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Abstract

Let G be an infinite group which is finitely presented. Let X be

a finite CW−complex of dimension q whose fundamental group is

Z2q × G. We prove that for some i ≤ q the homotopy group πi(X)

is not finitely generated. Let M be a manifold of dimension n whose

fundamental group is Zn−2×G. Then the same conclusion holds (for

some i ≤ max
{[

n
2

]
, 3

}
) unless M is an Eilenberg-McLane space. In

particular, if G = Z×H and the homotopy groups of M are finitely

generated, then M is homotopy equivalent to the n-torus.
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1 Introduction

Overall this paper we will denote by X a finite connected CW complex

of dimension q and by M a closed connected manifold of dimension n.
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Consider the homotopy groups πi(X) = [Si, X]. Recall that a presentation

of a fundamental group π1(X) is given by the one and two-dimensional cells

of the skeleton of X. Others tools for the computation of π1 such as van

Kampenş theorem are available.

At the opposite, there is no general tool and very few general results

concerning the (Abelian) groups πi(X) for i ≥ 2. The general question

which was the motivation for this paper is the following :

Q : When are the groups πi finitely generated for all i ?

If X is simply connected a celebrated theorem of Serre [18] answers af-

firmatively to the question above. If π1(X) 6= 1 the answer may vary as it

is shown by the examples below :

• X = S1 ∧ S1 : YES (πi(X) = 0 ∀i ≥ 2)

• X = S1 ∧ S2 : NO (π2(X) = Z(N))

Note that in the first case the fundamental group of X is free non-

Abelian with two generators and in the second π1(X) = Z. As we will see

below the fact that π1(X) is Abelian plays an important role here. Namely

in a previous paper [5] the author proved the following :

Theorem 1.1 Let q ≥ 2 and let X be a finite connected CW complex of

dimension q. Suppose that πi(X) are finitely generated for all i (or, equiv-

alently, for i = 1, . . . , q, by 2.1, see below). We have :

a) Suppose that π1(X) is Abelian. Then :

1. β1(X) ≤ q.

2. If β1(X) ∈ { q − 1, q }, then π1(X) ≈ Zβ1(X) and X has the homotopy

type of the torus Tβ1(X).



On manifolds with finitely generated homotopy groups 23

b) If π1(X) = Z×G then χ(X) = 0.

Therefore, for instance any 2 complex with infinite Abelian fundamental

group (like X = S1 ∧ S2 above) which is not a homotopy torus yield a

negative answer to the question Q. An analogous statement for manifolds

was proved in the paper [5] above :

Theorem 1.2 a) Let Mn be a closed connected manifold whose homotopy

groups πi(M) are finitely generated for i = 1, . . . , max
{[

n
2

]
, 3

}
and whose

fundamental group is Abelian. We have then :

1. β1(M) ≤ n and β1(M) 6= n− 1.

2. If β1(M) = n, then π1(M) ≈ Zn and M is homeomorphic to Tn.

b) If the groups πi(M) are finitely generated for i = 2, . . . ,
[

n
2

]
and if

π1(M) = Z×G, where G is finitely presented, then χ(M) = 0.

Remark H-spaces and manifolds with non negative scalar curvature satisfy

to the hypothesis of 1.1 and 1.2. See [5], [3] for further comments on these

examples.

In the present paper we generalize the statements 1.1.a and 1.2.a above

for CW -complexes (or manifolds) whose fundamental group is of the form

Zm ×G. Namely we prove :

Theorem 1.3 1. Let Mn be a closed connected manifold whose homo-

topy groups πi(M) are finitely generated for i = 1, . . . , max
{[

n
2

]
, 3

}
and

whose fundamental group is of the form Zn−2 × G, where G is an infinite

group which is finitely presented . Then M is an Eilenberg-McLane space

K(π1(M)).

2. If π1(M) equals Zn−1×G for some finitely presented (but not necessarily
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infinite) group G then G = Z and M is homotopy equivalent to the n−torus

Tn.

Remark In the hypothesis of 1.3.2 a theorem of T. Farell and L. Jones [7]

asserts that for n ≥ 5 that Mn is actually homeomorphic to Tn.

For CW -complexes we prove the following :

Theorem 1.4 1. Let X be a finite CW−complex of dimension q whose

fundamental group is of the form Z2q × G, where G is an infinite group

which is finitely presented. Then for some i ≤ q the homotopy group πi(X)

is not finitely generated.

Here is a straightforward corollary of 1.3 :

Corollary 1.5 Let M be a closed connected manifold satisfying the hypoth-

esis of 1.3.1. Then the homological dimension of G satisfies hd(G) ≤ 2. In

other words, if hd(G) ≥ 3 then M provides a negative answer to the question

Q.

Remark In the hypothesis of 1.3.1 one may expect G to be the fundamental

group of a 2-manifold. However the author was not able to prove this

stronger restriction.

The paper is organized as follows. In Section 2 we present the idea of the

proof and we state the main tool, theorem 2.3. We show that 2.3 implies

our main results 1.3 and 1.4. In Section 3 we recall the definition and the

main properties of Novikov homology. Finally in Section 4 we give the proof

of 2.3, completing thus the proof of 1.3 and 1.4.
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2 The ingredients of the proof

2.1 Hurewicz-Serre morphisms

The first ingredient is a Hurewicz type relation between homotopy and

homology. Recall that the classical Hurewiczş theorem asserts that for q ≥ 2

the cannonical morphism Iq : πq(M) → Hq(M) is an isomorphism provided

that M is (q − 1)-connected.

In [18] J-P. Serre generalized this theorem (see also [20], p. 504) : For

some ”admissible” classes of groups C, he showed that, if X is simply con-

nected such that πi(X) ∈ C for i = 1, . . . , q − 1, where q ≥ 2, then Iq is an

isomorphisme mod C : This means that Ker(Iq) and Coker(Iq) are in C.

The class of finitely generated Abelian groups is such an admissible class.

In particular we have :

Theorem 2.1 Let X be a simply connected space. Then πi(X) is finitely

generated for i ≤ q iff Hi(X) is finitely generated for i ≤ q.

In particular any closed, simply connected CW-complex has finitely gen-

erated homotopy groups.

The following corollary is straightforward :

Corollary 2.2 Let X be a CW -complex of dimension q and X̃ its universal

cover. The following are equivalent :

a) The homotopy groups πi(X) are finitely generated for all i ≤ q.

b) The homology groups Hi(X̃) are finitely generated for all i ≤ q.

c) The homotopy groups πi(X) are finitely generated for all i ∈ N.
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2.2 Fibrations over the circle

Let Mn be a closed manifold of dimension n ≥ 6 such that πi(M) are finitely

generated for i = 2, . . . ,
[

n
2

]
and π1(M) = Z×H. It was established in [5],

th. 2.1 that if the Whitehead group Wh(π1(M) vanishes, then there exists a

fibration f : M → S1, which induces the projection on the first factor at the

level of fundamental groups. If we drop the assumption on the Whitehead

group we have the following weaker statement :

Theorem 2.3 Let Mn be a closed connected manifold of dimension n and

H a finitely presented group. Suppose that πi(M) is finitely generated for

i = 2, . . . ,
[

n
2

]
and π1(M) = Z×H.

Then, if n ≥ 6 there exists a closed connected (n − 1)−dimensional

submanifold i : F ↪→ M such that :

a) π1(F ) = H.

b) i induces an isomorphism in πi for all i ≥ 2.

For M of arbitrary dimension n, the same conclusion holds if we replace

M by M ×Sp for all p ≥ 6−n (the dimension of F will be n+ p− 1 in this

case).

The proof of 2.3 will be given in Section 4. Let us show now how this

theorem implies the statement a) of our main results 1.3 and 1.4.

Proof of 2.3 =⇒ 1.3

Without restricting the generality of our statements, we may suppose

that n ≥ 3.

1. Suppose first that n ≥ 6. Using 2.3, we get a (n − 1)-dimensional

manifold F1 as above. Then F1 is connected (and closed) with fundamental

group π1(F1) = Zn−3 ×G and πi(F1) ∼ πi(M) ∀ i ≥ 2. So, if n− 3 > 0 and

n − 1 ≥ 6, the fiber F1 still satisfies the hypothesis of 2.3. We may then
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apply successively 2.3 and get a sequence of closed connected manifolds

(1) Fn−5 ↪→ Fn−6 ↪→ · · · ↪→ F1 ↪→ M

such that for k = 1, . . . , n− 1 :

1. π1(Fk) = Zn−2−k ×G.

2. dim(Fk) = n− k.

3. The inclusion Fk ↪→ M induces isomorphisms in πi for i ≥ 2.

In particular the manifold Fn−5 is of dimension 5, its fundamental group

is Z3 × G and its higher homotopy groups πi are finitely generated for

i = 1, . . . , max
{[

n
2

]
, 3

}
.

In order to apply 2.3 to this manifold, we consider the product F =

Fn−5×S3. By 2.3, we get a submanifold K0 which is a closed connected man-

ifold of dimension 7 with finitely generated πi for i = 1, . . . , max
{[

n
2

]
, 3

}

(since S3 has the same property by 2.1). Since [7/2] = 3, we may apply 2.3

to K0 and then again to its submanifold K1, given by 2.3 to obtain a se-

quence as above, where the maps are inclusions which induce isomorphisms

at the level of πi for i ≥ 2 :

K2 ↪→ K1 ↪→ K0 ↪→ F.

It follows that the universal covers of G2 and F are homotopically equiv-

alent, in particular

(2) H∗(K̃2) ∼ H∗(F̃n−5 × S3).

Now K2 is a closed connected 5-dimensional manifold whose fundamen-

tal group is G. Since G is an infinite group it follows that H5(K̃2) = 0 (see

[1], p.346), we have that Hi(K̃2) vanishes for i > 4.

Using the Kunneth formula we infer from (2) that Hi(F̃n−5) vanishes

for i > 0. Therefore F̃n−5 is contractible and, using the sequence (1) M̃ is

contractible, too. So M is an Eilenberg-Mc Lane space K(π1(M)).
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2. We treat now the cases n = 3, 4, 5. Consider the product F =

M0 × S3. As above, we can successively apply 2.3 to get a sequence

Kn−2 ↪→ Kn−3 ↪→ · · · ↪→ K1 ↪→ F.

The manifold Kn−2 is closed connected of dimension 5 and its fundamental

group is G. We use it to finish the proof using the same argument as above.

This proves 1.3.1.

The proof of corollary 1.5 is immediate : hd(G) (the maximal degree r

such that Hr(G,Z) does not vanish) is obviously less than equal than the

dimension of any finite K(G, 1). Since by Kuneth formula hd(Zn−2×G) =

hd(Zn−2) + hd(G) we obtain :

hd(G) = hd(Zn−2 ×G)− hd(Zn−2) ≤ dim(M)− (n− 2) = 2.

Let us now prove 1.3.2. Suppose that π1(M) = Zn−1×G. From point 1

we infer that M is an Eilenberg-McLane space. As in the estimation above,

we obtain that hd(G) ≤ 1. By a celebrated theorem of J.R. Stallings [21]

and Swan [22] we know that G is a free group. Denote by l the number of

generators of G. The homology of G is the homology of a wedge of l circles.

In particular, using the Kunneth formula we get :

dim( H1(Z
n−1 ×G,Z/2Z) ) = l + (n− 1),

and

dim( Hn−1(Z
n−1 ×G,Z/2Z) ) = 1 + l(n− 1).

This means that the Betti numbers of M satisfy β1(M) = l + (n − 1) and

βn−1(M) = 1 + l(n − 1). By Poincare duality these numbers coincide,

therefore l = 1, and G = Z. So M is a K(Zn, 1), i.e. a homotopy n−torus.

Using again the theorem 2.3 (whose proof is postponed in Section 4), we

give the :
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Proof of theorem 1.4

Obviously q ≥ 2. Suppose that πi(X) is finitely generated for all i ≤ q. By

2.2 the same is true for all the homotopy groups of X.

Embed X in the Euclidean space R2q+3. Let W be a tubular neighbour-

hood of X and denote by M2q+2 the smooth manifold ∂W . Since M is a

deformation retract of W \X and X is a deformation retract of X, we look

at the sequence of applications

M ↪→ W \X ↪→ W → X,

and use a general position argument in the middle arrow to get isomorphisms

between πi(X) and πi(M) for i ≤ q+1. In particular, the homotopy groups

πi(M) are finitely generated for 1 ≤ i ≤ q+1, since, by 2.2, all the homotopy

groups of X are finitely generated. Therefore M satisfies the assumptions of

1.3 and is thus an Eilenberg-McLane space. Since the first q + 1 homotopy

groups of X and of M are the same it follows that X is an Eilenberg-

McLane space, too. But this implies that hd(Z2q ×G) ≤ q, contradiction.

This proves 1.4.

3 Novikov homology and fibrations over the

circle

If M is the total space of a fibration f over the circle, then f ∗dθ is a

non-vanishing closed one form on M . An analogue of Morse theory for

circle valued functions was established by S. P. Novikov in [12]. In the

subsequent Morse-Novikov inequalities usual homology is replaced by the

Novikov homology of M associated to the cohomology class u := [f ∗dθ].

So, if f : M → S1 is a fibration, the Novikov homology H∗(M, [f ∗dθ]) will
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vanish.

Conversely, F. Latour [9] and A. Pajitnov [?] [?] proved that under

some additional hypothesis the vanishing of the Novikov homology implies

the existence of a fibration of M over the circle. We will use this result

(actually its proof) in the proof of 2.3. It will be stated in Section 3.2.

Let us start by recalling the definition and some properties of Novikov

homology :

3.1 Novikov homology

Let u ∈ H1(M ;R). Denote by Λ the ring Z[π1(M)] and by Λ̂ the ring of

formal series Z[[π1(M)]]. Consider a C1-triangulation of M which we lift

it to the universal cover M̃ . We get a Λ-free complex C•(M) spanned by

(fixed lifts of) the cells of the triangulation of M .

We define now the completed ring Λu :

Λu :=
{

λ =
∑

nigi ∈ Λ̂ | gi ∈ π1(M), ni ∈ Z, u(gi) → +∞
}

The convergence to +∞ means here that for all A > 0, u(gi) < A only for

a finite number of gi which appear with a non-zero coefficient in the sum λ.

Remark Let λ = 1+
∑

nigi where u(gi) > 0) for all i. Then λ is invertible

in Λu. Indeed, if we denote by λ0 =
∑

nigi then it is easy to check that
∑

k≥0(−λ0)
k is an element of Λu and it is obvious that it is the inverse of λ.

Definition Let C•(M, u) be the Λu-free complex Λu⊗ΛC•(M). The Novikov

homology H∗(M, u) is the homology of the complex C•(M,u).
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A purely algebraic consequence of the previous definition is the following

version of the universal coefficients theorem ([8], p.102, Th 5.5.1) :

Theorem 3.1 There is a spectral sequence Er
pq which converges to H∗(M, u)

and such that

E2
pq = TorΛ

p (Λu, Hq(M̃)).

We will use this result in Section 4 to prove that in the hypothesis of

2.3, the Novikov homology associated to some class u vanishes.

3.2 Morse-Novikov theory

Let α be a closed generic one form in the class u. Let ξ be the gradient of

α with respect to some generic metric on M . For every critical point c of

α we fix a point c̃ above c in the universal cover M̃ . We can define then a

complex C•(α, ξ) spanned by the zeros of α : the incidence number [d, c] for

two zeros of consecutive indices is the (possibly infinite) sum
∑

nigi where

ni is the algebraic number of flow lines which join c and d and which are

covered by a path in M̃ joining gic̃ and d̃. It turns out that this incidence

number belongs to Λu, so C•(α, ξ) is actually a Λu-free complex.

The fundamental property of the Novikov homology is that it is isomor-

phic to the homology of the complex C•(α, ξ) above for any couple (α, ξ).

By comparing the complexes C•(α, ξ) and C•(−α,−ξ) we get the fol-

lowing duality property (see prop.2.8 in [4] and 2.30 in [9]) :

Theorem 3.2 Let Mn be a closed connected manifold, u ∈ H1(M ;R) and

let l be an integer. If Hi(M,−u) = 0 for i ≤ l, then Hi(M, u) = 0 for

i ≥ n− l.
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If the form α has no zeroes then C•(α, ξ) vanishes and therefore we have

H∗(M, [α]) = 0. Conversely, one can ask if the vanishing of H∗(M, u)

implies the existence of a nowhere vanishing closed 1-form belonging to the

class u ∈ H1(M). For n ≥ 6 this problem was independently solved by F.

Latour [9] and A. Pajitnov [?], [?]. The statement is ([9], Th.1 :

Theorem 3.3 For dim(M) ≥ 6) the following set of conditions is equiva-

lent to the existence of a nowhere vanishing closed 1-form in u ∈ H1(M,Z)

:

1. Vanishing Novikov homology H∗(M, u).

2. Vanishing Whitehead torsion τ(M, u) ∈ Wh(M, u).

3. Finitely presented Ker(u) ⊂ π1(M).

Remarks

1. The definition of the generalized Whitehead group Wh(M,u) and of the

Whitehead torsion is given in [9].

2. In the statement of [?] the first two conditions are replaced by :

1 C•(M,u) is simply equivalent to zero.

Actually, one can show (see [10]) that 1̂ıs equivalent to ”1 and 2”.

3. In earlier works on the subject as those of F.T. Farell [6] and L. Sieben-

mann [19] the algebraic conditions which are equivalent to the existence of a

nowhere vanishing closed 1-form in a rational cohomology class u were stated

in the hypothesis that the infinite cyclic cover X associated to u is finitely

dominated. (X → M is defined to be the pull-back of the universal covering

R → S1 defined by a function f : M → S1 such that [f ∗dθ] = u). The

relation between the finite domination of X and vanishing of the Novikov

homology (as well as between the Whitehead ”fibering obstruction” from

[6] and [19] and the condition 2 above) was first established by A. Ranicki

in [16], [17] (see also [15]).
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The hypothesis on πi(M) in our theorem 2.3 can be seen in this frame-

work as a sufficient condition for the algebraic finite domination of the

Z[t, t−1]-free complex C•≤[n
2 ]

(X).

If we drop the condition (2) in the the statement 3.3 about, we get the

following :

Theorem 3.4 Suppose that Mn is of dimension n ≥ 6 and that u ∈
H1(M,Z) fulfilles the conditions (1) and (3) of 3.3. Fix 2 ≤ k ≤ n − 3.

Then there exists f : M → S1 such that [f ∗dθ] = u and whose critical points

have indices equal to k or k + 1.

This can be seen by following the proof of F. Latourş theorem in [9].

The idea is that under the assumptions (1) and (3), the critical points of

small index and co-index can be successively cancelled, as in the theorem

of s-cobordism.

4 Proof of 2.3

In order to prove 2.3 we will use a consequence of 3.4, namely :

Theorem 4.1 Let Mn be a closed connected manifold of dimension n ≥ 6.

Suppose that π1(M) = Z×H.

Let u be the cohomology class which corresponds to the projection Z ×
H → Z in the natural isomorphism H1(M ;Z) ∼ Hom(π1(M),Z). Sup-

pose that H∗(M, u) vanishes.

Then there exist f : M → S1 and γ ∈ S1 such that [f ∗dθ] = u and

F = f−1(γ) satisfies to the requirements of 2.3.
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Proof

First remark that the third condition of 3.3 is obviously fulfilled since

H is finitely presented and the first is granted by hypothesis. So we get

f : M → S1 with the properties of 3.4. The complex associated to f ∗dθ

and a generic gradient will be of the form :

0 → Λp
u

∂k→ Λp
u → 0,

where ∂k is an isomorphism, since the Novikov homology vanishes.

Let γ be a regular value of f and let F = f−1(γ). Cut M along F to get

a cobordism W between F and F . Note that, since f has no critical point

of index and co-index less or equal than two, the fundamental group of F

is H and the inclusion F ↪→ W induces an isomorphism in π1 (A disk in W

can be pushed into F along the flow lines of a gradient by general position).

Remark also that W can be seen as a fundamental domain of the Abelian

covering M̄ → M which corresponds to the normal subgroup H ⊂ Z ×H.

In other words M̄ is obtain by pasting countable many copies of W . Now for

every critical point c of f consider a lift c̃ ∈ M̃ such that all the projections

of these lifts in M̄ lie in the same fundamental domain.

Denote by A the matrix corresponding to ∂k with respect to this basis.

If we denote by t the generator of Z it is easy to see that A can be written

as :

A = A0 + A1t + · · ·+ Ait
i + · · · ,

where Ai are p × p matrices with entries in Z[H]. Note that the entries of

A0 are computed using the flow lines of the gradient whose lifts on M̄ stay

in the fundamental domain W .

Since A is invertible, A0 is invertible, too ; This means that the complex

associated to the cobordism (W,F, F ) (endowed with a lift of f (which is a
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real Morse function) and a lift of the gradient of f) is acyclic. This implies

that Hi(W,F ) = 0 for all i, and using excision and Mayer-Vietoris, that

Hi(M̄, F ) = 0 for all i. But F ↪→ M̄ yields an isomorphism in π1 so, by

Whiteheadş theorem, it is an isomorphism in πi for all i. As the projection

M̄ → M induces isomorphisms in πi for i ≥ 2 the theorem is proved. ¦

Taking into account the preceeding theorem it suffices to prove the fol-

lowing proposition :

Proposition 4.2 Let Mn be a closed connected manifold. Suppose that

Hi(M̃) are finitely generated for i = 2, . . . ,
[

n
2

]
and π1(M) = Z×H. Then

H∗(M, u) = 0, where u = prZ.

Remark There is a theorem of A. Ranicki [17] (see also [15], ch.8) which

establishes an equivalence between the algebraic finite domination of the

infinite cyclic covering X and the vanishing of the Novikov-type homology

H∗(C•(X) ⊗Z[t,t−1] Z(t)[t−1]. As our hypothesis on πi(M) has an influence

on the algebraic finite domination of X this result is strongly related to 4.2.

Proof of 4.2

This proposition was proved in [5] (Prop.4.1). We will only give an

outline of the proof. By 3.2 it suffices to prove that Hi(M,±u) = 0 for

i ≤ [
n
2

]
. The proof is based on a Cayley-Hamilton argument as in the result

of [15] mentioned above. The idea is to find a endomorphism Φ̄ of Hi(M, u)

which is both invertible and nilpotent for i ≤ [
n
2

]
. The morphism Φ̄ will be

induced by a chain morphism

Φ = Id⊗ ψ : Λu ⊗Λ C•(M) → Λu ⊗Λ C•(M).
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Denote by g the element t × 1 ∈ π1(M), where t is the generator of Z.

the morphism ψ : C•(M) → C•(M) will be the left multiplication by P (g)

where P is a polynomial with integer coefficients.

As g ∈ Z(π1(M)) the left multiplication by g induces a isomorphism of

Λ-complexes

g : C•(M) → C•(M),

which yields a Λ-isomorphism in homology

ḡ : ⊕[n
2 ]

i=0Hi(M̃) → ⊕[n
2 ]

i=0Hi(M̃).

Now if P ∈ Z[X] is a polynomial of the form ±1 + XQ(X), then P (g)

is invertible in Λu and therefore Φ is invertible.

On the other hand we are able to choose P such that P (g) induces

the zero morphism Hi(M̃) for i ≤ [
n
2

]
: Denote by A the sum ⊕[n

2 ]
i=0Hi(M̃).

Because of 2.1 we have that A is finitely generated as a Z-module. Therefore

A is isomorphic to Zr ⊕ T , where T is a direct sum of modules Z/kZ,

(k ∈ N∗).

The restriction ḡ : Zr → Zr is an isomorphism and therefore its charac-

teristic polynomial is of the form

R(X) = ±1 + X R0(X).

The restriction ḡ : T → T is again an isomorphism and, since Aut(T ) is

finite, there is an integer s such that (ḡs)|T = Id.

It easily follows that the polynomial P (X) = [(1−Xs)R(X)]2 satisfies

P (ḡ) = 0, as claimed.

Now we use the spectral secquence 3.1 which converges to H∗(M ; u).

The chain morphism P (g) : C•(M) → C•(M) naturally induces at the page
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E2
pq a morphism

TorΛ
p (Id, P (ḡ)q) : TorΛ

p (Λu, Hq(M̃)) → TorΛ
p (Λu, Hq(M̃))

which, is zero for q ≤ [
n
2

]
. By naturality in the spectral sequence Er

pq

we obtain that the induced endomorphism Φ̄∞
pq : E∞

pq → E∞
pq vanishes for

q ≤ [
n
2

]
.

The spectral secquence Er
pq yields a filtration

0 = A−1 ↪→ A0 ↪→ A1 ↪→ · · · ↪→ Ak ↪→ · · ·

of the Novikov homology groups H∗(M, u) such that for every couple of

integers (i, p) there is an exact sequence :

(4) 0 → Ap−1(Hi(M,u)) → Ap(Hi(M,u)) → E∞
p,i−p → 0.

Actually, the above filtration is stationary for k ≥ n, as one can infer from

the exact sequence (4).

By naturality, the morphism Φ̄ : H∗(M, u) → H∗(M, u) preserves the

filtration and yields, together with Φ∞, a morphism from the exact complex

(4) to itself.

Therefore we have a commutative diagram :

0 → Ap−1(Hi(M,u)) → Ap(Hi(M, u)) → E∞
p,i−p → 0

↓ Φ̄ ↓ Φ̄ ↓ Φ̄∞
p,i−p

0 → Ap−1(Hi(M,u)) → Ap(Hi(M, u)) → E∞
p,i−p → 0

Fix some i ≤ [
n
2

]
. The vertical arrow Φ̄∞ vanishes for every p. Pro-

ceeding by induction on p, we easily infer from the above diagram that the

morphism Φ̄ : Ap(Hi(M,u)) → Ap(Hi(M,u)) is nilpotent.
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Finally, for p = n, An(Hi(M, u)) = Hi(M, u), so the morphism Φ̄ is

nilpotent in Novikov homology for i ≤ [
n
2

]
. Since the same morphism was

proved to be invertible, Hi(M ; u) vanishes for i ≤ [
n
2

]
.

An analogous proof shows that Hi(M,−u) = 0 for i ≤ [
n
2

]
. Indeed, the

same argument with g−1 instead of g yields a polynomial P as above. We

get thus an endomorphism of Hi(M,−u) which is both nilpotent and onto.

This completes the proof of 4.2 (using the duality 3.2).
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