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Abstract

Some Griiss type inequalities for two sequences of vectors in terms
of the forward difference are given. An application for the Jensen
inequality for convex functions defined on inner product spaces is

also pointed out.
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1 Introduction

In [1], we have proved the following generalisation of the Griiss inequality.
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Theorem 1. Let (H, (-, -)) be an inner product space over K, K = C,R and
ec H, |le||=1. If ,P,7,T € K and z,y € H are such that
Re (Pe —x,x — ¢e) >0 and Re(l'e—y,y—ye) >0,
hold, then we have the inequality
1
The constant i 18 the best possible.

A Griiss type inequality for sequences of vectors in inner product spaces

was pointed out in [2].

Theorem 2. Let H and K be as in Theorem 1 and x; € H, a; € K, p; > 0
(t=1,...,n) (n>2) with ﬁ:pi =1. Ifa,A e K and x,X € H are such
that: -

Re[(A—a;)(@;—a)] >0, Re(X —zjz;—z)>0

for any i€ {1,...,n}, then we have the inequality

n n n
E pia;x; — E pia; - E DiZ;
i=1 =1 =1

The constant i 18 best possible.

0< < lA—all|x -2l

1
4

A complementary result for two sequences of vectors in inner product

spaces is the following result that has been obtained in [3].

Theorem 3. Let H and K be as above, x;,y; € H, p; >0 (i=1,...,n)
(n>2) with > p;=1. If x, X,y,Y € H are such that:
i=1

Re(X—xi,xi—@EO and Re<Y_yiayi_y>>O
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forall i€ {1,...,n}, then we have the inequality

>t <zplmz,zp1y,>

The constant %1 15 best possible.

1
X =z Y =yl
T IX =l Y =y

0<

In the general case of normed linear spaces, the following Griiss type

inequality in terms of the forward difference is known, see [4].

Theorem 4. Let (E, ||-||) be a normed linear space over K = C,R, z; € E,
a, € Kandp;, >0 (i=1,...,n) such that > p; = 1. Then we have the

=1

n n n
E pio;T; — E picy; E piZ;
i=1 i=1 i=1
n n 2
< max |Aa]\ Jnax HA%” E i’p; — E ip; :
1<j<n—1 —1 1
1= 1=

inequality

(1)

where Aoy = ajp —ay and Az =z —x; (j=1,...,n— 1) are the for-
ward differences of the vectors having the components aj andx; (j =1,...,n — 1),
respectively.

The inequality (1) is sharp in the sense that the multiplicative constant

C =1 in the right hand side cannot be replaced by a smaller one.

An important particular case is the one where all the weights are equal,

giving the following corollary [4].

Corollary 1. Under the above assumptions for oy, x; (i = 1,...,n) we have

the inequality

(2)

n n n

1 1 1

—E Oéixi__g 041;'—2 i
=1 =1 =1
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n? —

< g ax |Acy| max |[Ag].

1 . .
The constant 15 is best possible.
Another result of this type was proved in [6].
Theorem 5. With the assumptions of Theorem 4, one has the inequality

n n n
E Di; Ty — E Dit; - E Di%;
i=1 i=1 i=1

n—1

|Aa| Z | Azl sz (1=pi).

The constant 5 18 best possible.

(3) 0< <

bOIPﬂ

=1

<.

As a useful particular case, we have the following corollary [6].

Corollary 2. If a;,z; (i=1,...,n) are as in Theorem /, then

n n n

1 1 1

—E Oéiffz'——g ai'_g Ly
=1 =1 =1

n—1 n—1
1 1
<5 (1) Zisery taa
The constant % 1s the best possible.
Finally, the following result is also known [5].
Theorem 6. With the assumptions in Theorem 4, we have the inequality:

n n n
E Pi; Xy — E Dit; - E Di%;
i=1 i=1 i=1

(4) 0<
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3=

n—1
< (Z \A@j\p>
j=1

1,1 _
wherep>1,z—7+§—1.

The constant ¢ = 1 in the right hand side of (4) is sharp.

(Z”A%‘Hq> > G- pws

1<i<j<n

The case of equal weights is embodied in the following corollary [5].

Corollary 3. With the above assumptions for oy, x; (i =1,...,n) one has

R ] — 1l —
0< ﬁ;aixi—ﬁ;%'ﬁ;xi <

nQ ] n—1 % n—1 %
< (Al ) (YA
j=1 j=1
1,1 _
where p > 1, 1—9+§—1.

The constant % 1s the best possible.

The main aim of this section is to establish some similar bounds for the

absolute value of the difference

n n n
S ) - <2pm, zpz-yi>
i=1 i=1 i=1
provided that z;,y; (i =1,...,n) are vectors in an inner product space H,

and p; >0 (i =1,...,n) with > p; = 1.

=1

2 The Main Results

We assume that (H,(-,-)) is an inner product space over K, K = C or

K = R. The following discrete inequality of Griiss type holds.
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Theorem 7. Ifz;,y; € H,p; >0 (i=1,...,n) with > p; = 1, then one
i=1
has the inequalities:

>t <zpm,zpzyz>

I n n 2
Zﬂm—<§ﬂﬁ)]k?w:HAmHlmmlwwws
i=1 = n-

(5)

i=1

..........

S

IN

n—1 % n—1
S p (i —j)] (z ||Axk||p) (z ||Ayk||q)
| 1<j<i<n = =

ifp>1, ;+.=1

1
p

1 n n—1 n—1

3 | S-S 1o S 8w
i=1 k=1 k=1

All the inequalities in (5) are sharp.

The following particular case for equal vectors holds.

Corollary 4. With the assumptions of Theorem 7, one has the inequalities
n n 2
0< Zpi ]| > — sz‘l’z’
i=1 i=1

[Z i’p; — (Z ipz-> ] max ||Azg||”;

<

=1 /J | M7

5 o= (1) (o)

IN

1<j<i<n
ifp>1, %—I—%:l;
1. n—1 2
s n0-m (E1aal) .
\ =1 k=1
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The following particular case for equal weights may be useful in practice.

Corollary 5. Ifx;,y; € H (i =1,...,n), then one has the inequalities:
1< IR

(n?—1
o pmax [|Azyll _max | Ayy;

1 n—1 % n—1 %
(z ||Axk||p) (z ||Ayk||q)
k=1 k=1

. 1 1 _ 1.
pr>1, 5+5_1’

IN

1n1

The constants = and = are best posszble

127 6
In particular, the following corollary holds.

Corollary 6. Ifz; € H (i=1,...,n), then one has the inequality

1 & 1 & ’
0< =2 lail® = ||~
=1 =1

/ 2
—1
L max [|Axy?;
=1,n
1 1
it (”inA ||p)p (”an ||q)q
T T
<< 6n k=1 k=1

. 1 1 _ 1.
pr>1, E—f—a—l,

n—1 /nl )2
Ax
o (Saal
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The constants ﬁ, 5 and % are best possible.

3 Proof of the Main Result

It is well known that, the following identity holds in inner product spaces:

(6) sz s, yl <szxu szyz> =

5 szpj — Ly, Yi — Z plpj — T Yi — yj>'

3,0=1 1<j<i<n

We observe, for ¢ > j, we can write that

i—1 i—1
(7) mi—r; =Y Awe, yi—yi= Y Ay
k=j k=j

Taking the modulus in (6) and by the use of (7) and Schwarz’s inequality
in inner product spaces, i.e., we recall that |(z,u)| < ||z| [|u]|, z,u € H, we

have:

sz xzayz <szxuzpzyz> = Z plpj|< — T Yi — y]>| <

1<j<i<n

< 0 pwillm =l -yl = D pps

i—1
E ALEk
k=j

i—1
> Ay
I=j

1<j<i<n 1<j<i<n
1—1 1—1

< Z DiDj Z | Azl Z Ay =M
1<j<i<n k=3 1=5

It is obvious that

D llAz < (i —J), max Azl < (i —j) max A

77777
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and

giving that

M< Y py(i— i) max [ An max A,

..........

1<j<i<n
and since
n n 2
S msli- i =13 a5 =zm2—(zz~m),
1<j<i<n z] 1 i=1 i=1

the first inequality in (5) is proved.

Using Hoélder’s discrete inequality, we can state that

ZHA%H <(i—Jj)e (ZHAkaHp> <(i—j)e (Z\IAWV’)

and

ZIIAka < (i —j)” (ZHAkaq> < (i—j)” (ZHAkaq) :

for p > 1, % + % =1, giving that:

% n—1 %
M< S pp(i—J) (anknp) (ZHAkaq)
k=1

1<j<i<n
and the second inequality in (5) is proved.

Also, observe that

i—1 n—1 i—1 n—1
DolAz <D [ Awll and Y [ Ayl <> I Aukl]
k=j k=1 k=j k=1

29
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and thus
M< Y pp(i—j Z!\AﬂskIIZ!\Ayk\l
1<j<i<n
Since
Z pip; :% [Z pipj — Zpk] = % (1 —Zxﬁ) = %Zpi(l — i),
1<5<i<n i,7=1 k=1 =1

the last part of (5) is also proved.
Now, assume that the first inequality in (5) holds with a constant ¢ > 0,

ie.,

sz Ti, i) <Zp@:cz,2pzyz> <
<ol S (Z p> max_ Ayl max_ Ay
i=1 o

=1

and choose n = 2 to get

(8) pip2 (w2 — 21,90 — y1)| < epipa w2 — 21| |2 — vl

for any py,p2 > 0 and @1, x2,y1,y2 € H.

If in (8) we choose yy = x9, y1 = 1 and x9 # x4, then we deduce ¢ > 1,
which proves the sharpness of the constant in the first inequality in (5).

In a similar way one may show that the other two inequalities are sharp,

and the theorem is completely proved.

4 A Reverse for Jensen’s Inequality

Let (H;(-,-)) be a real inner product space and F' : H — R a Fréchet

differentiable convex function on H. If VF : H — H denotes the gradient
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operator associated to F, then we have the inequality
F(x) = F(y) = (VF(y), 2 —y)

for each z,y € H.
The following result holds.

Theorem 8. Let F': H — R be as above and z; € H, i € {1,...,n}. If
¢ >0 (ie{l,...,n}) with > q = 1, then we have the following reverse
i=1

of Jensen's inequality

9) 0< iti (2;) — F (i %’Zi> <

= J | k=L..n-1 k=l

i n n 2
> it — (zz'qi) ] max [A(VF(z))] _max [|Az];
i=1 ne

Q|

s qiqj@—j)] (S1awreor) (Siaar)

1<j<i<n

) 1,1 _ 1.
ifp>1, 5—1-5—1,

UL DN IR

\
Proof. We know, see for example [3, Eq. (4.4)], that the following reverse

of Jensen's inequality for Fréchet differentiable convex functions

(10) 0< in‘F (z:) — F (i %%‘) <
i=1 i=1
<qu (VF (z),2) <ZqNF 2i) Z%Z’z>
=1
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holds.
Now, if we apply Theorem 7 for the choices z; = VF (2;),y; = 2; and

pi=q; (1 =1,...,n), then we may state

(11) (VF (2),2) <Z GV E (2) Zqzzz> <
( i n n 2
ST g — (Z iqi) ] max [|A(VE (z))| max ||Azl;
=1 i=1 k=1,..., n—1 k=1,..., n—1
r 1 1 1 1
s as —j)] (Enawreor) (£ 1aar)
> | 1<5<i<n k=1 k=1
. 1 1 _ 1.
lfp>1, 5+5—1,

{z e —po} 5 IAVF ) S 1A,

DO | —

\

Finally, on making use of the inequalities (10) and (11), we deduce the

desired result (9).

The unweighted case may useful in application and is incorporated in
the following corollary.

Corollary 7. Let F: H — R be as above and z; € H,i € {1,...,n}. Then

we have the inequalities

SRS

0<

Xn:F(zl) - F (%iz) <
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n?—1
L JAF )] e A%
n?—1 [/n=l p% n—1 . %
(z 1A (VF (2))] ) (z 1Az )
< 6 k=1 k=1
ifp>1, 1—1)4—%:1;
n—1nl

5 HA(vmzk))H’ﬁ lAz].

\ 2n k=1
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