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Abstract

We show that the function x → [Γ(x+1)]1/x

x[Γ(x+2)]1/(x+1) is logarithmi-

cally completely monotonic on (0,∞). This answers a question by

A.Vernescu.
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1 Introduction

The classical gamma function

Γ(x) =

∫

∞

0

tx−1e−t dt (x > 0)
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is one of the most important functions in analysis and its applications.

The history and the development of this function are described in detail in

[12]. The psi or digamma function, the logarithmic derivative of the gamma

function, and the polygamma functions can be expressed [16, p. 16] as

ψ(x) =
Γ′(x)

Γ(x)
= −γ +

∫

∞

0

e−t − e−xt

1 − e−t
dt,

ψ(n)(x) = (−1)n+1

∫

∞

0

tn

1 − e−t
e−xt dt

for x > 0 and n ∈ N, where γ = 0.57721566490153286 . . . is the Euler-

Mascheroni constant.

There exists a very extensive literature on these functions. In particular,

inequalities, monotonicity and complete monotonicity properties for these

functions have been published. Please refer to the papers [1, 2, 3] and

the references therein.Recall that a function f is said to be completely

monotonic on an interval I if f has derivatives of all orders on I and

(1) (−1)nf (n)(x) ≥ 0

for x ∈ I and n ≥ 0. Let C denote the set of completely monotonic functions.

A positive function f is said to be logarithmically completely monotonic

on an interval I if its logarithm ln f satisfies

(2) (−1)k[ln f(x)](k) ≥ 0

for k ∈ N on I. Let L on (0,∞) stand for the set of logarithmically com-

pletely monotonic functions.

A function f on (0,∞) is called a Stieltjes transform if it can be written

in the form

(3) f(x) = a +

∫

∞

0

dµ(s)

s + x
,
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where a is a nonnegative number and µ a nonnegative measure on [0,∞)

satisfying
∫

∞

0

1

1 + s
dµ(s) < ∞.

The set of Stieltjes transforms is denoted by S.

The notion “logarithmically completely monotonic function” was posed

explicitly in [19] and published formally in [18] and a much useful and

meaningful relation L ⊂ C between the completely monotonic functions and

the logarithmically completely monotonic functions was proved in [18, 19].

Motivated by the papers [19, 20], among other things, it is proved in [8]

that S \ {0} ⊂ L ⊂ C. The class of logarithmically completely mono-

tonic functions can be characterized as the infinitely divisible completely

monotonic functions which are established by Horn in [14, Theorem 4.4]

and restated in [8, Theorem 1.1]. There have been a lot of literature

about the (logarithmically) completely monotonic functions, for example,

[4, 5, 7, 8, 9, 10, ?, 13, 15, 18, 19, 20, 21] and the references therein.

When studying a problem on upper bound for permanents of (0, 1)–

matrices, in 1964 H. Minc and L. Sathre [17] discovered several noteworthy

inequalities involving (n!)1/n. Their main result states: If φ(n) = (n!)1/n,

then

(4) 1 < n
φ(n + 1)

φ(n)
− (n − 1)

φ(n)

φ(n − 1)

holds for all integerers n ≥ 2. To prove the inequality (4), they established

the function

(5) h(x) = x
[Γ(x + 2)]1/(x+1)

[Γ(x + 1)]1/x

is strictly concave on [6,∞). In [6] A.Vernescu note that that h is logarith-

mically concave, but did not give its proof. We here consider logarithmically

complete monotonicity of the function 1/h.
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Theorem 1.1. Let the function h defined by (5), then 1/h is logarithmically

completely monotonic in (0,∞).

2 Lemma

Lema 2.1. The function f(x) = 1
[Γ(x+1)]1/x is logarithmically completely

monotonic in (0,∞).

Proof. Using Leibniz’ rule

[u(x)v(x)](n) =
n

∑

k=0

(

n

k

)

u(k)(x)v(n−k)(x),

we obtain

(ln f(x))(n) =
n

∑

k=0

(

n

k

)(

1

x

)(k)

(− ln Γ(x + 1))(n−k)

= −
1

xn+1

n
∑

k=0

(

n

k

)

(−1)kk!xn−kψ(n−k−1)(x + 1)

, −
1

xn+1
g(x).

(6)

g′(x) =
n

∑

k=0

(

n

k

)

(−1)kk!(n − k)xn−k−1ψ(n−k−1)(x + 1)+

+
n

∑

k=0

(

n

k

)

(−1)kk!xn−kψ(n−k)(x + 1) =

=
n−1
∑

k=0

(

n

k

)

(−1)kk!(n − k)xn−k−1ψ(n−k−1)(x + 1)+

+xnψ(n)(x + 1) +
n

∑

k=1

(

n

k

)

(−1)kk!xn−kψ(n−k)(x + 1) =
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=
n−1
∑

k=0

(

n

k

)

(−1)kk!(n − k)xn−k−1ψ(n−k−1)(x + 1)+

+xnψ(n)(x + 1) +
n−1
∑

k=0

(

n

k + 1

)

(−1)k+1(k + 1)!xn−k−1ψ(n−k−1)(x + 1) =

=
n−1
∑

k=0

[(

n

k

)

(n − k) −

(

n

k + 1

)

(k + 1)

]

(−1)kk!xn−k−1ψ(n−k−1)(x + 1)+

+xnψ(n)(x + 1) = xnψ(n)(x + 1) =

= xn(−1)n+1

∫

∞

0

tn

1 − e−t
e−(x+1)t dt.

If n is odd, then for x > 0,

g′(x) > 0 =⇒ g(x) > g(0) = 0 =⇒ (ln f(x))(n) < 0 =⇒

=⇒ (−1)n(ln f(x))(n)(x) > 0.

If n is even, then for x > 0,

g′(x) < 0 =⇒ g(x) < g(0) = 0 =⇒ (ln f(x))(n) > 0 =⇒

=⇒ (−1)n(ln f(x))(n)(x) > 0.

Hence,

(7) (−1)n(ln f(x))(n)(x) > 0

for all real x ∈ (0,∞) and all integers n ≥ 1. The proof is complete.

3 Proofs of theorems

It has been shown [18] that the function [Γ(x+1)]1/x

x
is logarithmically com-

pletely monotonic on (0,∞). By Lemma 2.1, the function 1
[Γ(x+1)]1/x is

logarithmically completely monotonic in (−1,∞). From Leibniz’ rule

(−1)n[u(x)v(x)](n) =
n

∑

k=0

(

n

k

)

(−1)ku(k)(x)(−1)n−kv(n−k)(x),
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it is easy to see that the product of logarithmically completely monotonic

functions is also logarithmically completely monotonic. Hence, the function

(8)
1

h(x)
=

[Γ(x + 1)]1/x

x

1

[Γ(x + 2)]1/(x+1)

is logarithmically completely monotonic on (0,∞). The proof of Theorem

1.1 is complete.
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