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Abstract

The main purpose of the paper is to give error estimates for

two important fixed point theorems involving quasi contractive type

operators.
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1 Introduction

The literature of the last four decades abounds with papers which establish

fixed point theorems for self and nonself operators of a certain ambient space

and satisfying a variety of conditions [1-2], [4-30]. For most of them, their

reference result is the well known Banach′s fixed point theorem - one of the

most useful results in fixed point theory.

In a metric space setting its complete statement is the following, see for

example Berinde [2].
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Theorem B. Let (X, d) be a complete metric space and T : X → X an

a-contraction, that is, an operator satisfying

(1) d(Tx, Ty) ≤ a d(x, y) , for all x, y ∈ X

with a ∈ [0, 1) fixed. Then

(i) T has a unique fixed point, i.e. FT = {x∗};
(ii) The Picard iteration associated to T , that is, the sequence {xn}∞n=0

defined by

(2) xn = Txn−1 = T nx0 , n = 1, 2, . . .

converges to x∗, for any initial guess x0 ∈ X;

(iii) The a priori and a posteriori error estimates

(3) d(xn, x
∗) ≤ an

1− a d(x0, x1) , n = 0, 1, 2, . . .

(4) d(xn, x
∗) ≤ a

1− a d(xn−1, xn) , n = 0, 1, 2, . . .

hold.

(iv) The rate of convergence of the Picard iteration is given by

(5) d(xn, x
∗) ≤ a · d(xn−1, x

∗) , n = 1, 2, . . .

Note. A map satisfying (i) and (ii) in the previous theorem, is said to

be a Picard operator, see Rus [23]-[27].

Theorem B, together with its direct generalizations, has many applica-

tions in solving nonlinear functional equations, but suffers from one

drawback - the strong contractive condition (1) forces that T be continuous

throughout X.
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It is then natural to ask if there exist contractive conditions which do

not imply the continuity of T . This was answered in the affirmative by

R. Kannan [15] in 1968, who proved a fixed point theorem which extends

Theorem B to mappings that need not be continuous, by considering instead

of (1) the next condition: there exists b ∈
[
0,

1

2

)
such that

(6) d(Tx, Ty) ≤ b
[
d(x, Tx) + d(y, Ty)

]
, for all x, y ∈ X .

Following the Kannan′s theorem, a lot of papers were devoted to obtain-

ing fixed point theorems for various classes of contractive type conditions

that do not require the continuity of T , see for example, Rus [23], [26],

Taskovic [29], and references therein.

One of them, actually a sort of dual of Kannan fixed point theorem,

due to Chatterjea [7], is based on a condition similar to (6): there exists

c ∈
[
0,

1

2

)
such that

(7) d(Tx, Ty) ≤ c
[
d(x, Ty) + d(y, Tx)

]
, for all x, y ∈ X.

It is well known, see Rhoades [17], that the contractive conditions (1)

and (6), (6) and (7), as well as (1) and (7), respectively, are independent.

In 1972, Zamfirescu [30] obtained a very interesting fixed point theorem,

by combining (1), (6) and (7).

Theorem Z. Let (X, d) be a complete metric space and T : X −→ X a

map for which there exist the real numbers a, b and c satisfying 0 ≤ a < 1,

0 ≤ b, c ≤ 1/2 such that for each pair x, y in X, at least one of the following

is true:

(z1) d(Tx, Ty) ≤ a d(x, y);

(z2) d(Tx, Ty) ≤ b
[
d(x, Tx) + d(y, Ty)

]
;
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(z3) d(Tx, Ty) ≤ c
[
d(x, Ty) + d(y, Tx)

]
.

Then T is a Picard operator.

One of the most general contraction condition for which the map sat-

isfying it is still a Picard operator, has been obtained by Ciric [9] in 1974:

there exists 0 < h < 1 such that

(8) d(Tx, Ty) ≤ h ·max
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
,

for all x, y ∈ X .

Remark 1. 1) As shown by Rhoades ([20], Theorem 2), a quasi contrac-

tion, i.e., a mapping satisfying (8), is still continuous at the fixed point.

2) The fixed point theorems for contractive definitions of the form (1);

(6); (7); (z1) - (z3); (8) were unified by various authors, see for example

Berinde [1], [2], Rus [23], [26].

As in the case of Theorem B, for all these general theorems, the fixed

points are constructed by means of the Picard iteration (or method of suc-

cessive approximations). Since the successive approximation method is an

iterative method that produces an approximate fixed point, it is very im-

portant that a such fixed point theorem also provide an error estimate.

There are some general theorems in this area (see, for example, Rus [23],

[26], Berinde [2], [3]) that give an error estimate for the Picard iteration but,

to our best knowledge, there are not direct results of this type for Kannan′s

and Zamfirescu′s theorems.

Consequently, the main aim of this paper is to obtain complete state-

ments for the fixed point theorems of Kannan and Zamfirescu, including

both a priori and a posteriori error estimates, when the Picard iteration is

used to approximate the fixed points.
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Recall that for Ciric′s fixed point theorem, there exists an a priori error

estimate of the form (3), with a = h, the constant appearing in (8), see

Ciric [11].

2 Error estimates for Kannan′s and Zamfi-

rescu,s fixed point theorems

The main results of this section are Theorems 1 and 2.

Theorem 1. Let (X, d) be a complete metric space and T be a self map of

X satisfying condition (6).

For any x0 ∈ X, consider the Picard iteration {xn}∞n=0 associated to T ,

defined by (2). Then

1) FT = {x∗};
2) The Picard iteration converges to x∗, for any x0 ∈ X;

3) The following error estimates

(9) d(xn, x
∗) ≤ αn

1− α d(x0, x1) , n = 0, 1, 2, . . .

(10) d(xn, x
∗) ≤ α

1− α d(xn−1, xn) , n = 1, 2, . . .

hold, where α = a/(1− a).

4) The rate of convergence of the Picard iteration is given by

(11) d(xn, x
∗) ≤ α · d(xn−1, x

∗) , n = 1, 2, . . .

Proof. First note that if T satisfies (6), then card FT ≤ 1, i.e. T has at

most one fixed point.
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Let {xn}∞n=0 be the Picard iteration, starting from x0 ∈ X arbitrary.

Then by (6) we have

d(xn, xn+1) = d(Txn−1, Txn) ≤ a
[
d(xn−1, xn) + d(xn, xn+1)

]

which implies

(12) d(xn, xn+1) ≤ a

1− a d(xn−1, xn) , for all n = 1, 2, . . .

Since 0 ≤ a <
1

2
, it results 0 ≤

a

1− a < 1.

Denote α =
a

1− a .

Using (4) we obtain by induction

(13) d(xn+k, xn+k−1) ≤ αkd(xn, xn−1), k ∈ N∗

and hence

d(xn+p, xn) ≤ (α + α2 + · · ·+ αp) d(xn, xn−1)

which yields

(14) d(xn+p, xn) ≤ α(1− αp)
1− α d(xn, xn−1) , n, p ∈ N∗ .

Since by (5),

d(xn, xn−1) ≤ αn−1d(x0, x1) , n ≥ 1

from (6) we obtain

(15) d(xn+p, xn) ≤ αn(1− αp)
1− α d(x0, x1) , n, p ∈ N∗

Now by letting p → ∞ in (15) and (14) we obtain the estimates (9) and

(10), respectively.
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Again, by (6) we have

d(Tx, Ty) ≤ a
[
d(x, Tx) + d(y, Ty)

] ≤

≤ a
{
d(x, tx) +

[
d(y, x) + d(x, Tx) + d(Tx, Ty)

]}

which implies

(16) d(Tx, Ty) ≤ a

1− a · d(x, y) +
2a

1− a d(x, Tx) .

Take x := x∗, y := xn−1 in (16) to obtain

d(xn, x
∗) ≤ a

1− a d(xn−1, x
∗) ,

that is, the estimate (11).

Remark 2. 1) Note that the estimates (9) - (11) in Theorem 1 are the

same as the corresponding ones in Theorem B, the only difference is that a

is replaced by
a

1− a.

2) The estimates (9) and (10) show that the Picard iteration converges

to x∗, the unique fixed point of T , at least as fast as a geometric progression;

3) The estimate (11) shows that the rate of convergence of the Picard

iteration is linear.

Theorem 2. Let (X, d) and T be as in Theorem Z.

For any x0 ∈ X, consider the Picard iteration {xn}∞n=0 defined by (2).

Then all conclusions in Theorem 1 hold, with

α := δ = max

{
a,

b

1− b ,
c

1− c
}
,

where a, b, c are the constants involved in (z1), (z2) and (z3), respectively.
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Proof. We first fix x, y ∈ X. At least one of (z1), (z2) or (z3) is true. If (z2)

holds, then as we have seen in proving Theorem 1, the following inequality

(17) d(Tx, Ty) ≤ b

1− b d(x, y) +
2b

1− b d(x, Tx) ,

holds. If (z3) holds, then similarly we get

(18) d(Tx, Ty) ≤ c

1− c d(x, y) +
2c

1− c · d(x, Tx) .

Therefore by denoting

δ = max

{
a,

b

1− b,
c

1− c
}

we have 0 ≤ δ < 1 and, for all x, y ∈ X, the following inequality

(19) d(Tx, Ty) ≤ δ · d(x, y) + 2δd(x, Tx) ,

holds.

In a similar manner we obtain

(20) d(Tx, Ty) ≤ δ · d(x, y) + 2δ(x, Ty) ,

valid for all x, y ∈ X.

But by (19) it follows that card FT ≤ 1 and remains to show that there

exists a fixed point.

If we take x := xn, y := xn−1 in (19), then we get

d(xn+1, xn) ≤ δ · d(xn, xn−1)

and the rest of the proof is similar to that of Theorem 1.

Remark 3. 1) The a priori and a posteriori error estimates as well as

the rate of convergence given here for both Kannan′s and Zamfirescu′s fixed

point theorems are formally the same as in Banach′s fixed point theorem.
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2) The a priori error estimates can be obtained from a more general result

given in Berinde [1], see also Berinde [2] Theorem 1.5.4 for a corrected

version.

3) Recently, the author Berinde ([6], [4], [5]), obtained similar error

estimates for T satisfying a more general contractive condition that includes

(1), (6) and (7) and that does not forces the uniqueness of the fixed point
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