S,. }*_, containing locally supported eigenvectors.

Setl; ={ieV : d;, =j}forj=1and2.

Initialize vectorg € R to g; = 0 for i € £, and—1 otherwise.

Initialized unvisited verticedd «— V \ L;.

SetT = L.
r=0.
forc=1,...,cnaqs dO
Zzew = 0.
fori e 7 do
T — T\ {i}
Set; to the unique element iV; N .
if d; = 2then
g9; =9+ 1.
Zzew — IZtnew U {]}
U—U\{j}
end
else

LetC={peN, : g, =09}
if card(Lq, UC) > 1then
r—71+ 1
SetS, to include all of each chain.
end
end
end
T—TU ,Tnew
end
R=r.

setS,., decompose the matrix as i8.(), letII* be a permutation that listS, first, and letP
be an injection fromRIS- to R™. Then fully solveL;;u = Au. For each eigenspadé
of distinct eigenvalues, see if there is a vector in the Keohd.,; within this subspace by
solving

UtLgnglUy = uy.

If there is any vector of coefficientg associated withy = 0, thenTIPUy is a locally sup-
ported eigenvector and it should be included ifitolf there are any local eigenvectors sup-
ported bysS,., then include all the other vectors infh Repeat this process for each set in the
family. Lastly, augmeng) to include columns of the identity for all vertices that ac part

of the support of any local eigenvector detected in this @ssc

A.1. Algorithm 2: shared chain detection algorithm. Here we present an algorithm
that detects sets of chains with the same length that harlbeoffame vertex. This algorithm
detects shared chains of length= 1 (shared leaves®, 3, ..., ¢phaz, Wherec,,q, is the
maximal chain length. It is highly related to the first phase @ore detection algorithm
given in [4]. The algorithm is guaranteed to i§m) in cost.

Initially, all vertices: of degree 1 are assigned a valye= 0 that represents the number
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Algorithm 3: Detecting hanging cliques.

input  :aconnected, unweighted, and undirected gi@ph £), max clique
Siz€cmax

output : collection of subset$sS, }F_, contammg locally supported eigenvectors.

Setl; ={ieV :d;=j}forj=3,...,cmaa-

Initialized unvisited verticeg{ — V.

Set7T = Ls.

r=0.

forc=3,...,cmaz do

for i € 7 do
if i € U then

LetC™ «— {pe N, NU) : d, < (c—1)}
LetC «— {pe N;NU) : pz(c—l)}
LetCt — {pe (N, NU) : >(c—1)}
if cardCUCT) = (¢—1)and cardC") < (¢ — 2) then

if CUC™ is a cliqguethen
re—r+1
S, =C
end
end
U—U\{ituC ul)
end
end
Zzew — £c-
T —TUThew.
end
R=r

of links below thei-th vertex. Start at each vertéxof degree 1 and go to the only vertex
connected t@, which we labe}j. If j is degree 2, then sg} = ¢; + 1 and save it for the next
iteration of the algorithm by placing it into a queftie If j has degree higher than 2, then look
in its neighborhood for verticgssuch that,, = d; andg, = g;. If such ap # i exists, then
we have detected a set of shared chains. Repeat this procéiss tlegree 2 nodes identified
earlier. See Algorithn2 for a complete description.

A.2. Algorithm 3: hanging clique detection algorithm. We describe an algorithm to
detect cliques of size = 3, ..., ¢,uq. that hang off the edge of the graph with at most 2
vertices connected to the rest of the graph. Initially,set 3 and put all vertices of de-
greec — 1 into a queue. For each vertéxn the queue, check for a hangireclique by
ensuring that all unvisited vertices irs neighborhood have at least degree- 1 and at
mostc — 2 of them have degree greater than 1. If this test is passed, then make sure that
all connections are present withils neighborhood. If this test is passed, then the portion
of this clique that hangs off the graph contains LSEVs. Ndrtiaate the vertex and the
members of its neighborhood with degree 1 or less from further consideration. Repeat the
process for < c+ 1. See Algorithn® for a complete description. The cost of this algorithm
can be much worse tha@(m) if ¢4, IS set as a high value because checking for a clique of
sizec requires to look fofc — 1)(c — 2) potential edges.
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