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Abstract

The work deals with the Hopfield networks and uses the vector

description of the theory, rather then element by element one. The

theoretical central part of the work is related with the energy theorem

and a Hopfield algorithm based on vector form is elaborated (all

the corresponding dimensions are given). This algorithm solves the

store-recall problem. The algorithm is used to solve several numerical

examples.

2000 Mathematics Subject Classification: 68T05, 82C32

1 Notations and Foundations

A. The earliest recurrent neural network has independently begun with An-

derson (1977), Kohonen (1977), but Hopfield (1982) presented a complete

mathematical analysis of such a subject [4], page 50. That is why this net-

work is generally referred to as the Hopfield network. The Hopfield network
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consists of a set of n interconnected neurons. All neurons are both input

and output neurons. Hence, by using the bidirectional associative memory

(BAM) notations [7], the input layer Sx is the same with the output layer

Sy. This shows that we can consider the Hopfield network as a particular

case of the BAM, although there is a doubt [2], page 141 that was the way

the Hopfield memory originated.

B. The set of input vectors (input data, learning data, training vectors,

input patterns) is a set of vectors of N the form

I(x) = {x(1);x(2); ...;x(N)}, x(k) ∈ Hn, k ∈ 1, N

x(k) = (x1(k)x2(k) · · · xn(k))T

where H is the Hamming space having only the elements -1 and +1 (bipolar

elements) and T means the transposition.

Originally, Hopfield chose for each x(k) the binary activation values 1

and 0, but using bipolar values +1 and -1 presents some advantages [4],

page 50, [1], page 49.

For an input vector x we denote by xc ∈ Hn the complement, where the

value 1 from x becomes -1 in xc and vice versa. So, if we encode I(x), we

also encode its complement I(xc).

Definition. The Hamming distance between two vectors having the

same type u, v ∈ Hn is a function DH[u, v] representing the number of bits

that are different between u and v.

The Hamming distance DH is related to the Euclidian distance DE by

the equation [Free, page 129] DE = 2
√
DH.

C. Now we discuss some main characteristics of a Hopfield network.

1. The first aim of the Hopfield network is to store the input data I(x)

(store phase).
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2. Then, the second aim is to recall one input vector from I(x) if one

knows a test vector xr, with xr ∈ Hn (retrieval phase). Generally, a test

vector is a noisy vector of I(x). This characteristic makes the Hopfield net-

work useful for restoring degraded images [5], page 373. Hence the Hopfield

network is used to solve a store-recall problem.

3. In the Hopfield network there are weights associated with the con-

nections between all the neurons of layer Sx. We organize the weights in a

square and symmetric matrix

W = Wnxn, W = (wij), wij = wji.

All connections inside the layer Sx are bidirectional and the units may, or

may not, have feedback connections to themselves. We can take wii = 0

(see below the proposition 2 ).

We denote the columns of W by vectors wj ∈ Rn, j = 1, n and the

lines of W by vectors

linei ∈ Rn, i = 1, n.

4. The Hopfield network is a fully interconnected network.

5. The matrix W can be determined in advance if all the training vectors

I(x) are known.

Method 1. We use the formula

W =
N∑

k=1

x(k)x(k)T , wii = 0(1)

Here it is possible to know the input vectors x(k) one after one.

Method 2. We use a dot product

wij =
N∑

k=1

xi(k)xj(k), i 6= j, wii = 0.(2)
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Here it is necessary to know from the beginning all the input vectors

x(k). This matrix does not change in time. After the matrix W was com-

puted, we say the input data I(x) was stored. The W matrix is also named

the correlation matrix.

Remark 1. The first method is more useful in applications.

6. Having the matrix W and a test vector xr we look for the corre-

sponding training vector. In order to find the corresponding vector of I(x)

we use the Hopfield Algorithm (see below).

7. The Hopfield network (and BAM network) has a major limitation [2],

page 133, [3], page 42, [4], page 52 : the number of input patterns that can

be stored and accurately recalled is limited by the relation N < 0.15n.

8. The store-recall problem can be improved [1], page 50, [5], page 373,

by modifying the input set to contain orthogonal vectors , with dot product

zero i.e. < u, v >= 0, u, v ∈ I(x).

2 The Hopfield Algorithm

From the known input set I(x), the Hopfield Algorithm retrieves a input

vector with the help of a test vector xr (noisy vector). At the beginning we

denote the test vector by xr = xr(1).

At the time t (natural number), the algorithm propagates the informa-

tion inside the Sx layer as follows:

a) compute activation

netj(t) =< wj, xr(t) >, j = 1, n(3)

where wj is the column j of the matrix W.
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b) update the values on Sx layer, namely the vector xr(t) becomes xr(t+1)

with the components [4], page 51, [2], page 143

xrj(t+ 1) =





+1, netj(t) > 0

−1, netj(t) < 0

xrj(t), netj(t) = 0

, j = 1, n.(4)

We notice that [3] page 41 updates the above values only with the first

two positions, as for sign function.

The Hopfield has the following steps.

Step 1. One knows the input set I(x) and store it by computing the

matrix W = Wnxn with formula (1) or (2). One or more test vectors xr are

given. Put t = 1.

Step 2. (optional) Compute the complement set I(xc) and the Hamming

distance between the vectors of I(x) and the test vectors xr. Check if the

input set I(x) is orthogonal or not.

Step 3. At the time t, propagate the information from the Sx layer to the

Sx layer by the formulas (3) and (4). So we find the vector xr(t+ 1) ∈ Hn.

Step 4. Put t + 1 instead of t and repeat the step 3 until there are no

further changes in the components of xr(t+ 1).

Remark 2. [2], page 133. If all goes well, the final stable state will recall

one of the vectors I(x) used to construct the store matrix W .

Remark 3. We hope that the final output of the Hopfield Algorithm is a

vector who is closest in Hamming distance to the original vector xr.
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3 The Hopfield Energy Function

Definition. Using [2], pages 137 and 139 we call the energy function

associated with the input vector x ∈ Hn and the matrix W the real number

E = E(x), E(x) = −xTWx(5)

E(x) = −
n∑
i=1

n∑
j=1

xiwijxj(6)

The energy function is called also Lyapunow function in the theory of dy-

namical systems. This is a quadratic form. In [3], page 42, the energy

function is defined with a multiplying coefficient 1/2 at the beginning.

Energy Theorem. In a Hopfield neural network, any change by (4) in

the components of the vector x results in a decrease in E(x) function.

The proof has the same steps as the energy theorem for BAM networks

[2], page 139 and [7].

Proposition 1. The correlation matrix W has the form

W = NIn + S(7)

where In is the identity matrix and S is a symmetric matrix having zeros

on the main diagonal.

Proof. We compute W by (1) and obtain a sum of matrices having on the

main diagonal the non-zero elements

x2
1(k), x2

2(k), ..., x2
n(k), k = 1, N.

Because x(k) ∈ Hn, then xi(k) ∈ {−1, 1}, x2
i (k) = 1 and we can construct

the identity matrix In. In this way the matrix W becomes of the form (7).

(End).
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Proposition 2. In a Hopfield network, the energy function has the form

E(x) = −N2 − xTSx(8)

Proof. By using the definition (5) and the above proposition 1 one obtains

successively

E(x) = −xT (NIn + S)x = −Nxtx− xTSx = −N ·N − xTSx

[End].

Remark 4. Because the N2 is a constant value and finally we try to

minimize the function E(x), we can consider that

E(x) = −xTSx or E(x) = −xTWx(9)

where the matrix W is computed by (1) and has the zeros values on the

main diagonal. Hence, the change in energy , during a state change is

independent of the diagonal elements on the weight matrix W [2], page 141.

4 Numerical Examples

A. We compute the weight matrix for several input vectors given by I(x).

First of all we change the zeros to negative ones in each input vector [5], page

373 and obtain the modified I(x). If the initial input set I(x) is orthogonal,

the modified I(x) could be not.

All the time we use (1) from method 1.

Example 1. N = 3, n = 4.

I(x) = {x(1) = (−11−1−1)T , x(2) = (1−11−1)T , x(3) = (−1−1−11)T},

W = x(1)x(1)T + x(2)x(2)T + x(3)x(3)T



42 Nicolae Popoviciu and Mioara Boncuţ

Assign wii = 1, i = 1, 4 and the matrix W has the lines

0 − 1 3 − 1; −1 0 − 1 − 1; 3 − 1 0 − 1; −1 − 1 − 1 0.

Example 2. N = 3, n = 5.

I(x) =





x(1) = (−1 1 −1 −1 1)T

x(2) = (1 −1 −1 1 −1)T

x(3) = (−1 −1 1 −1 −1)T

.

W = x(1)x(1)T + x(2)x(2)T + x(3)x(3)T

Assign wii = 0, i = 1, 5 and the matrix W has the lines

0−1−1 3−1; −1 0−1−1 3; −1−1 0−1−1; 3−1−1 0−1; −1 3−1−1 0.

Example 3. N = 4, n = 5.

I(x) =





x(1) = (1 −1 1 −1 −1)T

x(2) = (−1 1 −1 1 −1)T

x(3) = (−1 1 −1 1 1)T

x(4) = (1 −1 1 −1 1)T

.

The matrix W has the lines:

0 - 4 4 - 4 0; - 4 0 - 4 4 0; 4 - 4 0 - 4 0; - 4 4 - 4 0 0; 0 0 0 0 0 .

B. Now we apply the Hopfield algorithm.

Example 1. Using a Hopfield network, store and recall information for

the input data:n = 4, N = 2,

I(x) =

{
x(1) = (1 −1 1 1)T

x(2) = (−1 1 −1 1)T
.

and the text vectors xr1 = (1 1 − 1 1)T , xr2 = (−1 − 1 1 1)T .



On the Hopfield algorithm. Foundations and examples 43

Solution. The Hamming distances are

DH[x(1), xr1] = 2, DH[x(2), xr1] = 1

DH[x(1), xr2] = 1, DH[x(2), xr2] = 2.

The weight matrix W = W4x4 is W =




0 −2 2 0

−2 0 −2 0

2 −2 0 0

0 0 0 0




.

For test vector xr1, the results of the Hopfield algorithm are contained

in the Table 1.

xr1

1 2 3 4 1 2 3

1 0 -2 2 0 1 -1 -1

2 -2 0 -2 0 1 1 1

3 2 -2 0 0 -1 -1 -1

4 0 0 0 0 1 1 1

EF 4 -12 -12

We see that

xr1(1) 6= xr1(2) = xr1(3);STOP ;

xr1(3) = x(2).

Hence, by the test vector xr1 we have found the input vector x(2). EF

means the Energy Function value, computed accordingly with formula (9).

This function decreases because

EF [xr1(1)] = 4, EF [xr1(2)] = −12,

EF [xr1(3)] = EF [x(2)] = −12.
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For test vector xr2, the results of the Hopfield algorithm are contained

in the Table 2.

xr2

1 2 3 4 1 2 3

1 0 -2 2 0 -1 1 1

2 -2 0 2 0 -1 -1 -1

3 2 -2 0 0 1 1 1

4 0 0 0 0 1 1 1

EF 4 -12 -12

We see that

xr2(1) 6= xr2(2) = xr2(3);STOP ;

xr2(3) = x(1).

Hence, by the test vector xr2 we have found the input vector x(1). The

Energy Function decreases because

EF [xr2(1)] = 4, EF [xr2(2)] = −12,

EF [xr2(3)] = EF [x(1)] = −12.

Example 2. Using a Hopfield network, store and recall information for

the input data N = 6, N = 2,

I(x) =

{
x(1) = (1 −1 −1 1 −1 1)T

x(2) = (1 1 1 −1 −1 −1)T
,

and the test vectors

xr1 = (1 1 1 1 − 1 1)T

xr2 = (−1 1 1 − 1 1 − 1)T

xr3 = (1 1 1 − 1 1 − 1)T
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xr4 = (1 1 − 1 1 − 1 1)T

xr5 = (1 − 1 1 1 − 1 1)T

Solution. The weight matrix W = W6x6 is the following

W =




0 0 0 0 −2 0

0 0 2 −2 0 −2

0 2 0 −2 0 −2

0 −2 −2 0 0 2

−2 0 0 0 0 0

0 −2 −2 2 0 0




.

We recommend to compute the complement set I(xc) and all the comple-

ment of the test vectors xrkc. The Hamming distances are

DH[x(1), xr1] = 2, DH[x(2), xr1] = 2

DH[x(1), xr2] = 6, DH[x(2), xr2] = 2

DH[x(1), xr3] = 5, DH[x(2), xr3] = 1

DH[x(1), xr4] = 1, DH[x(2), xr4] = 3

DH[x(1), xr5] = 1, DH[x(2), xr5] = 3.

For test vector xr1 (or r1), the results of the Hopfield algorithm are
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contained in the Table 3.

r1

1 2 3 4 5 6 1 2 3 4 4c

1 0 0 0 0 -2 0 1 1 1 1 -1

2 0 0 2 -2 0 -2 1 -1 1 -1 1

3 0 2 0 -2 0 -2 1 -1 1 -1 1

4 0 -2 -2 0 0 2 1 -1 1 -1 1

5 -2 0 0 0 0 0 -1 -1 -1 -1 1

6 0 -2 -2 2 0 0 1 -1 1 -1 1

EF 4 4 4 4 4

(In some places of the table, a negative number −p is written on a

column as - and p).

We see the cycling repetition

xr1(1) 6= xr1(2) 6= xr1(3) 6= xr1(4),

xr1(1) = xr1(3), xr1(2) = xr1(4);STOP ;

the algorithm fails ; neither xr1(4) nor xr1(4)c belong to I(x), I(xc). The

Energy Function has the constant positive value 4. The algorithm is unsuc-

cessfully.

For test vector xr2 (or r2), the results of the Hopfield algorithm are
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contained in the Table 4.

r2

1 2 3 4 5 6 1 2 2c

1 0 0 0 0 -2 0 -1 -1 1

2 0 0 2 -2 0 -2 1 1 -1

3 0 2 0 -2 0 -2 1 1 -1

4 0 -2 -2 0 0 2 -1 -1 1

5 -2 0 0 0 0 0 1 1 -1

6 0 -2 -2 2 0 0 -1 -1 1

EF -28 -28 -28

We see the repetition

xr2(1) = xr2(2);STOP ;

xr2(2) 6∈ I(x), but xr2(2) ∈ I(xc) and so we find the vector x(1) from input

set.

The algorithm is successfully.

For test vector xr3 (or r3), the results of the Hopfield algorithm are

contained in the Table 5.

r3

1 2 3 4 5 6 1 2 3 2c 3c

1 0 0 0 0 -2 0 1 -1 1 1 -1

2 0 0 2 -2 0 -2 1 1 1 -1 -1

3 0 2 0 -2 0 -2 1 1 1 -1 -1

4 0 -2 -2 0 0 2 -1 -1 -1 1 1

5 -2 0 0 0 0 0 1 -1 1 1 -1

6 0 -2 -2 2 0 0 -1 -1 -1 1 1

EF -20 -20 -20 -20 -20
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We see the cycling repetition

xr3(1) = xr3(3);STOP ;

neither xr3(3) nor x3(3)c belong to I(x) and I(x)c. The algorithm is un-

successfully.

For test vector xr4 ( or r4), the results of the Hopfield algorithm are

contained in the Table6.

r4

1 2 3 4 5 6 1 2 3

1 0 0 0 0 -2 0 1 1 1

2 0 0 2 -2 0 -2 1 -1 -1

3 0 2 0 -2 0 -2 -1 -1 -1

4 0 -2 -2 0 0 2 1 1 1

5 -2 0 0 0 0 0 -1 -1 -1

6 0 -2 -2 2 0 0 1 1 1

EF -4 -26 -26

We see the repetition

xr4(2) = xr4(3);STOP ;

xr4(3) = x(1) and so we find the vector x(1). The Energy Function de-

creases because EF [xr4(1)] = −4, EF [xr4(2)] = −26.

The algorithm is successfully.

For test vector xr5 ( or r5), the results of the Hopfield algorithm are
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contained in the Table 7.

r5

1 2 3 4 5 6 1 2 3

1 0 0 0 0 -2 0 1 1 1

2 0 0 2 -2 0 -2 -1 -1 -1

3 0 2 0 -2 0 -2 1 -1 -1

4 0 -2 -2 0 0 2 1 1 1

5 -2 0 0 0 0 0 -1 -1 -1

6 0 -2 -2 2 0 0 1 1 1

EF -4 -28 -28

We see the repetition

xr5(2) = xr5(3);STOP ;

xr5(3) = x(1) and so we find the vector x(1). The Energy Function de-

creases because

EF [xr5(1)] = −4, EF [xr5(2)] = −28.

The algorithm is successfully.
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