
General Mathematics Vol. 11, No. 1–2 (2003), 21–32

On the Scalar Measure of Non-Normality of

Matrices - Dimension vs. Structure
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Abstract

The aim of this paper is to analyze the relative importance of

the dimension and the structure of the square matrices in the quan-

tification of their non-normality. We envisage non-normal matrices

which come from numerical analysis of o. d. e. and p. d. e. as well

as from various iterative processes where the parameter dimension

varies. The main result consists in an upper bound for the departure

from normality. This bound is a product of two factors, is based di-

rectly on the entries of the matrices, and is elementary computable.

The first factor depends exclusively on the dimension of matrices

and the second, called the aspect factor, is intimately related to the

structure of the matrices. In some special situations, the aspect fac-

tor is independent of the dimension, and shows that, in these cases,

only the dimension is responsible for the departure from normality.
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An upper bound for the field of values is also obtained. Some nu-

merical experiments are carried out. They underline the idea that

the aspect factor and pseudospectrum are complementary aspects of

the non-normality.

2000 Mathematical Subject Classification:65F35, 65F50, 15A60, 15A12.

1 Introduction

There exist two major concepts with respect to the measure of the non-

normality of square matrices. The first one is due to P. Henrici [4] (see

also Chaitin-Chatelin and Fraysee [2]) and it provides some scalar mea-

sures of non-normality. The second one, more recently introduced, is that

of pseudospectrum of a matrix and is systematically treated by L. N. Tre-

fethen in a large series of papers from which we quote [8]-[11]. We have to

observe that an almost exhaustive bibliography concerning the pseudospec-

tra of matrices is available in the book in preparation [11] or on the site

http://www.comlab.ox.ac.uk/projects/pseudospectra.

As it is well known, the non-normality of matrices and consequently, of

linear operators assumed, is responsible for a surprising and sometimes crit-

ical behavior of some numerical algorithms and procedures. In spite of this,

the estimation of non-normality is not yet a routine matter among scientists

and engineers who deal with such matrices. However, a realistic approach

of some important numerical methods (such as collocation type methods)

and problems (mainly those non-self-adjoint) requires the quantification of

the non-normality of the matrices involved. In this respect, we try to refine
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some of the results of P. Henrici on some scalar measures of non-normality.

Consequently, in the second section, we display our main result which con-

sists in an upper bound for the Frobenius (euclidian) norm departure from

normality. This bound is a product of two factors. The first one has order

O
(
n

5
4

)
for a square matrix of dimension n and the second, called aspect

factor, reflects the structure of the matrix and can be independent of n. For

such matrices, whenever their dimensions are increased, the parameter n is

itself the unique responsible for the departure from normality.

In the third section, using the above bound for the departure, an upper

bound for the field of values is worked out. In the fourth section, we analyze

some particular matrices which come from numerical analysis of differential

and partial differential equations.

2 An upper bound for the Frobenius norm

departure from normality

In the seminal paper [4], Henrici introduced the following departure from

normality of an arbitrary n× n matrix A with complex entries

(1) ∆ν (A) := inf
A = U (Λ + M) U∗
︸ ︷︷ ︸
(Schur decomposition)

ν (M) ,

where U is unitary and Λ is diagonal and is made up of the eigenvalues of

A. The symbol * denotes as usually the conjugate transpose of a vector or

a matrix while ν stands for a norm of A. The main result from the above
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quoted paper reads as follows:

(2) ∆ε(A) ≤
(

n3 − n

12

)1/4

(ε(A∗A− AA∗)1/2,

where ε stands for the Frobenius (euclidian) norm of A. We also use the

following three norms

ρ (A) := max
1≤i≤n

n∑
j=1

|aij| , α (A) :=
n∑

i,j=1

|aij| , γ (A) := max
1≤j≤n

n∑
i=1

|aij| .

Our main result is contained into the next theorem.

Theorem 1. For an arbitrary n×n matrix A, the Frobenius norm departure

from normality satisfies

(3) ∆ε(A) ≤
(

n3 (n2 − 1)

3

) 1
4

ρ (A) γ (A) .

Proof. From [7] we use the following inequalities

n
−1
2 ε (A) ≤ σ (A) ≤ ε (A) ,(4)

n
−1
2 σ (A) ≤ ρ (A) ≤ √

nσ (A) ,(5)

and we also observe that ρ (A∗) = γ (A) . The left inequalities (4) and (5)

introduced in the right hand side of (2) prove the theorem.

Remark 1. Whenever the norms ρ (A) and γ (A) of the matrix A, do not

depend on n, we can rewrite the result of this theorem in the following asymp-

totic form

∆ε(A) = O
(
n

5
4

)
,

for large values of the dimension n.

The quantity ρ (A) γ (A) is called the aspect factor of the matrix A.
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3 A bound for the field of values

It is well known that for normal matrices the field of values and the convex

hull of their eigenvalues are two identical sets. The field of values of a non-

normal matrix is still convex, although it may extend beyond the convex

hull. The precise equation of the boundary of the field of values of a non-

normal matrix, as well as its diameter and area are also known. Starting

from another result of Henrici [4] we try to give a bound for the relative

distance of the boundary of the field of values from the convex hull.

Theorem 2. If ξ is a point of the field of values of a n× n matrix A, then

there exists a point η in the convex hull of eigenvalues of A such that the

distance |ξ − η| satisfies

(6) |ξ − η| ≤ 1

2

(
n7 (n2 − 1)

12

)1/4

ρ (A) γ (A) .

Proof. From [7], we use the inequality

α (A) ≤ nε(A),

for any matrix M from Schur decomposition of A, and from [4] we know

that

|ξ − η| ≤ 1

2
∆α(A),

where the constant 1
2

cannot be replaced by any smaller constant. A simple

manipulation of these two inequalities proves the theorem.
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4 Numerical examples

Our first two examples illustrate the independence of the aspect factor with

regard to n.

Example 1. A typical case where the aspect factor is independent of n was

found in the book of Gottlieb and Orszag [3] on the page 53. The matrix of

a difference approximation to a mixed initial-boundary value problem reads

as follows

LN = −1

h
L,

where the norms of N × N matrix L are independent of N and has the

shape

L =




0 1 0 0 · · · 0 0 0

−1 0 1 0 · · · 0 0 0

0 −1 0 1 · · · 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 · · · −1 0 1

0 0 0 0 · · · 0 −2 2




.

In fact we have ρ (L) γ (L) = 12. The pseudospectrum is depicted in Fig.1

and it was computed using a slightly modified code from [9]. The numerical

experiments were carried out for N ranging from 4 to 200.
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Example 2. In the same spirit, in the second example we consider a tridi-

agonal matrix from [10], of the form
(

a b c
)

where the vectors a, b,

and c contain
(

1
4

)′
s, 0′s and respectively 1′s.. The vector b represents the

main diagonal, a is the first subdiagonal, and c is the first upper diagonal.

In this case the aspect factor equals
(

5
4

)2
.

Example 3. The third example comes from the book of Canuto, Hussaini,



28 Călin-Ioan Gheorghiu

Quarteroni and Zang [1], page 130 where a Chebyshev tau approximation is

used to solve a two-point boundary value problem depending on a parameter

λ. The structure of the corresponding quasi-tridiagonal matrix involved is

the following:




1 1 1 1 · · · 1 1 1 1

x x x 0 · · · 0 0 0 0

0 x x x · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · x x x 0

0 0 0 0 · · · 0 x x 0

0 0 0 0 · · · 0 0 x 1




,

where x′s denotes some non-zero coefficients listed on the above quoted

page. The pseudospectrum of this matrix is depicted in Fig.2. In this case

the aspect factor equals

[
2 +

1

4n (n− 1)

]
n,

which means that this factor goes to +∞ for n →∞.
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Example 4. The last example comes from the book of Schmid and Hen-

ningson [6]. On the page 522, the authors consider the matrix

A =


 −1/ Re 0

1 −2/ Re


 where the Reynolds number Re approaches

+∞, this being the most interesting situation in fluid mechanics. The cor-
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responding aspect factor equals

(
1 +

1

Re

)(
1 +

2

Re

)
,

which goes to 1 when Re → +∞.

5 Concluding remarks

From these examples, and a lot of others which we have considered, it seems

plausible to conceive the aspect factor as a companion quantity for the pseu-

dospectra whenever one attempts to measure the non-normality of a given

matrix. In the important cases mentioned in the Remark above the impor-

tance of dimension is set apart from that of structure in the characterization

of non-normality. Moreover, the estimations (3) and (6) offer upper bounds

for the Frobenius norm departure from normality and, respectively, for the

field of values. They are based directly on the entries of A, and are compa-

rable to that reported by Lee in [5], because they are of the same order of

magnitude of computation(O (n2)).
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