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Abstract

From the point of view of physical applications, as well as from

the viewpoint of theory, it is very important to know how to solve

the problem concerned with the presence of zeros of the solution y(x)

of the equation p0(x)y′′ + p1(x)y′ + p2(x)y = 0 in the interval (a, b),

i.e., the values of x ∈ (a, b), for which the solution y(x) turns into

zero. That is the subject of the paper.
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Let the equation

(1) p0(x)y′′ + p1(x)y′ + p2(x)y = 0, x ∈ (a, b),

for which the solution y(x) turns into zero. Let us consider an elementary

second-order equation with constant coefficients

y′′ + qy = 0, q = const.

If q ≤ 0, then every solution of this equation can vanish throughout the in-

terval −∞ < x < +∞ at no more then one point. For q > 0 every solution

y = C1 cos
√

qx + C2 sin
√

qx = A sin
(√

qx + δ
)
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has an infinite number of zeros, the distance between which is
π
√

q
. i.e. the

smaller the larger q is.

Definition 1. The solution y(x) of a differential equation is said to be

nonoscillating in a given interval if in that interval it has not more than one

zero; otherwise the solution is oscillating.

Thus an equation of the form y′′ + qy = 0 (q = const) has solutions

nonoscillating in any interval if q ≤ 0, and the solutions oscillating in a

sufficiently large interval if q > 0.

Let us generalize this result to a second-order equation with variable

coefficients. We assume that the coefficients of the equation are real and

study only real solutions of such equations. We consider an equation of the

form

(2) y′′ + q(x)y = 0,

to which any equation of the form (1) can be reduced.

Theorem 1.1 If q(x) ≤ 0 everywhere in the interval (a, b), then all solu-

tions of the equation

y′′ + q(x)y = 0

are nonoscillating in the interval (a, b).

Here is a geometrical interpretation of the theorem. We assume that

some solution y1(x) 6≡ 0 of equation (2) has at least two zeros

-
x

6
y

ξx0 x1

y = y1(x)

Fig. 1

on the interval (a, b). Let them be x0 and x1, x0 < x1, and let the function

y1(x) have no other zeros on the interval (x0, x1) (fig. 1). Then y1(x) being

a continuous function, retains a constant sign in the interval (x0, x1). We

assume, for definitness, that y1(x) > 0 in (x0, x1) (otherwise we would have

taken a solution −y1(x)).
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At a certain point ξ ∈ (x0, x1) the function y1(x) possesses a positive

maximum; consequently, in some neighbourhood of the point ξ we have

y′′(x) < 0. On the other hand, if q(x) ≤ 0 on (a, b), then it follows from

equation (2) that y′′
1
(x) ≥ 0 everywhere in (x0, x1). The contradiction ob-

tained indicates that our assumption is wrong and all the solutions of the

equation are nonoscillating.

Theorem 1.2 (Sturm′s separation theorem) (see [2]) If x0 and x1 are two

succesive zeros of the solution y1(x) of the differential equation

(2) y′′ + q(x)y = 0,

then there is exactly one zero between x0 and x1 in any other linearly in-

dependent solution y2(x) of the some equation; in short, the zeros of two

linearly independent solutions of equation (2) separate each other.

Theorem 1.3 (comparison theorem) Suppose we have two equations

(4) y′′ + q1(x)y = 0

and

(5) z′′ + q2(x)z = 0.

If q1(x) ≥ q2(x) in the interval (a, b), then there is at least two zeros of any

solution y(x) of equation (4).

When the comparison theorem is used, an equation with constant coef-

ficients is usually taken as one of the equation (4) or (5).

Given an equation

(6) y′′ + q(x)y = 0,

in which q(x) > 0 on the interval [a, b] and the function q(x) is continuous

on it. Assume that M = max
a≤x≤b

q(x) and m = min
a≤x≤b

q(x). Let M > m so

that q(x) 6≡ const. on [a, b]. Taking an equation y′′ + my = 0 as equation

(4), and the given equation (6) as (5), we get the following result: the dis-

tance between two successive zeros of the solution of equation (6) as (4),

and an equation y′′ +My = 0 as (5), we infer that the distance between two

successive zeros of the solution of equation (6) is not smaller then π/
√

M .

This theorem estimates from above and from below the distances be-

tween the zeros of the oscillating solutions of differential equations. We can

also show that if lim
x→∞

q(x) = q > 0, then any solution of equation (6) is
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infinitely oscillating, and the distance between the successive zeros tends to
π
√

q
. For example, for Bessel′s equation

x2y′′ + xy′ + (x2 − ν2)y = 0, x > 0,

setting y = x−1/2z, we obtain

z′′ +

(

1 − ν2 − 1/4

x2

)

z = 0.

For a sufficiently large x the expression 1− ν2 − 1/4

x2
can be made arbitrar-

ily close to unity. Therefore, for sufficiently large values of x the distance

between successive zeros of the solutions of Bessel′s equation is arbitrarily

close to π.

Application (see [1]). Let the equation

(7) y′′ + xy = 0, x > 0,

which is encountered in various applications in quantum mechanics, and

cannot be integrated by elementary methods. It can be showed that with

an infinite growth of x the successive zeros of every solution of equation (7)

tend to each other indefinitely.
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Str. Dr. I. Raţiu, nr. 5–7
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