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LOCALLY SUPPORTED EIGENVECTORS OF MATRICES ASSOCIATED WITH
CONNECTED AND UNWEIGHTED POWER-LAW GRAPHS ∗

VAN EMDEN HENSON† AND GEOFFREY SANDERS†

Abstract. We identify a class of graph substructures that yields locally supported eigenvectors of matrices
associated with unweighted and undirected graphs, such as the various types of graph Laplacians and adjacency
matrices. We discuss how the detection of these substructures gives rise to an efficient calculation of the locally sup-
ported eigenvectors and how to exploit the sparsity of such eigenvectors to coarsen the graph into a (possibly) much
smaller graph for calculations involving multiple eigenvectors. This preprocessing step introduces no spectral error
and, for some graphs, may amount to considerable computational savings when computing any desired eigenpair.
As an example, we discuss how these vectors are useful for estimating the commute time between any two vertices
and bounding the error associated with approximations for some pairs of vertices.
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1. Introduction. Network scientists study complex systems from a diverse setof sci-
entific fields [23]. Currently, there are great efforts in the study of communication networks,
social networks, biological networks, chemical networks,etc., and the sizes of the networks
being studied are growing exceptionally large. Such applications demand several computa-
tionally intense tasks such as clustering the network members in various ways [27], ranking
network members by significance [6], measuring the distance between two network mem-
bers [10], counting triangles between network members [25], or visualizing the topology of
the network in some low-dimensional space [15]. One common approach to the study of a
complex network is to model the network as a graph and use the mathematical properties of
the graph to estimate a quantity of interest. This approach often leads tospectral graph calcu-
lations, where one or more eigenvalues or eigenvectors of a matrix associated with the graph
are approximated by an eigensolver. The approximate eigenpairs are then used to estimate
the quantities of interest.

An attractive advantage of the spectral approach is that onecommon linear algebra tool,
the eigensolver, may be employed to address a wide class of complex network calculations.
Another advantage is that the spectrum is a tool for quantifying errors incurred when sim-
plifying graphs. However, there are many challenges behinddesigning eigensolvers that are
efficient for all these calculations due to the variety of graph topologies present in large, real-
world networks and the many types of eigenproblems that various calculations require. Our
primary goal is to enhance existing eigensolvers so that they are more efficient and thus more
useful for network science applications. A secondary goal is to use spectral properties to sim-
plify the graph with only little change in the eigenvectors to potentially increase the efficiency
of non-spectral methods as well.

Many real-world networks of interest have a largeperiphery, where many vertices of
very low degree(number of connections) are present. Moreover, the graph topology often
has apower-law degree distribution, meaning that the number of vertices with a given degree
is approximately proportional to some negative power of thedegree (cf. [23] and Figure1.2).
This type of topology is highly challenging for large-scaleiterative eigensolvers, such as those
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available in many of the common high-performance computingpackages [12, 13, 17]. Many
of the preconditioning techniques that are highly successful for mesh-like graphs(e.g., graphs
coming from local discretizations of PDEs) are less successful for power-law graphs due to
the limitations posed by the communication properties of distributive computing with matri-
ces having some high degree vertices. Any graph simplification, such as graphcoarsening,
that introduces little spectral error will improve this situation. Our long term research inter-
ests are to further develop the techniques in [8, 14, 16] to better address power-law graphs.
These techniques automatically generate multilevel hierarchies from which accurate approx-
imations to eigenpairs are calculated.

This paper describes a technique that aids spectral calculations by taking advantage of
specific types of local substructures that are often presentthroughout the periphery of un-
weighted and undirected graphs in real-world networks. We give a few examples in Fig-
ure 1.1. The existence of such substructures implies that the matrix has eigenvectors that
are nonzero only within the local substructure. Typically,the associated eigenvalues have
extraordinarily high multiplicity (for some classes of graphs, the multiplicity can beO(n)).
We adopt the terminology of functional analysis (where thesupportof a function means the
subset of the function’s domain where the function is nonzero) and call the eigenvectors that
are nonzero only on a local substructurelocally supported eigenvectors(LSEVs). Detect-
ing substructures that supports LSEVs allows one to efficiently calculate some parts of the
spectrum (and the associated LSEVs) and to reduce the size ofthe graph without any loss of
accuracy for the rest of the spectrum (and the associated eigenvectors). When such substruc-
tures occur many times in a graph, this technique provides significant computational savings
in the calculation of the other eigenvectors that have not been identified as LSEVs.

This paper is organized in the following manner. In the remainder of Section1, we
put this work into historical context, relating it to previous work on eigenpairs arising from
special structures in the graph. We also provide a connection to and motivation from the field
of multigrid, and then describe the matrices of interest andthe eigenproblems that arise from
them. In Section2, we define LSEVs and establish algebraic conditions that yield LSEVs.
We develop theoretical results regarding the existence of LSEVs of matrices associated with
graphs and show the relation of the spectra of the original matrix with the coarsened version
that results after removing the structures generating the LSEVs. We give several examples of
classes of LSEVs that are common in real-world graphs. We present results that demonstrate
how the knowledge of LSEVs is applied to the calculation of commute time in Section3.
In Section4, we demonstrate the application of our theory to several graphs, both synthetic
and real. We show that in some graphs, the LSEVs make up a substantial portion of the
spectrum and further that they can be used to create a coarsened graph having substantially
fewer vertices and edges giving rise to a more tractable problem of computing the remaining
(non-LSEV) spectral components. We give concluding remarks and a statement regarding
further work in Section5. Finally, we present a pseudocode for the algorithms used todetect
LSEVs in AppendixA.

1.1. Background. We note that some observations related to this work have beendis-
cussed previously in the spectral graph theory literature.At least as far back as the mid
1980’s, Faria [9] was aware that graphs with many vertices that are exclusively connected
to the same vertex give rise to eigenvalues of high multiplicity for adjacency matrices and
graph Laplacians. Eigenvectors that are positive at one vertex, negative at another vertex,
and zero everywhere else are referred to asFaria vectors, and their properties are described
in [2, 20, 22]. These papers concentrate on the multiplicity of the eigenvalues associated
with these eigenvectors. Also, Faria vectors are used as counterexamples to lower bounds on
the number of nodal domains that the sign structure of eigenvectors induces [5]. Recently,
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FIG. 1.1. A visualization of theopte1 graph from [19] (see Section2 for a description). The detail on
the right displays two common types of substructures in the periphery of this graph that can be exploited for more
efficient eigenvalue computations: (a) many vertices that are exclusively connected to the same vertex and (b) chains
of the same length connected to the same vertex.

eigenspaces of extraordinarily high multiplicity were observed in many power-law graphs of
large, real-world networks [11]. The connection of considerable portions of these eigenspaces
with LSEVs is verified.

In this work, we emphasize the computational importance of the sparsity of the LSEVs
and demonstrate that these vectors can be used to efficientlyreduce the original graph into
a smaller graph that perfectly represents all other eigenvectors that have not been identified
as LSEVs. We generalize the concept of a Faria vector by giving algebraic conditions that
fully classify all types of substructures that admit LSEVs.We describe a few substructure
families that support local eigenvectors which are common in real-world graphs and provide
algorithms to detect various types of them.

FIG. 1.2.Two common types of degree distribution plots [23] for the opte1 graph [19].

The process of detecting locally supported eigenvectors can be thought of as a specialized
version ofaggregationor combining localized groups of vertices (aggregates) from within a
graph. Aggregation multigrid [26] is a class of coarsening approaches where aggregates are
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formed, and the number of degrees of freedom in each aggregate is reduced so that a certain
portion of the operator’s spectrum is well represented by a smaller matrix. These methods
are typically used to build multilevel solvers for linear systems or eigensystems and can be
quite effective for problems posed on mesh-like graphs (forexample, for a problem that is a
discretization of an elliptic PDE in a low-dimensional space) [1].

1.2. Graph associated matrices and common eigenproblems.A graphG(V, E) is a
collection of n vertices, V = {1, . . . , n}, and relationships between pairs of vertices, or
edgesE . If there exists an edge between two verticesi andj, then(i, j) ∈ E . Here, we look
at a specific class of graphs. Assume that (i)G is simple: it contains noself loops, (i, i) /∈ E ,
and nomultiple edges, (ii) G is undirected: (i, j) ∈ E if and only if (j, i) ∈ E , (iii) G is
unweighted: the distance or cost of each edge inE is the same, and (iv) that the graph is
connected, meaning that there exists at least one path between any two vertices in the graph.
Thedegreeof a vertexi, writtendi, is the number of edges that sharei.

We recall several commonly used matrices associated with a graph.
DEFINITION 1.1. The structure of graphG(V, E) is used to define several useful matri-

ces.
(i) Adjacency matrix: letA ∈ R

n×n with entries given by

Aij =

{

1 if (i, j) ∈ E
0 otherwise

.

(ii) Degree matrix: letD be a diagonal matrix inRn×n such thatDii = di.
(iii) Combinatorial graph Laplacian: letL = D − A, or

Lij :=

{

di if i = j

−1 if (i, j) ∈ E .

(iv) Normalized graph Laplacian: let̂L = I − D−1/2AD−1/2, or

(L̂)ij :=

{

1 if i = j

− 1√
didj

if (i, j) ∈ E .

(v) Signless graph Laplacian:|L| = D + A.

The spectrum and the associated eigenvectors of the adjacency matrix and various graph
Laplacian matrices are all of interest. However, to be concise, we only explicitly describe
LSEVs for eigenproblems associated with the combinatorialgraph Laplacian and an asso-
ciated application. We include a few remarks regarding the other types of graph-associated
matrices to emphasize that LSEVs apply to a broader class of problems than we describe.

A (normalized) eigenpair(vk, λk) of L is a nontrivialeigenvectorvk ∈ R
n and a scalar

eigenvalueλk that satisfy

(1.1) Lvk = λkvk.

The properties ofL offer several simplifications to (1.1). BecauseG is undirected,L is sym-
metric,L = Lt, which implies that the eigenvaluesλk are all real and there exists a complete
set ofn orthogonal eigenvectors,vt

kvl = δkl, whereδkl = 1 for k = l, and0 for k 6= l.
Gershgorin’s theorem implies that the spectrum is non-negative, λk ∈ [0, 2maxi di]. Let
1 and0 be the vector of all ones and all zeros, respectively, and note that the definition of
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the graph Laplacian impliesL1 = 0 such that(v1, λ1) = (1, 0) is a known eigenpair. The
assumption that the graph is connected implies that the multiplicity of λ1 = 0 is 1. We order
the eigenvalues in increasing order,

(1.2) 0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λn−1 ≤ λn ≤ 2max
i

di.

For largen, it is computationally overwhelming to calculate all eigenpairs. For the eigen-
problem (1.1), the eigenpairs associated with theK lowest eigenvectors are typically sought.
Our computational task is to approximate solutions to

Lvk = λkvk

vt
kvl = δkl

for k, l = 2, 3, . . . ,K.

We note that a vector-scalar pair is an eigenpair if and only if the pair has a zeroeigen-
residual, (L−λkI)vk = 0. For an approximate eigenpair(x, µ), the size of the eigenresidual
is used to gauge the accuracy of the approximation. See [24] for standard results regarding
the connection between the size of‖(L−µI)x‖ and the quality of the approximationsµ ≈ λk

andx ≈ vk. In this work, we employ eigenresiduals as a theoretical tool to demonstrate the
accuracy of estimating eigenvectors on graphs coarsened using the knowledge of LSEVs.

2. Locally suported eigenvectors (LSEVs).Here we give the algebraic conditions for
a portion of a graph having locally supported eigenvectors.First, we define a few concepts
and then proceed with our main observations.

DEFINITION 2.1. A subset of verticesS ⊂ V is connectedif for every pair of verticesi
andj ∈ U there exists a path of vertices inS from i to j. Let thedilationof S be defined as

dilate(S) := S ∪ {i ∈ V : (i, j) ∈ E for somej ∈ S}.
We sayS is nearly-connectedif dilate(S) is connected butS is not connected.

DEFINITION 2.2. LetS(x) denote thesupportof a vectorx ∈ R
n,

S(x) := {i ∈ V : xi 6= 0}.
We say the support ofx is local if S(x) is connected or nearly-connected and contains a
small number of vertices (much less thann).

DEFINITION 2.3. Assumev is an eigenvector ofL. If S(v) is local, then we sayv is a
locally supported eigenvector (LSEV)of L.

LetS be a small local subset of the vertices inV. We decomposeL in the following way.
Organize all the vertices into an ordering withS first, {S,V \ S}, and then write

(2.1) L =

[

L11 L12

L21 L22

]

, where







L11 represents edges withinS,
L12 represents edges fromS to V \ S,
L22 represents edges withinV \ S.

Note that the undirected edges inG imply that Lt = L, so we haveLt
11 = L11,

Lt
22 = L22, andL21 = Lt

12. We state necessary and sufficient conditions for a LSEV to
exist for the setS.

THEOREM 2.4 (LSEV existence).Let a matrixL ∈ R
n×n be decomposed as in (2.1)

with respect to a subsetS. Let u be a nonzero vector inR|S|. A local subsetS contains

a locally supported eigenvector
[

ut,0t
|V\S|

]t

of L corresponding to an eigenvalueλ if and

only if

(2.2) L11u = λu and L21u = 0|V\S|.
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Proof. This result follows by applyingL (via (2.1)) to v =
[

ut,0t
|V\S|

]t

and showing

that (2.2) is equivalent toLv = λv.
We point out that (2.2) is a smaller eigenproblem of size|S| with a set of additional

linear constraints imposed. There is an extra constraint for each linearly independent row
of L21. The fact that the graph is connected givesL21 6= O and at least one extra constraint.
For generalS ⊂ V, there is no guarantee that a solutionu exists. However, there are several
types of graph substructures common to many real-world networks such that the kernel ofL21

does contain eigenvectors ofL11; see [9, 20, 22] and we discuss a few more general types of
these in the next few sections. A general approach to test a set S for LSEVs is to fully solve
L11u = λu and check each eigenspace to see if it contains vectors that satisfy L21u = 0.
Clearly, inspecting all vertex sets of a certain size or below is computationally intractable.
We provide a few algorithms in AppendixA that detect specific types of substructures and
give a framework for algorithms that detect more general types.

For now, we assume that we are able to identify a collection ofR disjoint (non-overlap-
ping) subsets of vertices,{Sr}R

r=1, that each haveMr ≥ 1 orthogonal LSEVs. For eachr,
define some permutationΠ(r) of V such that(Π(r))t orders the vertices inSr first. Then,
let L(r)

11 andL
(r)
21 correspond to the decomposition (2.1) of (Π(r))tLΠ(r) (where the columns

and rows corresponding toSr appear first). Also, define an injection ofR
|Sr| into R

n as
P (r) := [I|Sr|, O|Sr|×|V\Sr|]

t. Then, denote the local portion of theMr eigenvectors that are

supported inSr by {u(r)
m }Mr

m=1. Eachu
(r)
m is an independent eigenvector ofL

(r)
11 such that

L
(r)
21 u

(r)
m = 0. We can collect each locally supported eigenvector into a sparse matrix

(2.3) Z =
[

Π(1)P (1)u
(1)
1 , . . . ,Π(1)P (1)u

(1)
M1

,Π(2)P (2)u
(2)
1 , . . . ,Π(R)P (R)u

(R)
MR

]

.

2.1. Partitioning of spectra. Now we consider how to use the enumeration of LSEVs
in Z to calculate the other eigenvectors ofL more efficiently. The matrixL is symmetric and
therefore has a complete orthogonal basis of eigenvectors.The eigenvectors in the columns
of Z are all orthogonal to the injections of eigenvectors ofL

(r)
11 that are not in the kernel

of L
(r)
21 . Additionally, the support of each eigenvector inZ is entirely contained in one of

the setsSr. Therefore, it is inexpensive to compute a sparseinterpolation matrix Q that
completely spans the orthogonal complement to Range(Z) containing all eigenvectors not in
the columns ofZ. This is accomplished by collecting the eigenvectors ofL

(r)
11 that are not

in the kernel ofL(r)
21 for r = 1, . . . , R and adding the columns of then × n identity matrix

associated with vertices that are not contained in
⋃R

r=1 Sr.

Q =

[

Z⊥ O
O I

]

←− sparse basis orthogonal to LSEVs, restricted to
⋃R

r=1 Sr

←− identity operator onV \ {⋃R
r=1 Sr}.

Let nc = n−∑R
r=1 Mr and define an aggregation to contain all the groups we have identified

with locally supported eigenvectors,{Sr}R
r=1, and singletons of vertices,{s}, that are not

present in any of these groups

Ar =

{

Sr for r = 1, . . . , R

{s} for r = R + 1, . . . , R + (n − ∑R
r=1 |Sr|)

.

An n × nc binary aggregation matrix is given by

Wij =

{

1 if vertex i ∈ Aj

0 if vertex i 6∈ Aj

.



ETNA
Kent State University 

http://etna.math.kent.edu

LOCALLY SUPPORTED EIGENVECTORS OF GRAPH-ASSOCIATED MATRICES 359

The matrixW serves as a template forQ, which has a similar block structure. The local
vectors that are orthogonal to locally supported eigenvectors (eigenvectors ofL11 that are in
the range ofL21) are injected into the structure ofW . For example, say we have identified
two sets that contain locally supported eigenvectors (one with three vertices and two locally
supported eigenvectors, the other with four vertices and two locally supported eigenvectors).
ThenQ has the same block structure asW with one column for the three vertex set and two
columns for the four vertex set. Letting× denote a (possibly) nonzero entry, then

W =

































. . .
1
1
1

1
1
1
1

. . .

































−→ Q =

































. ..
×
×
×

× ×
× ×
× ×
× ×

. ..

































.

The columns of the matricesZ ∈ R
n×(n−nc) andQ ∈ R

n×nc form a complete orthogonal
decomposition ofRn. Additionally, the columns ofZ are all eigenvectors ofL. In order to
compute eigenvectors that have not been collected intoZ, we make use of acoarsenednc×nc

matrix

Lc := QtLQ.

In the remainder of this section, we present a result that shows that all eigenvectors ofL
not collected intoZ are obtained by solving for eigenvectors ofLc and mapping them back
into R

n usingQ. Additionally, we show that accurate approximations to theeigenvectors
of Lc interpolate to approximations to the eigenvectors ofL without a loss of accuracy. First
we state several properties of the matrices involved.

LEMMA 2.5. GivenZ andQ as described above, then we have

(i) QtQ = Inc
(ii) ZtZ = In−nc

(iii) In = QQt + ZZt

(iv) ZtQ = O(n−nc)×nc
(v) ZtLQ = O(n−nc)×nc

.

Proof. Because the columns of[Z,Q] are orthonormal inRn, (i), (ii), and (iv) hold. Also,
because the columns ofZ are eigenvectors, we have Range(LZ) ⊂ Range(Z), implying
that QtLZ = O(n−nc)×nc

. Thus, (v) holds by the symmetry ofL. Finally, we have the
orthogonal decomposition (iii) due to the completeness of the basis.

Now we show that all eigenvectors not collected intoZ are perfectly represented by the
eigenvectors of the coarser matrixLc.

THEOREM 2.6 (Coarse graph spectral representation).If {(vk, λk)}nc

k=1 are all eigen-
pairs not enumerated inZ then{(Qtvk, λk)}nc

k=1 is the complete set of eigenpairs ofLc.

Proof. Let (v, λ) be an eigenpair ofL that is not in span(Z). Employing Lemma2.5(i),



ETNA
Kent State University 

http://etna.math.kent.edu

360 V. E. HENSON AND G. SANDERS

(iii), and (v) gives

(L − λIn)v = 0n

Qt(L − λIn)(QQt + ZZt)v = Qt0n by Lemma2.5(iii)

Qt(L − λIn)(QQt)v = 0nc
by Lemma2.5(v)

Qt(LQ − λQ)Qtv = 0nc

(QtLQ − λQtQ)Qtv = 0nc

(Lc − λInc
)Qtv = 0nc

by Lemma2.5(i).

Therefore,(Qtv, λ) is an eigenpair forLc. Additionally, letv andw be any two orthogonal
eigenvectors ofL that are not in span(Z). Due to the orthogonality of the eigenspaces of
L = Lt, we haveZtw = Ztv = 0nc

. Using this fact and Lemma2.5(iii) gives

〈

Qtv, Qtw
〉

=
〈

QQtv,w
〉

=
〈

(ZZt + QQt)v,w
〉

= 〈v,w〉 = 0.

The completeness of the eigenbasis ofL givesnc orthogonal eigenvectors not enumerated in
Z and therefore{(Qtvk, λk)}nc

k=1 is a complete set of eigenpairs ofLc.
COROLLARY 2.7. If {(xk, λk)}nc

k=1 is a complete set of eigenpairs of the matrixLc, then
{(Qxk, λk)}nc

k=1 are all eigenpairs not enumerated inZ.
Proof. Consider any two orthogonal eigenvectors ofLc paired with their eigenval-

ues,(xk, λk) and(xl, λl) for k 6= l. First we show thatQxk is an eigenvectors ofL cor-
responding toλk using Lemma2.5(iii) and (v),

LQxk = (ZZt + QQt)LQxk = Q(QtLQxk) = λkQxk.

Next we show thatQxk andQxl are orthogonal,

〈Qxk, Qxl〉 =
〈

QtQxk,xl

〉

= 〈xk,xl〉 = 0.

Thus,{(Qxk, λk)}nc

k=1is a set ofnc orthogonal eigenvectors ofL, which must be all eigen-
pairs not enumerated inZ ∈ R

n×(n−nc) by a counting argument.
This result shows that we can obtain any eigenvector not represented inZ by an eigen-

solve involvingLc. We have effectively reduced the problem to a coarser graph without loss
of accuracy. The following result shows that a computation of the eigenmodes spanned byQ
does not have to return to the original graph (until the modesthemselves are needed) because
coarse eigenresidual error measures are equal to the original eigenresidual error measures of
the interpolated approximations.

THEOREM 2.8. Let wc be a vector inR
nc . For approximate eigenpairs ofL of the

form (Qwc, µ), we have

‖(L − µIn)Qwc‖
‖Qwc‖

=
‖(Lc − µInc

)wc‖
‖wc‖

.

Proof. For the denominator,QtQ = I implies‖Qwc‖ = ‖wc‖. For the numerator, we
use similar techniques as in the previous theorem to show that

‖(L − µI)Qwc‖2 = ‖QQt(L − µI)Qwc‖2 + ‖ZZt(L − µI)Qwc‖2

= ‖Q(Lc − µInc
)wc‖2 + ‖ZtLQwc − µZtQwc‖2

= ‖(Lc − µInc
)wc‖2.
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REMARK 2.9 (Several observations regardingLc). It is important to realize that, in
general, the graph associated with the matrixLc may not have some of the graph properties
that the original graphG enjoys. The nonzero, off-diagonal entries are no longer all−1’s.
Depending on the choice of the basis inQ or the type of LSEVs in question, some of the
off-diagonal entries may be positive. Because many of the low-degree vertices have been
removed from the graph, a power-law is often not retained forthe coarser graph. However,
the important algebraic properties of the matrixL are kept forLc, such as symmetry and the
preservation of eigenvalues that are not associated with the LSEVs that have been detected.

Due to the lack of a perfect hierarchical structure in real-world graphs,Lc typically
has few LSEVs and we have observed little computational advantage in applying LSEV-
based coarsening recursively. However, if a graph of interest is expected to have a repeated
hierarchical symmetry, then this coarsening process should be repeated as well.

2.2. The simplest example: Faria’s shared leaves.This section discusses Faria’s ex-
ample [9] of locally supported eigenvectors in detail.

EXAMPLE 2.10 (Faria’s shared leaves). Assume thatG has the following substructure:
there are some vertices that have only one connection (called leaves) and some of these leaves
are connected to the same vertex (theirparent). Note that the graph theory community often
calls leavespendantsand parentsquasipendants; see Figure2.1for two examples of this type
of substructure. We demonstrate that this substructure admits locally supported eigenvec-
tors.
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FIG. 2.1. Leaves that share a parent. Left: two leavesi, k have parentj. Right: parentj hasq leaves. Edges
from j into the rest of the graph are depicted by lines into the shaded regions.

For any eigenpair(v, λ) of L, we have the system of equations(L−λI)v = 0. Consider
the simplest case first. Assume we have a parentj with two child leavesi andk (see the left-
hand side of Figure2.1). Thei-th equation of(L − λI)v = 0 is

(2.4) (1 − λ)vi − vj = 0.

Similarly, thek-th equation is

(2.5) (1 − λ)vk − vj = 0.

Assume for the moment thatλ = 1 is an eigenvalue. To satisfy (2.4), we see thatvj = 0 is
necessary, in turn implying that (2.4) and (2.5) are both automatically satisfied for any values
of vi andvk. If we choose these values so that thej-th equation is also satisfied, then we have
an eigenvector associated with the eigenvalueλ = 1 that is nonzero only oni andk. Thej-th
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equation is

(2.6) (dj − λ)vj −
∑

p∈Nj

vp = 0,

wheredj is the degree ofj andNj is the set of vertices connected toj (excludingj itself).
Using vj = 0 reduces this constraint to

∑

p∈Nj
vp = 0. Becausei, k ∈ Nj for the Faria

vector

v = [ −1 0 1 0 · · · 0 ]t,
i j k else

we haveLv − v = 0, i.e., (v, 1) is an eigenpair forL. Note that all other equations are
satisfied becausev is zero over all variables that are involved in these equations. It is easily
verified that the conditions of Theorem2.4are satisfied byS = {i, k} andu = [−1, 1]t.

Now assumej is connected toq leavesS = {i1, i2, . . . , iq} ⊂ Nj as on the right-hand
side of Figure2.1. For each leaf inS, we have an equation similar to (2.4) that is automatically
satisfied forλ = 1 andvj = 0 independent of the value ofv on the leaf. Following the same
argument as above, any vector that satisfies Equation (2.6) and is nonzero only at the leaves
connected toj is an eigenvector associated withλ = 1. In terms of the decomposition
in (2.1), L11 = I, andL21 = [−1, O]t. RestrictingS to R

q, we have an orthonormal
basis{up}, for p = 1, 2, . . . , (q − 1). Thei-th entry of thep-th vector is given by

(2.7) (up)i =







cq,p cos
(

(p+1)πi
q

)

if p is odd

cq,p sin
(

pπi
q

)

if p is even
, i = 1, 2, . . . , q,

where the normalization constants arecq,p =
√

2/q (except for the special case whenq is
even andp = q − 1, thencq,p = 1/

√
q). Invoke Theorem2.4 to show that these(q − 1)

vectors are locally supported eigenvectors,

L =







I −1 O
−1t dj · · ·
O

...
. . .






, Iup = 1 · up, and

[

−1t

O

]

up = 0.

Thus, there are(q−1) orthogonal eigenvectors that are locally supported byS corresponding
to the eigenvalueλ = 1. The only eigenvector ofL11 = I that is not in the kernel ofL21 is
the constant vector. Furthermore, these LSEVs give a lower bound on themultiplicity of the
eigenvalueλ = 1, denoted mult(λ = 1, σ(L)).

PROPOSITION2.11 (Faria’s star degree [9]). LetP be the set of nodes connected to 2 or
more leaves. For anyr ∈ P, let qr be the number of leaves connected tor, and collect these
leaves into a setSr. Repeating the above argument yields

(2.8) mult(λ = 1, σ(L)) ≥
∑

j∈P
(qj − 1).

LetZj be then×(qj−1) matrix whosep-th column represents the values ofu
(r)
p injected

into R
n over theqr leaves. Then the matrix

Z = [Z1, Z2, . . . , Zr, . . .]



ETNA
Kent State University 

http://etna.math.kent.edu

LOCALLY SUPPORTED EIGENVECTORS OF GRAPH-ASSOCIATED MATRICES 363

gives a (possibly partial) orthogonal and sparse decomposition of the eigenspace ofL associ-
ated withλ = 1.

REMARK 2.12. Note that it is possible to have a graph withλ = 1 having larger multi-
plicity than the bound given in Equation (2.8). Consider the following8× 8 example of this:

(2.9) L =

























1 −1
1 −1

−1 −1 3 −1
−1 2 −1

−1 2 −1
−1 3 −1 −1

−1 1
−1 1

























,







































































1
−1

0
0
0
0
0
0

























,

























0
0
0
0
0
0
1

−1

























,

























1
1
0

−2
−2

0
1
1







































































.

The vectors on the right form a complete set of independent eigenvectors corresponding to
λ = 1. Our counting of the locally supported basis vectors gives us the first 2 vectors. The
third vector is an additional, nonlocal vector. Related examples are given in [9, 20].

FIG. 2.2.Graph corresponding to Equation (2.9).

We continue to describe the shared-leaves example by describing the process of obtaining
a coarser graph from identifying shared leaves. The matrixQ is determined by collecting the
local eigenvectors ofL(r)

11 that are not in the kernel ofL(r)
21 and adding columns of the identity

matrix corresponding to the vertices that are not in any of the setsSr. For λ 6= 1 it is
immediately evident that vectors that are constant over each Sr should be included intoQ.
Reconsidering Equations (2.4) and (2.5), we see that

vi =
vj

1 − λ
= vk

for any two leavesi, k with the same parentj. The eigenvectors that are not enumerated
in Z and haveλ 6= 1 will be in the range ofQ. For eigenvectors corresponding toλ = 1
that are not enumerated inZ (if they exist), an orthogonality and counting argument must
be employed to see that they must be in the range ofQ. We coarsen the graph with a full
representation of these vectors by forming a group for each set of leaves belonging to a single
parent and lettingLc = QtLQ.

2.3. Further examples. There are many types of substructures that have locally sup-
ported eigenvectors. Here we describe three different types that are commonly observed in
real-world graphs. However, this short list is not exhaustive. See AppendixA for algorithms
that detect the following types of substructures and for a framework that could be used to
detect more general ones. The first example is a generalization of the shared leaves.

EXAMPLE 2.13 (Hanging duplicate structures). LetS comprise ofq identical subgraphs,
each havingc vertices with each of the subgraphs connected by a single edge to a common
vertex j 6∈ S (which, in turn, has connection(s) into the rest of the graph, V \ {j ∪ S}).
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





























...
1/
√
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√

qr

...
. . .

1
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

































FIG. 2.3.Example of aggregating leaves that share a parent and all non-leaves in singlets.
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FIG. 2.4. Further examples of common substructures associated with LSEVs: (a–d) hanging cycles (see
Example2.16), (a), (e–i) hanging cliques (see Example2.15), (j–k) hanging duplicate structures (see Example2.10
and Remark2.12), and (l) vertices of degree 2 that share the same neighborhood.

ThenL11 is block-diagonal

L11 =







Bc

.. .
Bc






and L21 =

[

ct
c · · · ct

c

O O O

]

,



ETNA
Kent State University 

http://etna.math.kent.edu

LOCALLY SUPPORTED EIGENVECTORS OF GRAPH-ASSOCIATED MATRICES 365

with cc = [−1, 0, · · · , 0]t. Let {(wr, µr)}c
r=1 be thec eigenpairs ofBc and defineup as

in (2.7) for p = 1, . . . , q. Also, letPS be the appropriate injection fromR|S| into R
n. There

are(q − 1)c locally supported eigenpairs ofL onS,

(PS(up ⊗ wr), µr) , for r = 1, . . . , c and p = 1, . . . , (q − 1),

where⊗ denotes the Kronecker tensor product. The eigenvectors ofL that are not enumerated
here are in the span of

{

PS(1(q) ⊗ wr), r = 1, . . . , c
}

∪ {ej : ,∀j ∈ V \ S},

where1(q) is the vector of all ones and lengthq andej denotes thei-th column ofIn.
EXAMPLE 2.14 (Duplicate chains). A version of Example2.13 that commonly occurs in

real-world graphs having tree-like structure is given by a set of chains of lengthc all connected
to a common vertex. The casec = 1 corresponds to the shared leaves from Example2.10.
We have

B1 = [1], B2 =

[

2 −1
−1 1

]

and Bc =















2 −1
−1 2 −1

.. .
. ..

. . .
−1 2 −1

−1 1















.

We make the following amusing observation: several chains of length 2 hanging from
the same vertex yield eigenspaces of large multiplicities associated with the eigenvalues
{ 3±

√
5

2 } =: {1 + φ±}, whereφ± = 1±
√

5
2 andφ+ is the famousgolden ratio.

EXAMPLE 2.15 (Hanging cliques). Letc andl be integers withc ≥ 3 and1 ≤ l ≤ c − 2.
A clique of sizec that has exactlyl vertices with edges connecting to the rest of the graph
has(c − l) − 1 locally supported eigenvectors ofL associated with the eigenvalueλ = c.
Their supportS is the set of the(c − l) vertices without external edges.

In the context of Theorem2.4, we have a(c − l) × (c − l) matrix L11 = cI − 11t

and anl × (c − l) matrix of all negative ones, which makes up the nonzero rows in L21.
Letting q = (c − l), it is straightforward to verify that

L11up = cup and L21up = 0 for p = 1, . . . , (q − 1),

where{up}(q−1)
p=1 is the basis given in (2.7).

EXAMPLE 2.16 (Hanging cycles). Letc be an integer such thatc ≥ 3. A cycle of sizec
that has exactly one vertex with edges connecting to the restof the graph has⌊ c−1

2 ⌋ locally
supported eigenvectors ofL whose supportS comprises the(c− 1) vertices without external
edges.

Let j be the one vertex in the cycle that is connected to the rest of the graph. The

subsetS ⊂ G contains the(c−1) vertices in the cycle excludingj. Define the basis{up}⌊
c−1

2
⌋

p=1

such that

(up)i = sin
(

2πp
c i

)

for i = 1, . . . , c − 1.

Again, decompose L as in (2.1). Verify thatL11up =
[

2 − 2 cos
(

2πp
c

)]

up, where

L11 =











2 −1
−1 2 −1

. . .
. . .

.. .
−1 2











,
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which is the portion ofL corresponding to the hanging cycle without vertexj. Also, verify
thatL21up = 0 for p = 1, . . . , ⌊ c−1

2 ⌋ because the nonzero row ofL21 is [−1, 0, · · · , 0,−1]

andsin(2πp
c ) = − sin(2πp(c−1)

c ) for these values ofp.
We conclude this subsection by providing Table2.1, which contains various types of

substructures common to real-world graphs and their spectral contributions for four of the
graph matrices listed in Definition1.1.

TABLE 2.1
The eigenvalues corresponding to common LSEVs for various graph-associated matrices, where

ξp,c := cos
“

2πp

c

”

. (Note: when mentioningc-cycles, we havep = 1, . . . , ⌊ c−1

2
⌋.)

A L L̂ |L|
Leaves {0} {1} {1} {1}

2-Chains {±1}
{

3
2 ±

√
5

2

} {

1 ± 1√
2

} {

3
2 ±

√
5

2

}

c-Cliques {−1} {c}
{

1 + 1
c−1

}

{c − 2}
c-Cycles {2ξp,c}p {2 − 2ξp,c}p {1 − ξp,c}p {2 + 2ξp,c}p

2.4. The slightly weighted case.Consider a graph with weights that differ slightly from
one. Use the weight1 + ǫij for each edge(i, j) ∈ E , where|ǫij | < ǫ/(2max{di, dj}) with
a small positive constantǫ. Let the matrixL be the graph Laplacian for the unweighted case,
and introduceE ∈ R

n×n to represent the perturbations from one in the edge weights,

Eij =

{

∑

j∈Ni
ǫij if i = j

−ǫij if i 6= j
,

so that(L + E) is the graph Laplacian of the weighted graph. Using Gerschgorin’s theorem,
we have

‖E‖ ≤ ǫ.

Consider seeking the eigenpairs of(L + E) associated with the(K − 1) smallest nonzero
eigenvalues.

(2.10)
(L + E)vk = λkvk

vt
kvl = δkl

for k, l = 2, 3, . . . ,K.

LetZ be a collection of LSEVs ofL that have been identified and letQ be a sparse matrix that
spans the orthogonal complement ofZ. The following theorem and corollary show thatQ
can be used to approximate the eigenpairs we seek in (2.10) within an eigenresidual tolerance
of ǫ.

THEOREM 2.17.Let (wc, µc) be an eigenpair forQt(L + E)Q. Then

‖(L + E − µcI)Qwc‖
‖Qwc‖

≤ 2ǫ.

Proof. We have‖Qwc‖ = ‖wc‖ and‖QtEQ‖ ≤ ‖E‖ due toQtQ = Inc
. Rearranging

the equationQt(L+E)Qwc = µcwc and taking norms, we see the quality of(wc, µc) as an
eigenpair forQtLQ,

‖(QtLQ − µcInc
)wc‖ = ‖ − QtEQwc‖

≤ ‖QtEQ‖‖wc‖ = ‖QtEQ‖‖Qwc‖
≤ ‖E‖‖Qwc‖ = ǫ‖Qwc‖.
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Using the triangle inequality, the result in Theorem2.8, and the previous estimate, we prove
the inequality,

‖((L + E) − µcI)Qwc‖ = ‖(L − µcI)Qwc + EQwc‖
≤ ‖(L − µcI)Qwc‖ + ‖EQwc‖
= ‖(Lc − µcIc)wc‖ + ‖EQwc‖ ≤ 2ǫ‖Qwc‖.

COROLLARY 2.18.Let (wc, µc) be an eigenpair forLc. Then

‖((L + E) − µcI)Qwc‖
‖Qwc‖

≤ ǫ.

The implications of these theorems are: (i) for a slightly-weighted graphG, the knowledge of
LSEVs of the unweighted version ofG is useful for obtaining accurate initial approximations
to the eigenvectors of the graph Laplacian and (ii) for a graph G with time-dependent edge
weights that vary slightly,wij(t) = 1 + ǫij(t), the same eigenvectors serve as accurate initial
approximations independent oft. These results apply only to applications where the topology
of a network remains fixed, but the weights of their edges fluctuate slightly over time.

2.5. The edge principle forL. We conclude this section with an interesting property
of the LSEVs associated with the combinatorial graph Laplacian that is not shared by the
other common graph-associated matrices. Certain types of LSEVs (e.g., those associated
with shared leaves or hanging cliques) span the local orthogonal complement of the constant
vector restricted to the local subsetS. Therefore, all other eigenvectors are constant acrossS.
We can use the following result to demonstrate that we can add, delete, or reweight edges
within S without changing the global eigenvectorsL.

THEOREM2.19 (Edge principle, [21]). LetL be the combinatorial graph Laplacian of a
given graphG. For any eigenpair(λ,v) of L, consider a vertex pair(s, t) for whichvs = vt.
Let L′ be the combinatorial Laplacian associated with the graphG′ which is obtained by
adding (or deleting) the edge between the two vertices(s, t). Then,(λ,v) is an eigenpair
of L′ as well.

Proof. The tuple(λ,v) is an eigenpair, so alln equationsλv = Lv hold. Thes-th row
of this system of equations is

λvs =
∑

j∈Ns

(vs − vj).

We rewrite this equation as

λvs = wst(vs − vt) +
∑

j∈Ns\{t}
(vs − vj),

which demonstrates that ifvs = vt, then this equation holds independent of the value ofwst

(and the absence or presence of the edge(s, t)). Similarly, the validity of thet-th equation is
unaffected by changes regarding the edge(s, t). All the other(n − 2) equations are trivially
unaffected so thatL′v = λv holds as well.

COROLLARY 2.20. Let Z be the matrix(2.3) containing the LSEVs ofL correspond-
ing to shared leaves or hanging cliques over a collection of local subsets,{Sr}R

r=1. Let Q
be the orthogonal complement toZ. Let L′ be any combinatorial Laplacian obtained by
adding, deleting, or reweighting edges(s, t) in G such thats, t ∈ Sr for somer. Then any
eigenpair(λ,v) of L such thatv ∈ span(Q) is also an eigenpair ofL′.
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Proof. Examples2.10 and 2.15 demonstrate that every vector in span(Q) is constant
over eachSr. Theorem2.19demonstrates that we can change edges(s, t) such thats, t ∈ Sr

without changing the eigenvectorsv ∈ span(Q) or the associatedλ.
EXAMPLE 2.21. Consider three shared leaves in an unweighted graph. Add an edge

between leaf one and leaf two. The LSEVs ofL have changed, yet the global eigenvectors
have not. Note that there are two LSEVs on this new structure for L′, yet there is only one
for the respective adjacency matrix (associated with the hanging triangle).

The property given in Corollary2.20may allow for more aggressive coarsening in many
real-world graphs than the techniques used in Section4. However, the success of such an
approach requires a clever method for efficiently detectingthis wide class of graph substruc-
tures.

3. Application of LSEVs to commute time. Any network science computation that
has connection with the eigenpairs of a graph-associated matrix may potentially benefit from
detecting the existence of LSEVs. There are quite a few common data mining related com-
putations that have spectral formulas: query rankings can be inferred from eigenpairs [6],
partitioning and clustering can be performed using eigenpairs [27], triangles can be counted
with eigenvalues [25], etc.

We focus on employing LSEVs to aid in the calculation ofcommute time, a distance
measure for pairs of vertices, due to recent interest in a wide range of application areas. As
a distance measure, commute time can be used to perform several data mining related tasks,
such as query ranking and clustering.

DEFINITION 3.1. Thecommute timebetween verticesi andj, denotedC(i, j), is defined
to be the expected length of random walks that start from vertex i, visit vertexj, and return
to vertexi.

Recall that the full eigendecomposition of a graph Laplacian is L = V ΛV t, whereV
is an orthogonal matrix with the eigenvectors ofL in its columns,V = [v1,v2, . . . ,vn], Λ
is a non-negative diagonal matrix withΛ = diag[λ1 = 0, λ2, . . . , λn], and the eigenvalue
ordering given in (1.2). We introduce the notationv(k)

i = Vik, i.e., v(k)
i is thei-th entry of

the k-th eigenvector ofL. It is well-known that the commute time is given by the spectral
formula [10]

(3.1) C(i, j) = vol(G)

n
∑

k=2

1

λk

(

v
(k)
i − v

(k)
j

)2

,

where vol(G) =
∑n

k=1 dk is thegraph volume. This can also be written as the quadratic
form,

C(i, j) = vol(G)(ei − ej)
tL+(ei − ej),

whereei is thei-th column of the identity andL+ is the Moore-Penrose pseudo-inverse of
the combinatorial graph LaplacianL+ = V Λ+V t. There is a similar formula based on the
pseudo-inverse of the normalized graph Laplacian [10].

An interesting property of the spectral commute time formula is that it is a sum of posi-
tive terms, meaning that any partial sum gives a lower bound on the actual value. We consider
approximating the commute time by truncating the sum in (3.1), which would amount to cal-
culating theK −1 eigenpairs corresponding to the lowest eigenvalues excluding λ1 = 0. For
the arguments presented here, assume that we calculate these eigenpairs exactly (including
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numerical errors is beyond the scope of this work)

C(i, j) ≈ CK(i, j) = vol(G)

K
∑

k=2

1

λk

(

v
(k)
i − v

(k)
j

)2

.

The truncation error, τK(i, j) := C(i, j) − CK(i, j), is bounded in a simple way by

noting that‖vk‖ = 1 implies
(

v
(k)
i − v

(k)
j

)2

≤ 2 for anyi andj

τK(i, j) ≤ vol(G)
2(n − K)

λK+1
.

This bound is not sharp: there is noK ≪ n with verticesi andj such that equality is
reached. In fact, the use of Hölder’s inequality gives us anotherO(1/λK+1)-bound where
the constant is quite a bit better.

THEOREM 3.2 (Uniform truncation error for commute time).For all pairs of verticesi
andj, we have

τK(i, j) ≤ 2vol(G)

λK+1
.

Proof. Using Ḧolder’s inequality,‖fg‖1 ≤ ‖f‖∞‖g‖1, the fact thatV tei (the rows ofV )
are orthonormal (V V t = I), and the ordering of the eigenvalues, we have

C(i, j) − CK(i, j) = vol(G)

n
∑

k=K+1

1

λk

(

v
(k)
i − v

(k)
j

)2

≤ vol(G)

[

max
k=K+1,...n

1

λk

]

[

n
∑

k=K+1

(

v
(k)
i − v

(k)
j

)2
]

≤ vol(G)

λK+1

[

n
∑

k=1

(

v
(k)
i − v

(k)
j

)2
]

=
vol(G)

λK+1
‖V tei − V tej‖2

=
2vol(G)

λK+1
.

If the decay of1/λk is fast enough ask increases, then these types of bounds are im-
mediately useful. However, if a graph has a large number of LSEVs, then the decay of1/λk

may be quite slow and this bound is not useful unless the LSEVsare detected and all known
eigenvectors are used to improve the truncation error bound. We give the following corollary
to the previous theorem.

COROLLARY 3.3 (Pair-wise truncation error for commute time).Let K be the set of
indices of all known eigenpairs (the LSEVs detected and eigenpairs that have been computed).
LetCK(i, j) be the estimation of commute time using all the known eigenpairs. Then, for any
pair of verticesi andj, we have

τK(i, j) := C(i, j) − CK(i, j) ≤ vol(G)

λK+1

[

2 −
∑

k∈K

(

v
(k)
i − v

(k)
j

)2
]

.
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Proof. Using‖V tei − V tej‖2 = 2, we have

∑

k∈K

(

v
(k)
i − v

(k)
j

)2

+
∑

k 6∈K

(

v
(k)
i − v

(k)
j

)2

= 2.

Inserting this equation into the proof of Theorem3.2, we obtain the result.
The assumption that there is no numerical error associated with the eigenpairs is realistic

for a wide class of LSEVs. For the other eigenpairs, this assumption is not met in practice,
and the estimates involved should depend on the residuals ofthe eigenpair approximations.
Below we give an example of a common practical situation where the truncation error is
known to be zero for certain pairs of vertices by using only LSEVs as known eigenvectors.

Additionally, bounds onC(i, j) are easily obtained by the detection of LSEVs. We use
the shared-leaf example to illustrate this.

THEOREM 3.4. For a graph with shared leaves, we have the following results.
(i) If neither vertexi or j are shared leaves, thenC(i, j) can be obtained fromLc.

(ii) If the vertexi is a shared leaf of a parent withq > 1 shared leaves, then

vol(G)
q − 1

q
≤ C(i, j) ≤ vol(G)

(

q − 1

q
+ 1 +

1√
q

)

.

(iii) If the verticesi and j are both shared leaves of different parents,pi and pj , each
with qi, qj > 1 shared leaves, then

vol(G)

(

qi − 1

qi
+

qj − 1

qj

)

≤C(i, j) ≤ vol(G)

(

qi − 1

qi
+

qj − 1

qj
+

1√
qi

+
1

√
qj

)

.

(iv) If the verticesi andj are both shared leaves of the same parent withq > 1 shared
leaves, then

C(i, j) = 2vol(G).

Proof. For (i), note that all the LSEVs inZ are zero-valued ati andj. The only nonzero
terms in (3.1) are associated with the eigenvectors in the orthogonal complementQ. These
eigenvectors are perfectly represented by eigenvectors ofLc. Using the basis in (2.7), we
prove the lower bounds in (ii) and (iii). Because the entire eigenspace associated withZ has
eigenvalueλ = 1, we haveC(i, j) ≥ vol(G)‖Zt(ei − ej)‖2. If i is in a shared leaf butj is
not, thenZtej = 0 and

‖Zt(ei − ej)‖2 = ‖Ztei‖2 =

(q−1)
∑

p=1

[(up)i]
2 =

q − 1

q
,

from which the lower bound in (ii) follows. For part (iii), assumei andj are shared leaves
from different parents. LetZ(1) be the columns ofZ associated with the LSEVs that are
nonzero over the leaves ofpi. DefineZ(2) similarly with respect topj . Then(Z(1))tej = 0

and(Z(2))tei = 0, implying

‖Zt(ei − ej)‖2 ≥ ‖(Z(1))tei‖2 + ‖(Z(2))tej‖2 =
qi − 1

qi
+

qj − 1

qj
.

The upper bounds for (ii) and (iii) are realized by applying Corollary 3.3. We prove (iv)
by noting that(ei − ej) is orthogonal to the constant vector and therefore it is in the range
of Z. This implies‖Zt(ei − ej)‖2 = 〈(QQt + ZZt)(ei − ej), ei − ej〉 = ‖ei − ej‖2 = 2.
The other terms involved inC(i, j) are all zero because the eigenvectors in the range ofQ

satisfyv
(k)
i = v

(k)
j .
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3.1. LSEVs as counterexamples to conjectures regarding scale-free graphs. In [28],
it is stated that ”The raw commute distance is not a useful distance function on large graphs.”
It is important to note that, out of context, the scope of thisstatement seems very wide. The
authors do not consider all large graphs in their theory. Instead, they assume a class of graphs
common to machine learning applications (so callednearest neighbor graphsandǫ-graphs)
with the following properties: (i) the minimal degree slowly increases with the number of
verticesand (ii) random walks are quickly mixing. Given such graphs, thecommute time be-
tween two vertices is well-approximated by a function of thedegree density of both vertices,

(3.2) C(i, j) ≈ vol(G)

(

1

di
+

1

dj

)

,

and the quality of the approximation is better for larger graphs. We review the conjecture
that some members in the research community seem to have made: the approximation (3.2)
is highly accurate forany large scale-free graph.

Many scale-free graphs of interest do not have property (i),and the results in [28] do not
apply for such graphs. For example, there are scale-free graphs with billions of vertices that
have many vertices of degree one and two. If certain types of LSEVs are present in a graph,
then this demonstrates that the error in the approximation (3.2) can be bounded from zero
independent of the size of the graph. We give the simplest example.

EXAMPLE 3.5 (Hanging triangles). Consider the class of graphs with one or more tri-
angles that have only a single vertex with any connection to vertices not in the triangle (Ex-
ample2.16with c = 3 andl = 1). Let the verticesi, j, andk comprise a connected triangle
that hangs off the rest ofG (di = dj = 2 andk contains at least one connection with ver-
tices inV \ {i, j, k}). Equation (3.2) suggests that if|V| is sufficiently large, the commute
timeC(i, j) should be well-approximated by

vol(G)

(

1

di
+

1

dj

)

= vol(G).

However, there is a LSEV supported onS = {i, j}. Define the vectorv with the coefficients
beingvi = 1/

√
2, vj = −1/

√
2, and zero-valued for all other vertices. The decomposition

in (2.1) yields

L11 =

[

2 −1
−1 2

]

, and L21 =







−1 −1
0 0
...

...






.

It is easy to verify thatv is a LSEV associated with the eigenvalueλ = 3 (see Example2.16).
Due to orthogonality, all other eigenvectors are equal at the verticesi andj. Therefore, the
commute time betweeni andj only involves the LSEV, and

C(i, j) = vol(G)

(

1

3

)(

1√
2
− −1√

2

)2

=
2

3
vol(G).

The error in the approximation offered by (3.2) is not arbitrarily small for large|V| within
this class of graphs.

We remark that this example does not prove that commute time is a good distance mea-
sure for all scale-free graphs, it only serves to show that the approximation (3.2) is not ac-
curate for all vertex pairs in this class of graphs. In [7], the authors demonstrate that thek
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closest vertices to a source vertex, using commute time or (3.2), tend to be quite similar for
a few prototypical scale-free graphs provided thatk is a big enough number. The example
rankings are often quite different for lists of lengthk = 5 but tend to be highly similar for
largerk. A revised conjecture is that the quality of the approximation (3.2) is high for pairs
of large-degree vertices and that this property can explainthe correlation in the rankings as
an exceptionally large number of paths involve the high degree vertices.

4. Numerical experiments. We present a series of experiments designed to demon-
strate the use of LSEVs to facilitate the computation of eigenpairs of graph Laplacian matri-
ces. These tests are intended to be illustrative rather thanexhaustive. Principally, we show
that LSEVs can be identified by detecting their associated graph substructure and that they
can subsequently be used to generate coarse graphs,Lc, with significantly reduced complex-
ity, which can be used to compute eigenpairs in the remainingportion (non-LSEVs) of the
spectrum of the original graphs. We do this for a selection ofgraphs including both a syn-
thetic graph generator and some real-world graphs to indicate robustness of the method. We
also demonstrate that in addition to reducing the complexity of the coarse graph, the method
in some cases also noticeably reduces the computational effort (number of iterations) and
computational time required to compute the Laplacian spectrum.

4.1. Graphs. Our tests are conducted on graph Laplacian matrices formed for a class
of synthetic graphs as well as two well-known real-world graphs. The graphs we employ are
the following.

1. ThePreferential Attachment Modelemploys a synthetic graph generated using a
common random graph model, a version of the preferential attachment (PA) model
proposed in [3]. Here, random graphs are generated by starting with a smallcore
graph and successively adding new vertices, each with one ortwo new edges. These
edges are randomly attached to old vertices with a probability that is proportional
to the degrees of those existing vertices. This graph generation method is often de-
scribed asthe rich getting richer.It results in a graph with a power-law degree dis-
tribution but without well-developed internal communities. Our examples all have
essentially the same number of edges as vertices. We employ three such graphs,
with, respectively, 33,000, 66,000, and 131,000 vertices and edges.

2. TheOpte Internet Graph(denoted Opte1), shown in Figure1.1, is the result of scan-
ning connections between class C networks on the internet. The graph and the visu-
alization were downloaded from [19]. The Opte1 graph contains just under 36,000
vertices and 43,000 edges. We note that this graph has quite abit of a tree-like struc-
ture in its periphery and there are many LSEVs associated with short, shared chains.

3. TheEnron Email Correspondence Graph, downloaded from [18], was created using
email traffic from employees of the Enron corporation. The data were originally
released by the investigators of the Enron scandal that unfolded in 2001. Vertices
in the graph are either Enron email accounts or non-Enron email accounts that sent
(or received) one or more messages to (or from) an Enron account. An undirected
edge(i, j) is assigned if there was any email communication betweeni andj during
the span of time the data represents. This is an example of a dilation of aninduced
subgraphof a larger graph, namely the graph of all email accounts and the presence
of communication between two email accounts. (The subgraphinduced by the set
of all Enron email accounts would give all Enron accounts andpresence of commu-
nication between Enron-only accounts.) Graphs of this typeare prone to a highly
simplistic periphery in cases where many of the vertices outside the inducing set are
only connected to few vertices within. The Enron graph has 34,000 vertices and
181,000 edges.
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4.2. LSEVs for graph coarsening.For the graphs described in Section4.1, we demon-
strate the reduction in graph complexity offered by the detection of LSEVs. The results of
detecting LSEVs and forming coarsened matricesLc are presented in Table4.1. For all of the
graphs, we see that a large portion (23%− 46%) of the Laplacian spectrum is made up of the
detected LSEVs. Moreover, with the exception of the Enron graph, the complexity ofLc (i.e.,
the number of edges in the coarse matrix) can be considerablyreduced as well (18%− 46%).
While in the Enron graph we do see a significant portion of the spectrum made up of LSEVs,
the complexity reduction is only4% − 5%.

The graph substructures that induce LSEVs are detected using the algorithms described
in AppendixA. Specifically, shared leaves (LF) and shared chains of length 2 (2C) are de-
tected using Algorithm2. Hanging triangles (T) are detected using Algorithm3.

It is natural to ask for the computational cost of these detection algorithms. Combi-
natorial mathematicians are well aware that rigorous detection algorithms can be extremely
difficult and expensive. We note, however, that we are never doing an expensive combina-
torial search. For example, consider the case where we seek LSEVs supported on hanging
cliques of sizec. We are not looking forall cliques of sizec in the graph, which would amount
to aO(nc) cost without employing heuristics (or additional graph properties). Instead, we
are looking for cliques of sizec that contain at least two vertices of degree equal to(c − 1).
This constraint allows us to narrow the search greatly, and,for small c, this search is fairly
inexpensive.

We give an example that demonstrates some potential computational savings of detect-
ing LSEVs and using them to coarsen the graph before applyingan eigensolver. First, we
apply several instances of MATLAB’s iterative eigensolver, eigs(), to the original graph
LaplacianL (associated with the Opte1 graph) and monitor the number of iterations and
wall-clock time. We ask for several different numbers of smallest eigenvalues,nev, and
associated eigenvectors for a few different error tolerances,tol. We seedeigs() with
the same random non-negative initial vector each time and allow the algorithm to determine
how many storage vectorsnsv are appropriate. Secondly, we coarsen the graph by detecting
shared-leaves, which takes about 0.46 seconds, and we applythe same eigensolver toLc using
similar parameters as we use for the corresponding eigensolver involvingL, again monitoring
the number of iterations and wall-clock time. Table4.2displays the performance for each of
these solves, where detecting the LSEVs amounts to significant savings in time and storage
and additionally computes a large number of interior eigenvalues and associated eigenpairs
(over0.22n+nev eigenpairs are calculated using the LSEV approach).

From the vertex and edge reductions ofLc displayed in Table4.1, we know that the
storage cost involved in retainingnsv storage vectors is reduced by over 22% and the com-
putational cost of applying a matvec is reduced by around18%. Additionally, the number of
iterations thateigs() uses is also greatly reduced forLc, which can be attributed to remov-
ing a very large number of eigenvectors associated withλ = 1, allowing the Krylov process
to select polynomials that concentrate on the low eigenvalues.

Note that we use the’SA’ (smallest algebraic) option ineigs(), which does not em-
ploy a preconditioner, whereas the’SM’ (smallest magnitude) would use a Cholesky pre-
conditioner. Our reason for not using the preconditioner istwo-fold: (i) for a large enough
real-world graph this type of preconditioner runs out of memory, and (ii) we aim to demon-
strate the potential computational savings in graph coarsening, which are magnified by a less
efficient method.

5. Conclusion and further work. Our primary contributions are to characterize a class
of graph substructures that admits locally supported eigenvectors, to demonstrate how to de-
tect such structures, and to calculate the associated eigenpairs. We develop a fairly extensive
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TABLE 4.1
Five different examples of using detected LSEVs to reduce the complexity of graphs. The original graphs

are from a preferential attachment model (PA), internet router connections (Opte1), and electronic communications
(Enron). The original number of vertices and edges are denoted |V| and |E|, respectively. The types of LSEVs
detected are shared leaves (LF), shared chains of length 2 (C2), and hanging triangles (T). The numbers of edges
and vertices in the coarsened graph,|Vc| and |Ec|, are reported as well as the percentages of eigenpairs identified
and edges reduced.

Graph |V| |E| Detection |Vc| |Ec| Epairs
Identified

Edge
Red.

PA 32,768 32,767 LF 20,515 20,514 37.4% 37.4%
LF, 2C 17,651 17,650 46.1% 46.1%

PA 65,536 65,536 LF 41,190 41,189 37.2% 37.2%
LF, 2C 35,476 35,475 45.9% 45.9%

PA 131,072 131,071 LF 82,346 82,345 37.2% 37.2%
LF, 2C 70,656 70,655 46.1% 46.1%

Opte1 35,635 42,822 LF 27,548 34,735 22.7% 18.9%
LF, 2C 25,686 32,873 27.9% 23.2%

Enron 33,696 180,811 LF 24,981 172,096 25.9% 4.8%
LF, T 24,564 171,262 27.1% 5.3%

TABLE 4.2
Iteration counts and timings (in parentheses) of MATLAB’s eigensolvereigs() applied toL andLc (coars-

ened using shared leaves) for the Opte1 graph for several different numbers of lowest eigenvalues,nev, and eigen-
residual tolerance levels,tol. The valuensv is the number of vectors the algorithm chooses to store by default,
with the exception fornev = 10, wherensv = 30 was chosen. DNC means the method did not converge in 25,000
iterations.

tol = 1e-3 tol = 1e-5 tol = 1e-8
nev nsv L Lc L Lc L Lc

1 20
336 132 1130 354 3262 826

(20.2s) (5.5s) (66.0s) (14.3s) (189.2s) (33.0s)

5 20
5297 1258 8459 2135 17257 3006

(388.7s) (67.3s) (618.9s) (110.1s) (1246.0s) (156.7s)

10 30
2180 1010 4159 1046 5229 1601

(262.9s) (81.3s) (522.1s) (92.3s) (670.9s) (134.4s)

25 50
14366 2653 15768 3767 15514 4813

(2512.1s) (334.6s) (2672.3s) (474.3s) (2704.8s) (642.85s)

50 100
DNC 840 DNC 1206 DNC 926

(14300.6s) (381.4s) (15150.6s) (517.1s) (14968.2s) (437.2s)

theory of these structures showing the spectral partitioning they give rise to, and we demon-
strate how the sparsity of the local eigenvectors may be exploited to reduce the complexity
in calculations for the other (non-LSEV) eigenpairs. We elucidate the theory governing the
relationship between the original and coarsened matrices.We give an example where the
knowledge of locally supported eigenvectors helps to predict the accuracy of spectral calcula-
tions. We also present numerical experiments illustratingthe potential efficacy of employing
LSEVs in practice, demonstrating both the efficient computation of sizeable fractions of the
Laplacian spectrum and the significant reduction in size andcomplexity of the coarsened
graph used to find the remainder of the spectrum. These numerical results quantify the re-
ductions of graph size and complexity for small graphs from generators and a few real-world
networks and demonstrate the computational savings involved in coarsening a graph before
employing an eigensolver.
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Our future work will be geared towards the use of LSEVs in the context of many diverse
types of spectral calculations for undirected, scale-freegraphs and exploiting the knowledge
of LSEVs to improve bounds on the numerical error incurred bysuch computations. In addi-
tion, we are working on generalizing this theory to eigenvectors ofessentially local support,
that is, to eigenvectors that are not strictly local in theirsupport but whose nonzero entries de-
cay rapidly away from a local subset of the vertices. Our examinations of more general graph
spectra have shown that such eigenvectors likely exist, buta theory of the graph properties
that give rise to them and methods for detecting them have yetto be discovered. Developing a
better understanding of the graph and matrix characteristics that admit essentially locally sup-
ported eigenvectors will allow us to further study graph coarsening and quantify the spectral
error associated with coarsening processes.

Acknowledgments. We thank Panayot Vassilevski for many useful discussions onthis
subject and for his invaluable help editing this manuscript.

Appendix A. Algorithms to find LSEVs. We propose a general algorithm, Algorithm1,
that could be used to find out if individual sets within a family support LSEVs. For each

Algorithm 1: Framework for finding locally supported eigenvectors.

input : a connected, unweighted, and undirected graphG(V, E)
output : locally supported eigenvectorsZ and orthogonal complementQ
Identify a family of small subsets{Sr}R

r=1 to check.
Z ← [ ]
Q ← [ ]
Initialized unvisited vertices,U ← V.
for r = 1, . . . , R do

Q̂ ← [ ]
M ← 0
UseSr to defineL11 andL21 as in (2.1).
Let Π andP be defined as in (2.3).
SolveL11u = λu.
for each eigenspaceU of L11 do

SolveU tLt
21L21Uy = µy.

for eachyj with µj = 0 do
M ← M + 1
Z ← [Z,ΠPUyj ]

end
for eachyj with µj 6= 0 do

Q̂ ← [Q̂,ΠPUyj ]
end

end
if M ≥ 1 then

Q ← [Q, Q̂]
U ← U \ Sr

end
end
for i ∈ U do

Q ← [Q, ei]
end
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Algorithm 2: Detecting shared chains of identical length.

input : a connected, unweighted, and undirected graphG(V, E), max chain
lengthcmax

output : collection of subsets{Sr}R
r=1 containing locally supported eigenvectors.

SetLj = {i ∈ V : di = j} for j = 1 and2.
Initialize vectorg ∈ R

n to gi = 0 for i ∈ L1 and−1 otherwise.
Initialized unvisited vertices,U ← V \ L1.
SetT = L1.
r = 0.
for c = 1, . . . , cmax do

Tnew = ∅.
for i ∈ T do

T ← T \ {i}
Setj to the unique element inNi ∩ U .
if dj = 2 then

gj = gi + 1.
Tnew ← Tnew ∪ {j}.
U ← U \ {j}

end
else

Let C = {p ∈ Nj : gp = gi}
if card(Ldi

∪ C) > 1 then
r ← r + 1.
SetSr to include all of each chain.

end
end

end
T ← T ∪ Tnew

end
R = r.

setSr, decompose the matrix as in (2.1), let Πt be a permutation that listsSr first, and letP
be an injection fromR

|Sr| to R
n. Then fully solveL11u = λu. For each eigenspaceU

of distinct eigenvalues, see if there is a vector in the kernel of L21 within this subspace by
solving

U tLt
21L21Uy = µy.

If there is any vector of coefficientsy associated withµ = 0, thenΠPUy is a locally sup-
ported eigenvector and it should be included intoZ. If there are any local eigenvectors sup-
ported bySr, then include all the other vectors intoQ. Repeat this process for each set in the
family. Lastly, augmentQ to include columns of the identity for all vertices that are not part
of the support of any local eigenvector detected in this process.

A.1. Algorithm 2: shared chain detection algorithm. Here we present an algorithm
that detects sets of chains with the same length that hang offthe same vertex. This algorithm
detects shared chains of lengthc = 1 (shared leaves),2, 3, . . . , cmax, wherecmax is the
maximal chain length. It is highly related to the first phase of a core detection algorithm
given in [4]. The algorithm is guaranteed to beO(m) in cost.

Initially, all verticesi of degree 1 are assigned a valuegi = 0 that represents the number
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Algorithm 3: Detecting hanging cliques.

input : a connected, unweighted, and undirected graphG(V, E), max clique
sizecmax

output : collection of subsets{Sr}R
r=1 containing locally supported eigenvectors.

SetLj = {i ∈ V : di = j} for j = 3, . . . , cmax.
Initialized unvisited vertices,U ← V.
SetT = L2.
r = 0.
for c = 3, . . . , cmax do

for i ∈ T do
if i ∈ U then

Let C− ← {p ∈ (Ni ∩ U) : dp < (c − 1)}
Let C ← {p ∈ (Ni ∩ U) : dp = (c − 1)}
Let C+ ← {p ∈ (Ni ∩ U) : dp > (c − 1)}
if card(C ∪ C+) = (c − 1) and card(C+) < (c − 2) then

if C ∪ C+ is a cliquethen
r ← r + 1
Sr = C

end
end
U ← U \ ({i} ∪ C− ∪ C)

end
end
Tnew ← Lc.
T ← T ∪ Tnew.

end
R = r

of links below thei-th vertex. Start at each vertexi of degree 1 and go to the only vertex
connected toi, which we labelj. If j is degree 2, then setgj = gi + 1 and save it for the next
iteration of the algorithm by placing it into a queueT . If j has degree higher than 2, then look
in its neighborhood for verticesp such thatdp = di andgp = gi. If such ap 6= i exists, then
we have detected a set of shared chains. Repeat this process for the degree 2 nodes identified
earlier. See Algorithm2 for a complete description.

A.2. Algorithm 3: hanging clique detection algorithm. We describe an algorithm to
detect cliques of sizec = 3, . . . , cmax that hang off the edge of the graph with at mostc − 2
vertices connected to the rest of the graph. Initially, setc = 3 and put all vertices of de-
greec − 1 into a queue. For each vertexi in the queue, check for a hangingc-clique by
ensuring that all unvisited vertices ini’s neighborhood have at least degreec − 1 and at
mostc − 2 of them have degree greater thanc − 1. If this test is passed, then make sure that
all connections are present withini’s neighborhood. If this test is passed, then the portion
of this clique that hangs off the graph contains LSEVs. Next eliminate the vertexi and the
members of its neighborhood with degreec−1 or less from further consideration. Repeat the
process forc ← c+1. See Algorithm3 for a complete description. The cost of this algorithm
can be much worse thanO(m) if cmax is set as a high value because checking for a clique of
sizec requires to look for(c − 1)(c − 2) potential edges.
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