Some Dunwoody parameters and cyclic presentations ${ }^{1}$

Nurullah Ankaralioglu and Huseyin Aydin

Abstract

In this paper, we found the cyclically presented groups obtained from the word w generated with some Dunwoody parameters.

2000 Mathematics Subject Classification: 57M05, 20F38
Key words and phrases: Cyclic presentation, Sieradski, Dunwoody, Parameter.

1 Introduction

Let F_{n} be the free group on free generators $x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}$. Let $\theta: F_{n} \rightarrow F_{n}$ be the automorphism such that

$$
\theta\left(x_{i}\right)=x_{i+1}, i=0,1, \ldots, n-2, \theta\left(x_{n-1}\right)=x_{0} .
$$

For $w \in F_{n}, G_{n}(w)$ is defined as $G_{n}(w)=F_{n} / R$ where R is the normal closure in F_{n} of the set

$$
\left\{w, \theta(w), \theta^{2}(w), \ldots, \theta^{n-1}(w)\right\}[1]
$$

For a reduced word $w \in F_{n}$, the cyclically presented group $G_{n}(w)$ is given by

$$
G_{n}(w)=<x_{0}, x_{1}, \ldots, x_{n-1} \mid w, \theta(w), \theta^{2}(w), \ldots, \theta^{n-1}(w)>[2] .
$$

[^0]

Figure 1
Definition 1. A group G is said to have a cyclic presentation if $G \cong G_{n}(w)$ for some n and w [3].

Definition 2. A generalized Sieradski group is defined by the cyclic presentation

$$
S(r, n)=<x_{1} x_{2}, \ldots, x_{n} \mid x_{i} x_{i+2} \ldots x_{i+2 r-2}=x_{i+1} x_{i+3} \ldots x_{i+2 r-3}>
$$

(indices are again modulo n) for any two positive integers r and $n \geq 2$. For $r=2$, these $S(r, n)$ are the Sieradski groups [4].

Let a, b, c, n be integers such that $n>0, a, b, c \geq 0$ and $a+b+c>0$. Let $\bar{\tau}(a, b, c)$ be the graph shown in Figure 1. This is an infinite graph with an automorphism θ such that $\theta\left(u_{n}\right)=u_{n+1}$ and $\theta\left(v_{n}\right)=v_{n+1}$. The labels indicate the number of edges joining a pair of vertices. Thus, there are a edges joining u_{1} and u_{2}. We see that the $\bar{\tau}(a, b, c)$ is d-regular where $d=2 a+b+c$. Let $\tau_{n}=\tau_{n}(a, b, c)$ denote the graph obtained from $\bar{\tau}(a, b, c)$ by identifying all edges and vertices in each orbit of θ^{n}. Thus τ_{n} has $2 n$ vertices [5].

We say that the 6 -tuple (a, b, c, r, s, n) has property M if it corresponds to the Heegaard diagram of a 3-manifold. An algorithm determining which 6 -tuples have property M is now described. Put $d=2 a+b+c$ and let

$$
X=\{-d,-d+1, \ldots,-1,1,2, \ldots, d\} .
$$

Let α, β be the permutations of X defined as follows:

$$
\begin{aligned}
& \alpha=(1, d)(2, d-1) \ldots(a, d-a+1)(a+1,-a-c-1)(a+2,-a-c-2) \ldots \\
& (a+b,-a-c-b)(a+b+1,-a-1)(a+b+2,-a-2) \ldots \\
& (a+b+c,-a-c)(-1,-d)
\end{aligned}
$$

and
$\beta(j)= \begin{cases}-(j+r) & \text { if } j>0 \text { and } j+r \leq d \text { or } j<0 \text { and } j+r<0 \\ -(j+r-d) & \text { if } j+r \geq 0\end{cases}$
The following theorem characterizes the 6 -tuples (a, b, c, r, s, n) that have property M. Detail and the proof of this theorem can be found in [5].

Theorem 1.1. Let $d=2 a+b+c$ be odd. The 6 -tuple (a, b, c, r, s, n) has property M if and only if the following two conditions hold simultaneously:

- $\alpha \beta$ has two cycles of length d
- $p s+q \equiv 0(\bmod n)$.

Here p is the difference between the number of arrows pointing down the page and the number of arrows pointing up, whereas q is the number of arrows pointing from left to right minus the number of arrows pointing from right to left in the oriented path determined by $\alpha \beta$. The entries in the first cycle of $\alpha \beta$ contain one vertex from each line segment of the diagram. There exists an integer s such that $p s+q \equiv 0(\bmod n)$. The first cycle of $\alpha \beta$ and the value of s can also be used to calculate the word w of the corresponding cyclic presentation.

2 Materials and Methods

We can now state our theorems:
Theorem 2.1. The cyclically presented groups obtained from the word w generated with Dunwoody parameters $(1, b, 0,2)$ are isomorphic to the groups $S((d+1) / 2, d)$ when b is an odd positive integer and $d=2 a+b+c$.

Proof. Suppose for now that $d>3$. In this case, there are 2 horizontal arcs and b diagonal arcs. Thus, the terms in the first cycle of $\alpha \beta$ for 6 -tuple $(1, b, 0,2, s, n)$ have the following form

$$
(1,-2,-4, \ldots,-d+1,-1, b, b-2, b-4, \ldots, 3)
$$

Figure 2. Heegaard diagram for the 6 -tuble ($1, b, 0,2, s, n$)
According to Figure 2, for the 6 -tuple $(1, b, 0,2, s, n)$, since always $p=-1$ and $q=1$, from $p s+q \equiv 0(\bmod n), s$ always takes value 1 . Thus, the defining word w corresponding to the 6 -tuple ($1, b, 0,2, s, n$), calculated using the first cycle of $\alpha \beta$ and the value of s, has the following form

$$
\begin{equation*}
x_{d-1}^{-1} x_{d-3}^{-1} x_{d-5}^{-1} \cdots x_{d-b}^{-1} x_{0}^{-1} x_{1} x_{3} x_{5} \cdots x_{b} \tag{1}
\end{equation*}
$$

For this reduced word w, the cyclically presented group $G_{d}(w)$ is

$$
\begin{aligned}
G_{d}(w) & =G_{d}\left(x_{d-1}^{-1} x_{d-3}^{-1} x_{d-5}^{-1} \cdots x_{d-b}^{-1} x_{0}^{-1} x_{1} x_{3} x_{5} \cdots x_{b}\right) \\
& =<x_{1} x_{2}, \ldots, x_{d} \mid x_{i} x_{i+2} \cdots x_{i+d-5} x_{i+d-3} x_{i+d-1} \\
& =x_{i+1} x_{i+3} x_{i+5} \cdots x_{i+b}>
\end{aligned}
$$

where subscripts are understood to be reduced modulo d to lie in the set $\{1,2, \ldots, d\}$. It can be easily seen that the groups $G_{d}(w)$ have exactly the same presentation as the groups, where

$$
S(r, n)=<x_{1} x_{2}, \ldots, x_{n} \mid x_{i} x_{i+2} \ldots x_{i+2 r-2}=x_{i+1} x_{i+3} \ldots x_{i+2 r-3}>
$$

(indices are modulo n) for any two positive integers r and $n \geq 2$, given by Definition 2. We get

$$
x_{i+d-1}=x_{i+2 r-2}
$$

from corresponding terms of $G_{d}(w)$ and $S(r, n)$ and also $i+d-1=i+2 r-2$. Thus, $r=(d+1) / 2$.
Assume now that $d=3$. Fort his case, the terms in the first cycle of $\alpha \beta$ of the 4 -tuple $(1,1,0,2)$ are

$$
(1,-2,-4, \ldots,-d+1,-1) .
$$

Notice that when $d=3$, from (1), the defining word w can be written as $w=x_{2}^{-1} x_{0}^{-1} x_{1}$. For this reduced word w, the cyclically presented group $G_{3}(w)$ is

$$
G_{3}(w)=G_{3}\left(x_{2}^{-1} x_{0}^{-1} x_{1}\right)=<x_{0}, x_{1}, x_{2} \mid x_{i} x_{i+2}=x_{i+1}, i \equiv 0 \quad(\bmod 3)>.
$$

This is $S((d+1) / 2, d)$, so the proof is complete.
Theorem 2.2. The cyclically presented group obtained from the word w generated with Dunwoody parameters $(1, b, 0, d-2)$ has the cyclic presentation
$<x_{1} x_{2}, \ldots, x_{d} \mid x_{i+d-1} x_{i+d-3} x_{i+d-5} \cdots x_{i+2} x_{i}=x_{i+b} x_{i+b-2} \cdots x_{i+5} x_{i+3} x_{i+1}>$ when b is an odd positive integer and $d=2 a+b+c$.

Proof. In this case, there are 2 horizontal arcs and b diagonal arcs. Thus, the terms in the first cycle of $\alpha \beta$ for 6 -tuple ($1, b, 0, d-2, s, n$) have the following form

$$
(1,-b,-b+2,-b+4, \ldots,-3,-1,2,4, \ldots, d-1)
$$

Figure 3. Heegaard diagram for the 6 -tuble $(1, b, 0, d-2, s, n)$

According to Figure 3, for the 6-tuple ($1, b, 0, d-2, s, n$), since always $p=1$ and $q=3$, from $p s+q \equiv 0(\bmod n)$, s always takes value -3 . Thus, the defining word w corresponding to the 6 -tuple ($1, b, 0, d-2, s, n$), calculated using the first cycle of $\alpha \beta$ and the value of s, has the following form

$$
x_{1}^{-1} x_{3}^{-1} x_{5}^{-1} \cdots x_{b}^{-1} x_{d-1} x_{d-3} x_{d-5} \cdots x_{d-b} x_{0} .
$$

For this reduced word w, the cyclically presented group $G_{d}(w)$ is

$$
\begin{aligned}
G_{d}(w) & =G_{d}\left(x_{1}^{-1} x_{3}^{-1} x_{5}^{-1} \cdots x_{b}^{-1} x_{d-1} x_{d-3} x_{d-5} \cdots x_{d-b} x_{0}\right) \\
& =<x_{1} x_{2}, \ldots, x_{d} \mid x_{i+d-1} x_{i+d-3} x_{i+d-5} \cdots x_{i+2} x_{i}= \\
& =x_{i+b} x_{i+b-2} \cdots x_{i+5} x_{i+3} x_{i+1}>
\end{aligned}
$$

where all indices are modulo d. This completes the proof.
It is easy to see that the cases $(1, b, 0,2)$ and $(1,0, b, 2)$, and $(1, b, 0, d-2)$ and $(1,0, b, d-2)$, where b is an odd positive integer, are really the same.

Theorem 2.3. The cyclically presented group obtained from the word w generated with Dunwoody parameters ($a, 1,0, a$) has the cyclic presentation

$$
<x_{1} x_{2}, \ldots, x_{d} \mid x_{i+d-1} x_{i}=x_{i+d-2} x_{i+d-3}^{-1} x_{i+d-4} \cdots x_{i+3} x_{i+2}^{-1} x_{i+1}>
$$

when a is a positive integer and $d=2 a+b+c$.

Proof. In this case, there are $2 a$ horizontal arcs and 1 diagonal arc. Thus, the terms in the first cycle of $\alpha \beta$ for the 6 -tuple ($a, 1,0, a, s, n$) have the following form

$$
(1,-a,-a+1,3,-a+2, \ldots,-2, d-a-1,-1, d-a) .
$$

Figure 4. Heegaard diagram for the 6 -tuble ($a, 1,0, a, s, n$)
According to Figure 4 , for the 6 -tuple ($a, 1,0, a, s, n$), since always $p=1$ and $q=d$, from $p s+q \equiv 0(\bmod n), s$ always takes value -d . Thus, the defining word w corresponding to the 6 -tuple ($a, 1,0, a, s, n$), calculated using the first cycle of $\alpha \beta$ and the value of s, has the following form

$$
x_{1}^{-1} x_{2} x_{3}^{-1} \cdots x_{d-4}^{-1} x_{d-3} x_{d-2}^{-1} x_{d-1} x_{0} .
$$

For this reduced word w, the cyclically presented group $G_{d}(w)$ is

$$
\begin{aligned}
G_{d}(w) & =G_{d}\left(x_{1}^{-1} x_{2} x_{3}^{-1} \cdots x_{d-4}^{-1} x_{d-3} x_{d-2}^{-1} x_{d-1} x_{0}\right) \\
& =<x_{1} x_{2}, \ldots, x_{d}\left|x_{i+d-1} x_{i}=x_{i+d-2} x_{i+d-3}^{-1} x_{i+d-4} \cdots x_{i+3} x_{i+2}^{-1} x_{i+1}\right\rangle
\end{aligned}
$$

where all indices are modulo d. We are done.
Theorem 2.4. The cyclically presented group obtained from the word w generated with Dunwoody parameters $(a, 1,0, a+1)$ has the cyclic presentation

$$
<x_{1} x_{2}, \ldots, x_{d} \mid x_{i+1} x_{i+2}^{-1} x_{i+3} \cdots x_{i+d-4} x_{i+d-3}^{-1} x_{i+d-2}=x_{i} x_{i+d-1}>
$$

when a is a positive integer and $d=2 a+b+c$.

Proof. In this case, there are $2 a$ horizontal arcs and 1 diagonal arc. Thus, the terms in the first cycle of $\alpha \beta$ for the 6 -tuple ($a, 1,0, a+1, s, n$) have the following form

$$
(1,-a-1,-1, a,-2, a-1, \ldots, 3,-a+1,2,-a)
$$

Figure 5. Heegaard diagram for the 6 -tuble ($a, 1,0, a+1, s, n$)
According to Figure 5, for the 6 -tuple ($a, 1,0, a+1, s, n$), since always $p=-1$ and $q=d-2$, from $p s+q \equiv 0(\bmod n), s$ always takes value $d-2$. Thus, the defining word w corresponding to the 6 -tuple ($a, 1,0, a+1, s, n$), calculated using the first cycle of $\alpha \beta$ and the value of s, has the following form

$$
x_{d-1}^{-1} x_{0}^{-1} x_{1} x_{2}^{-1} x_{3} \cdots x_{d-4} x_{d-3}^{-1} x_{d-2} .
$$

For this reduced word w, the cyclically presented group $G_{d}(w)$ is

$$
\begin{aligned}
G_{d}(w) & =G_{d}\left(x_{d-1}^{-1} x_{0}^{-1} x_{1} x_{2}^{-1} x_{3} \cdots x_{d-4} x_{d-3}^{-1} x_{d-2} .\right) \\
& =<x_{1} x_{2}, \ldots, x_{d}\left|x_{i+1} x_{i+2}^{-1} x_{i+3} \cdots x_{i+d-4} x_{i+d-3}^{-1} x_{i+d-2}=x_{i} x_{i+d-1}\right\rangle
\end{aligned}
$$

where all indices are modulo d. This completes the proof.
It is easy to see that the cases $(a, 1,0, a)$ and $(a, 0,1, a)$, and $(a, 1,0, a+1)$ and $(a, 0,1, a+1)$, where a is a positive integer, are really the same.

References

[1] D.L. Johnson, Presentations of Groups, Cambridge University Press, 1990.
[2] L. Graselli, M. Mulazzani, Genus one 1-bridge knots and Dunwoody manifolds., Forum Math. Proc. Camb Philos. Soc., 125, (1999), 51695206.
[3] A. Cavicchioli, B. Ruini, F. Spaggiari, On a Conjecture of M. J. Dunwoody, Algebra Colloquim., 8, (2001), 169-218.
[4] A. Cavicchioli, F. Hegenbarth, A.C. Kim, A Geometric study of Sieradski Groups., Algebra Colloquim, 5, (1998), 203-217.
[5] M.J. Dunwoody, Cyclic Presentations and 3-Manifolds. In Proc. Inter Conf., Groups Korea'94, Walter De Gruyter, Berlin, New York, (1995), 47-55.

Nurullah Ankaralioglu
Department of Mathematics, Faculty of Arts and Sciences, Ataturk University, 25240 Erzurum, Turkey
E-mail: ankarali@atauni.edu.tr
Huseyin Aydin
Department of Mathematics, Faculty of Arts and Sciences, Ataturk University, 25240 Erzurum, Turkey
E-mail: haydin@atauni.edu.tr

[^0]: ${ }^{1}$ Received 18 July, 2007
 Accepted for publication (in revised form) 13 December, 2007

