General Mathematics Vol. 16, No. 2 (2007), 29-35

Quasi-Hadamard product of certain classes of uniformly analytic functions¹

B.A. Frasin

Abstract

In this paper, we establish certain results concerning the quasi-Hadamard product of certain classes of uniformly analytic functions.

2000 Mathematics Subject Classification: 30C45.

Key words: Analytic functions, Quasi-Hadamard product, uniformly analytic functions.

1 Introduction and definitions

Throughout the paper, let the functions of the form

(1.1)
$$f(z) = a_1 z - \sum_{n=2}^{\infty} a_n z^n \qquad (a_1 > 0, a_n \ge 0),$$

¹Received 2 July, 2007

Accepted for publication (in revised form) 3 January, 2008

(1.2)
$$g(z) = b_1 z - \sum_{n=2}^{\infty} b_n z^n \qquad (b_1 > 0, \ b_n \ge 0),$$

(1.3)
$$f_i(z) = a_{1,i}z - \sum_{n=2}^{\infty} a_{n,i}z^n \quad (a_{1,i} > 0, \ a_{n,i} \ge 0),$$

and

(1.4)
$$g_j(z) = b_{1,j}z - \sum_{n=2}^{\infty} b_{n,j}z^n \qquad (b_{1,j} > 0, \ b_{n,j} \ge 0),$$

be analytic in the open unit disc $\mathcal{U} = \{z : |z| < 1\}$.

Let $ST_0(\alpha, k)$ denote the class of functions f(z) defined by (1.1) and satisfy the condition

(1.5)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} \ge k \left|\frac{zf'(z)}{f(z)} - 1\right| + \alpha. \quad (z \in \mathcal{U})$$

for some k $(0 \le k < \infty)$ and α $(0 \le \alpha < 1)$. Also denote by $UCT_0(\alpha, k)$ the class of functions f(z) defined by (1.1) and satisfy the condition

(1.6)
$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} \ge k \left|\frac{zf''(z)}{f'(z)}\right| + \alpha. \quad (z \in \mathcal{U})$$

for some k $(0 \leq k < \infty)$ and α $(0 \leq \alpha < 1)$. The classes $ST_0(\alpha, k)$ and $UCT_0(\alpha, k)$ are of special interest for it contains many well-known classes of analytic functions. For example and when $a_1 = 1$ the classes $ST_0(\alpha, k) \equiv k - S_p T(\alpha)$ and $UCT_0(\alpha, k) \equiv k - UCV(\alpha)$ were introduced and studied by Bharati *et al.*[1]. Also, the classes $ST_0(0, k) \equiv k - ST$ and $UCT_0(0, k) \equiv k - UCV$ are, respectively, the subclasses of \mathcal{A} consisting of functions which are k- starlike and k-uniformly convex in \mathcal{U} introduced by Kanas and Winsiowska ([3, 4])(see also the work of Kanas and Srivastava [5], Goodman ([9, 10]), Rønning ([12, 13]), Ma and Minda [11] and Gangadharan et al.[8]). For k = 0, the classes $ST_0(\alpha, 0) \equiv ST_0^*(\alpha)$ and

30

 $UCT_0(\alpha, 0) \equiv C_0(\alpha)$ are, respectively, the well-known classes of *starlike* functions of order α ($0 \leq \alpha < 1$) and *convex* of order α ($0 \leq \alpha < 1$) in \mathcal{U} (see [14]).

Using similar arguments as given by Bharati *et al.*[1], one can prove the following analogous results for functions in the classes $ST_0(\alpha, k)$ and $UCT_0(\alpha, k)$.

A function $f(z) \in ST_0(\alpha, k)$ if and only if

(1.7)
$$\sum_{n=2}^{\infty} [n(1+k) - (k+\alpha)]a_n \le (1-\alpha)a_1;$$

and $f(z) \in UCT_0(\alpha, k)$ if and only if

(1.8)
$$\sum_{n=2}^{\infty} n[n(1+k) - (k+\alpha)]a_n \le (1-\alpha)a_1.$$

We now introduce the following class of analytic functions which plays an important role in the discussion that follows.

A function $f(z) \in ST_m(\alpha, k)$ if and only if

(1.9)
$$\sum_{n=2}^{\infty} n^m [n(1+k) - (k+\alpha)] a_n \le (1-\alpha)a_1,$$

where $k \ (0 \le k < \infty)$, $\alpha \ (0 \le \alpha < 1)$ and k is any fixed nonnegative real number.

Evidently, $ST_1(\alpha, k) \equiv UCT_0(\alpha, k)$ and, for m = 0, $ST_m(\alpha, k)$ is identical to $ST_0(\alpha, k)$. Further, $ST_m(\alpha, k) \subset ST_h(\alpha, k)$ if $m > h \ge 0$, the containment being proper. Whence, for any positive integer m, we have the inclusion relation

$$ST_m(\alpha, k) \subset ST_{m-1}(\alpha, k) \subset \ldots \subset ST_2(\alpha, k) \subset UCT_0(\alpha, k) \subset ST_0(\alpha, k).$$

We note that for every nonnegative real number m, the class $ST_m(\alpha, k)$ is nonempty as the functions of the form

$$f(z) = a_1 z - \sum_{n=2}^{\infty} \frac{(1-\alpha)a_1}{n^m [n(1+k) - (k+\alpha)]} \lambda_n z^n,$$

B.A. Frasin

where $0 \le k < \infty$, $0 \le \alpha < 1$, $a_1 > 0$, $\lambda_n \ge 0$ and $\sum_{n=2}^{\infty} \lambda_n \le 1$, satisfy the inequality (1.9).

Let us define the quasi-Hadamard product of the functions f(z) and g(z) by

(1.10)
$$f * g(z) = a_1 b_1 z - \sum_{n=2}^{\infty} a_n b_n z^n$$

Similarly, we can define the quasi-Hadamard product of more than two functions.

In this paper, we establish certain results concerning the quasi-Hadamard product of functions in the classes $ST_m(\alpha, k)$, $ST_0(\alpha, k)$ and $UCT_0(\alpha, k)$ analogous to the results Kumar ([6, 7])(see also [2]).

2 Main Theorem

Theorem. Let the functions $f_i(z)$ defined by (1.3) be in the class $UCT_0(\alpha, k)$ for every i = 1, 2, ..., r; and let the functions $g_i(z)$ defined by (1.4) be in the class $ST_0(\alpha, k)$ for every j = 1, 2, ..., s. Then the quasi-Hadamard product $f_1 * f_2 * ... * f_r * g_1 * g_2 * ... * g_s(z)$ belongs to the class $ST_{2r+s-1}(\alpha, k)$. **Proof.** Let $h(z) := f_1 * f_2 * ... * f_r * g_1 * g_2 * ... * g_s(z)$, then

(2.11)
$$h(z) = \left\{\prod_{i=1}^{r} a_{1,i} \prod_{j=1}^{s} b_{1,j}\right\} z - \sum_{n=2}^{\infty} \left\{\prod_{i=1}^{r} a_{n,i} \prod_{j=1}^{s} b_{n,j}\right\} z^{n}.$$

We need to show that

$$\sum_{n=2}^{\infty} \left[n^{2r+s-1} \{ n(1+k) - (k+\alpha) \} \left\{ \prod_{i=1}^{r} a_{n,i} \prod_{j=1}^{s} b_{n,j} \right\} \right]$$

(2.12)
$$\leq (1-\alpha) \left\{ \prod_{i=1}^{r} a_{1,i} \prod_{j=1}^{s} b_{1,j} \right\}$$

32

Since $f_i(z) \in UCT_0(\alpha, k)$, we have

(2.13)
$$\sum_{n=2}^{\infty} n[n(1+k) - (k+\alpha)]a_{n,i} \le (1-\alpha)a_{1,i}$$

for every $i = 1, 2, \ldots, r$. Therefore,

$$a_{n,i} \le \left[\frac{1-\alpha}{n[n(1+k)-(k+\alpha)]}\right]a_{1,i}$$

which implies that

$$(2.14) a_{n,i} \le n^{-2} a_{1,i}$$

for every i = 1, 2, ..., r. Similarly, for $g_j(z) \in ST_0(\alpha, k)$, we have

(2.15)
$$\sum_{n=2}^{\infty} [n(1+k) - (k+\alpha)] b_{n,j} \le (1-\alpha) b_{1,j}.$$

for every $j = 1, 2, \ldots, s$. Hence we obtain

$$(2.16) b_{n,j} \le n^{-1} b_{1,j}$$

for every j = 1, 2, ..., s.

Using (2.14) for $i=1,2,\ldots,r,$ (2.16) for $j=1,2,\ldots,s-1,$ and (2.15) for j=s , we obtain

$$\begin{split} &\sum_{n=2}^{\infty} \left[n^{2r+s-1} [n(1+k) - (k+\alpha)] \left\{ \prod_{i=1}^{r} a_{n,i} \prod_{j=1}^{s} b_{n,j} \right\} \right] \\ &\leq \sum_{n=2}^{\infty} \left[n^{2r+s-1} [n(1+k) - (k+\alpha)] b_{n,s} \left\{ n^{-2r} n^{-(s-1)} \left(\prod_{i=1}^{r} a_{1,i} \prod_{j=1}^{s-1} b_{1,j} \right) \right\} \right] \\ &= \left(\sum_{n=2}^{\infty} [n(1+k) - (k+\alpha)] b_{n,s} \right) \left(\prod_{i=1}^{r} a_{1,i} \prod_{j=1}^{s-1} b_{1,j} \right) \\ &\leq (1-\alpha) \left\{ \prod_{i=1}^{r} a_{1,i} \prod_{j=1}^{s} b_{1,j} \right\}. \end{split}$$

Hence $h(z) \in ST_{2r+s-1}(\alpha, k)$.

Note that we can prove the above theorem by using using (2.14) for $i = 1, 2, \ldots, r - 1$, (2.16) for $j = 1, 2, \ldots, s$, and (2.13) for i = r.

Taking into account the quasi-Hadamard product functions $f_1(z)$, $f_2(z)$, ..., $f_r(z)$ only, in the proof of the above theorem, and using (2.14) for i = 1, 2, ..., r - 1, and (2.13) for i = r, we obtain

Corollary 1. Let the functions $f_i(z)$ defined by (1.3) be in the class $UCT_0(\alpha, k)$ for every i = 1, 2, ..., r. Then the quasi-Hadamard product $f_1 * f_2 * ... * f_r$ belongs to the class $ST_{2r-1}(\alpha, k)$.

Next, taking into account the quasi-Hadamard product functions $g_1(z)$, $g_2(z), \ldots, g_r(z)$ only, in the proof of the above theorem, and using (2.16) for $j = 1, 2, \ldots, s - 1$, and (2.15) for j = s, we obtain

Corollary 2. Let the functions $g_i(z)$ defined by (1.4) be in the class $ST_0(\alpha, k)$ for every j = 1, 2, ..., s. Then the quasi-Hadamard product $g_1 * g_2 * ... * g_s(z)$ belongs to the class $ST_{s-1}(\alpha, k)$.

References

- R. Bharati, R. Parvatham and A. Swaminathan, On Subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math., 28 (1997), 17-32.
- [2] E. W. Darwish, The Quasi-Hadamard product of certain starlike and convex functions, Appl. Math. Lett. 20 (2007), 692-695.
- [3] S. Kanas and A. Wisniowska, Conic regions and k- uniform convexity, J. Comput. Appl. Math. 105 (1999), 327-336.
- [4] S. Kanas and A. Wisniowska, Conic regions and k- starlike functions, Rev. Roumaine Math. Pures Appl., 45(4)(2000), 647-657.
- [5] S. Kanas and H.M. Srivastava, *Linear operators associated with k-uniformly convex functions*, Integral Transform. Spec. Funct. 9, 121-132, (2000).

- [6] V. Kumar, Hadamard product of certain starlike functions, J. Math. Anal. Appl. 110(1985), 425-428.
- [7] V. Kumar, Quasi-Hadamard product of certain univalent, J. Math. Anal. Appl. 126(1987), 70-77.
- [8] A. Gangadharan, T.N. Shanmugan and H.M. Srivastava, Generalized Hypergeometric functions associated with k-uniformly convex functions, Comput. Math. App. 44 (2002), 1515-1526.
- [9] A.W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56, 87-92, (1991).
- [10] A.W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155, 364-370, (1991).
- [11] W.C. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math. 57 (1992), no.2, 165-175.
- [12] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), no.1, 189-196.
- [13] F. Rønning, On starlike functions associated with parabolic regions, Ann Univ. Mariae Curie-Sklodowska Sect. A 45 (1991), 117-122.
- [14] H. Silverman, Extreme points of univalent functions with two fixed points, Trans. Amer. Math. Soc. 219 (1976), 385-397.

Department of Mathematics, Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan. E-mail address: *bafrasin@yahoo.com*.