On a subclass of analytic functions ${ }^{1}$

Sukhwinder Singh, Sushma Gupta and Sukhjit Singh

Abstract

In the present paper, the authors study the differential inequality $$
\Re\left[\alpha \sqrt[m]{q(z)}+\beta z(\sqrt[m]{q(z)})^{\prime}\right]>\gamma
$$ where $q(z)$ is an analytic function such that $q(0)=1$ and α, β, γ, m be real numbers and its applications to analytic functions in the open unit disc $E=\{z:|z|<1\}$.

Key Words: Univalent function, Starlike function, Convex function, Multiplier transformation.
2000 Mathematical Subject Classification: 30C45.

1 Introduction

Let \mathcal{A}_{p} denote the class of functions of the form $f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}, p \in$ $\mathbb{N}=\{1,2, \ldots$.$\} , which are analytic in the open unit disc E=\{z:|z|<1\}$. We write $\mathcal{A}_{1}=\mathcal{A}$. A function $f \in \mathcal{A}_{p}$ is said to be p-valent starlike of order $\alpha(0 \leq \alpha<p)$ in E if

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, z \in E .
$$

[^0]We denote by $S_{p}^{*}(\alpha)$, the class of all such functions. A function $f \in \mathcal{A}_{p}$ is said to be p-valent convex of order $\alpha(0 \leq \alpha<p)$ in E if

$$
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, z \in E .
$$

Let $K_{p}(\alpha)$ denote the class of all those functions $f \in \mathcal{A}_{p}$ which are multivalently convex of order α in E. Note that $S_{1}^{*}(\alpha)$ and $K_{1}(\alpha)$ are, respectively, the usual classes of univalent starlike functions of order α and univalent convex functions of order $\alpha, 0 \leq \alpha<1$, and will be denoted here by $S^{*}(\alpha)$ and $K(\alpha)$, respectively. We shall use S^{*} and K to denote $S^{*}(0)$ and $K(0)$, respectively which are the classes of univalent starlike (w.r.t. the origin) and univalent convex functions.

For $f \in \mathcal{A}_{p}$, we define the multiplier transformation $I_{p}(n, \lambda)$ as

$$
\begin{equation*}
I_{p}(n, \lambda) f(z)=z^{p}+\sum_{k=p+1}^{\infty}\left(\frac{k+\lambda}{p+\lambda}\right)^{n} a_{k} z^{k},(\lambda \geq 0, n \in \mathbb{Z}) \tag{1}
\end{equation*}
$$

The operator $I_{p}(n, \lambda)$ has been recently studied by Aghalary et.al. [1]. Earlier, the operator $I_{1}(n, \lambda)$ was investigated by Cho and Srivastava [3] and Cho and $\operatorname{Kim}[4]$, whereas the operator $I_{1}(n, 1)$ was studied by Uralegaddi and Somanatha [10]. $I_{1}(n, 0)$ is the well-known Sălăgean [9] derivative operator D^{*}, defined as: $D^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k}, n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ and $f \in \mathcal{A}$.

A function $f \in \mathcal{A}$ is said to belong to the class R if it satisfies the condition

$$
\Re\left[f^{\prime}(z)+z f^{\prime \prime}(z)\right]>0, \quad z \in E
$$

And it is well known that $R \subset S^{*}$.
A function $f \in \mathcal{A}_{p}$ is said to be in the class $S_{n}(p, \lambda, \alpha)$ for all z in E if it satisfies

$$
\Re\left[\frac{I_{p}(n+1, \lambda) f(z)}{I_{p}(n, \lambda) f(z)}\right]>\frac{\alpha}{p},
$$

for some $\alpha(0 \leq \alpha<p, p \in \mathbb{N})$. We note that $S_{0}(1,0, \alpha)$ and $S_{1}(1,0, \alpha)$ are the usual classes $S^{*}(\alpha)$ and $K(\alpha)$ of starlike functions of order α and convex functions of order α, respectively.

In 1989, Owa, Shen and Obradovič [7] obtained a sufficient condition for a function $f \in \mathcal{A}$ to belong to the class $S_{n}(1,0, \alpha)=S_{n}(\alpha)$.

Recently, Li and Owa [5] studied the operator $I_{1}(n, 0)$.
In this paper, the authors study the differential inequality

$$
\Re\left[\alpha \sqrt[m]{q(z)}+\beta z(\sqrt[m]{q(z)})^{\prime}\right]>\gamma
$$

where $q(z)$ is an analytic function such that $q(0)=1$ and α, β, γ, m be real numbers. And the authors also discuss the applications of the above mentioned differential inequality to multiplier transformation defined by (1) in the open unit disc $E=\{z:|z|<1\}$.

2 Preliminaries

We shall make use of the following lemma of Miller and Mocanu to prove our result.
Lemma 2.1. $([6])$ Let \mathbb{D} be a subset of $\mathbb{C} \times \mathbb{C}(\mathbb{C}$ is the complex plane) and let $\Phi: \mathbb{D} \rightarrow \mathbb{C}$ be a complex function. For $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}$ ($u_{1}, u_{2}, v_{1}, v_{2}$ are reals), let Φ satisfy the following conditions:
(i) Φ is continuous in \mathbb{D};
(ii) $(1,0) \in \mathbb{D}$ and $\operatorname{Re} \Phi(1,0)>0$; and
(iii) $\Re \Phi\left(i u_{2}, v_{1}\right) \leq 0$ for all $\left(i u_{2}, v_{1}\right) \in \mathbb{D}$ such that $v_{1} \leq-\left(1+u_{2}^{2}\right) / 2$.

Let $r(z)=1+r_{1} z+r_{2} z^{2}+\ldots$ be regular in the unit disc E, such that $\left(r(z), z r^{\prime}(z)\right) \in \mathbb{D}$ for all $z \in E$. If

$$
\Re\left[\Phi\left(r(z), z r^{\prime}(z)\right)\right]>0, z \in E
$$

then $\Re r(z)>0, z \in E$.
We, now, state and prove our main results.

3 Main Results

Lemma 3.1. Let $q(z)=1+q_{1} z+q_{2} z^{2}+$ \qquad be an analytic function in E which satisfies the condition

$$
\begin{equation*}
\Re\left[\alpha \sqrt[m]{q(z)}+\beta z(\sqrt[m]{q(z)})^{\prime}\right]>\gamma \tag{2}
\end{equation*}
$$

where α, β, γ and m be real numbers such that $\alpha \geq 0, \beta \geq 0$ and $\alpha>\gamma$ then

$$
\Re[\sqrt[2 m]{q(z)}]>\frac{\beta+\sqrt{\beta^{2}+4 \gamma(\alpha+\beta)}}{2(\alpha+\beta)}
$$

Proof. Let us define $q(z)$ as

$$
\begin{equation*}
(q(z))^{\frac{1}{2 m}}=\delta+(1-\delta) r(z), \quad z \in E \tag{3}
\end{equation*}
$$

where δ is the nonnegative root of the quadratic equation

$$
(\alpha+\beta) \delta^{2}-\beta \delta-\gamma=0
$$

given by

$$
\begin{equation*}
\delta=\frac{\beta+\sqrt{\beta^{2}+4 \gamma(\alpha+\beta)}}{2(\alpha+\beta)} \tag{4}
\end{equation*}
$$

which satisfies the condition $0 \leq \delta<1$.
Therefore $r(z)$ is an analytic function in E and $r(z)=1+r_{1} z+r_{2} z^{2}+\ldots$ In view of (2), we have
(5) $\Re \frac{1}{1-\gamma}\left[\alpha \sqrt[m]{q(z)}+\beta z(\sqrt[m]{q(z)})^{\prime}-\gamma\right]=\Re \frac{1}{1-\gamma}\left[\alpha[\delta+(1-\delta) r(z)]^{2}\right.$
$\left.+2 \beta(1-\delta)(\delta+(1-\delta) r(z)) z r^{\prime}(z)-\gamma\right]$.
If $\mathbb{D}=\mathbb{C} \times \mathbb{C}$, define $\Phi(u, v): \mathbb{D} \rightarrow \mathbb{C}$ as under

$$
\Phi(u, v)=\frac{1}{1-\gamma}\left[\alpha[\delta+(1-\delta) u]^{2}+2 \beta(1-\delta)(\delta+(1-\delta) u) v-\gamma\right]
$$

Then $\Phi(u, v)$ is continuous in $\mathbb{D},(1,0) \in \mathbb{D}$ and $\Re \Phi(1,0)=\frac{\alpha-\gamma}{1-\gamma}>0$.

Further, in view of (5), we get $\Re \Phi\left(r(z), z r^{\prime}(z)\right)>0, z \in E$.
Let $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}$ where u_{1}, u_{2}, v_{1} and v_{2} are all reals. Then, for $\left(i u_{2}, v_{1}\right) \in \mathbb{D}$, with $v_{1} \leq-\frac{1+u_{2}^{2}}{2}$, we have

$$
\begin{aligned}
\Re \Phi\left(i u_{2}, v_{1}\right)=\Re \frac{1}{1-\gamma} & {\left[\alpha\left[\delta+(1-\delta) i u_{2}\right]^{2}+2 \beta(1-\delta)\left(\delta+(1-\delta) i u_{2}\right) v_{1}-\gamma\right] } \\
& =\frac{1}{1-\gamma}\left[(\alpha+\beta) \delta^{2}-2 \beta \delta-\gamma\right] \\
& \leq 0
\end{aligned}
$$

In view of (3), (4) and Lemma 2.1, proof now follows.
Theorem 3.1. If $f \in \mathcal{A}_{p}$ satisfies

$$
\Re\left[\alpha \sqrt[m]{\frac{I_{p}(n, \lambda) f(z)}{z^{p}}}+\beta z\left(\sqrt[m]{\frac{I_{p}(n, \lambda) f(z)}{z^{p}}}\right)^{\prime}\right]>\gamma
$$

where α, β, γ and m be real numbers such that $\alpha \geq 0, \beta \geq 0$ and $\alpha>\gamma$ then

$$
\Re \sqrt[2 m]{\frac{I_{p}(n, \lambda) f(z)}{z^{p}}}>\frac{\beta+\sqrt{\beta^{2}+4 \gamma(\alpha+\beta)}}{2(\alpha+\beta)} .
$$

Proof. Let us write

$$
q(z)=\frac{I_{p}(n, \lambda) f(z)}{z^{p}}
$$

In view of Lemma 3.1, the proof follows.
Theorem 3.2. If $f \in \mathcal{A}_{p}$ satisfies

$$
\Re\left[\alpha \sqrt[m]{\frac{I_{p}(n+1, \lambda) f(z)}{I_{p}(n, \lambda) f(z)}}+\beta z\left(\sqrt[m]{\frac{I_{p}(n+1, \lambda) f(z)}{I_{p}(n, \lambda) f(z)}}\right)^{\prime}\right]>\gamma
$$

where α, β, γ and m be real numbers such that $\alpha \geq 0, \beta \geq 0$ and $\alpha>\gamma$ then

$$
\Re \sqrt[2 m]{\frac{I_{p}(n+1, \lambda) f(z)}{I_{p}(n, \lambda) f(z)}}>\frac{\beta+\sqrt{\beta^{2}+4 \gamma(\alpha+\beta)}}{2(\alpha+\beta)} .
$$

Proof. Let us write

$$
q(z)=\frac{I_{p}(n+1, \lambda) f(z)}{I_{p}(n, \lambda) f(z)}
$$

In view of Lemma 3.1, the proof follows.

4 Corollaries

By taking $p=1$ and $\lambda=0$ in Theorem 3.1. We have the following Corollary 4.1. If $f \in \mathcal{A}$ satisfies

$$
\Re\left[\alpha \sqrt[m]{\frac{D^{n} f(z)}{z}}+\beta z\left(\sqrt[m]{\frac{D^{n} f(z)}{z}}\right)^{\prime}\right]>\gamma
$$

where α, β, γ and m be real numbers such that $\alpha \geq 0, \beta \geq 0$ and $\alpha>\gamma$ then

$$
\Re \sqrt[2 m]{\frac{D^{n} f(z)}{z}}>\frac{\beta+\sqrt{\beta^{2}+4 \gamma(\alpha+\beta)}}{2(\alpha+\beta)}
$$

By taking $p=1, n=0$ and $\lambda=0$ in Theorem 3.1. We have the following Corollary 4.2. If $f \in \mathcal{A}$ satisfies

$$
\Re\left[\alpha \sqrt[m]{\frac{f(z)}{z}}+\beta z\left(\sqrt[m]{\frac{f(z)}{z}}\right)^{\prime}\right]>\gamma
$$

where α, β, γ and m be real numbers such that $\alpha \geq 0, \beta \geq 0$ and $\alpha>\gamma$ then

$$
\Re \sqrt[2 m]{\frac{f(z)}{z}}>\frac{\beta+\sqrt{\beta^{2}+4 \gamma(\alpha+\beta)}}{2(\alpha+\beta)}
$$

By taking $p=1, n=0, \lambda=0, \alpha=1$ and $m=2$ in Theorem 3.1. We have the following result of Aouf, M.K. and Hossen, H.M. [2] for $n=1$.
Corollary 4.3.If $f \in \mathcal{A}$ satisfies

$$
\Re\left[\sqrt[2]{\frac{f(z)}{z}}+\beta z\left(\sqrt[2]{\frac{f(z)}{z}}\right)^{\prime}\right]>\gamma
$$

where β and γ be real numbers such that $\beta \geq 0$ and $\gamma<1$ then

$$
\Re \sqrt[4]{\frac{f(z)}{z}}>\frac{\beta+\sqrt{\beta^{2}+4 \gamma(1+\beta)}}{2(1+\beta)}
$$

By taking $p=1, n=1$ and $\lambda=0$ in Theorem 3.1. We have the following Corollary 4.4. If $f \in \mathcal{A}$ satisfies

$$
\Re\left[\alpha \sqrt[m]{f^{\prime}(z)}+\beta z\left(\sqrt[m]{f^{\prime}(z)}\right)^{\prime}\right]>\gamma
$$

where α, β, γ and m be real numbers such that $\alpha \geq 0, \beta \geq 0$ and $\alpha>\gamma$ then

$$
\Re \sqrt[2 m]{f^{\prime}(z)}>\frac{\beta+\sqrt{\beta^{2}+4 \gamma(\alpha+\beta)}}{2(\alpha+\beta)}
$$

By taking $p=1, n=1, \lambda=0, \alpha=1$ and $m=2$ in Theorem 3.1. We have the following result of Owa, S. and Wu, Z. [8].
Corollary 4.5. If $f \in \mathcal{A}$ satisfies

$$
\Re\left[\sqrt[2]{f^{\prime}(z)}+\beta z\left(\sqrt[2]{f^{\prime}(z)}\right)^{\prime}\right]>\gamma
$$

where β and γ be real numbers such that $\beta \geq 0$ and $\gamma<1$ then

$$
\Re \sqrt[4]{f^{\prime}(z)}>\frac{\beta+\sqrt{\beta^{2}+4 \gamma(1+\beta)}}{2(1+\beta)}
$$

By taking $p=1, n=1, \lambda=0$ and $m=\frac{1}{2}$ in Theorem 3.1. We have the following
Corollary 4.6. If $f \in \mathcal{A}$ satisfies

$$
\Re\left[\alpha\left[f^{\prime}(z)\right]^{2}+\beta z\left(\left[f^{\prime}(z)\right]^{2}\right)^{\prime}\right]>\gamma
$$

where α, β and γ be real numbers such that $\alpha \geq 0, \beta \geq 0$ and $\alpha>\gamma$ then

$$
\Re f^{\prime}(z)>\frac{\beta+\sqrt{\beta^{2}+4 \gamma(\alpha+\beta)}}{2(\alpha+\beta)}
$$

i.e. f is close-to-convex and hence univalent.

By taking $p=1, n=2$ and $\lambda=0$ in Theorem 3.1. We have the following Corollary 4.7. If $f \in \mathcal{A}$ satisfies

$$
\Re\left[\alpha \sqrt[m]{f^{\prime}(z)+z f^{\prime \prime}(z)}+\beta z\left(\sqrt[m]{f^{\prime}(z)+z f^{\prime \prime}(z)}\right)^{\prime}\right]>\gamma
$$

where α, β, γ and m be real numbers such that $\alpha \geq 0, \beta \geq 0$ and $\alpha>\gamma$ then

$$
\Re \sqrt[2 m]{f^{\prime}(z)+z f^{\prime \prime}(z)}>\frac{\beta+\sqrt{\beta^{2}+4 \gamma(\alpha+\beta)}}{2(\alpha+\beta)}
$$

By taking $p=1, n=2, \lambda=0$ and $m=\frac{1}{2}$ in Theorem 3.1. We have the following
Corollary 4.8. If $f \in \mathcal{A}$ satisfies

$$
\Re\left[\alpha\left(f^{\prime}(z)+z f^{\prime \prime}(z)\right)^{2}+\beta z\left[\left(f^{\prime}(z)+z f^{\prime \prime}(z)\right)^{2}\right]^{\prime}\right]>\gamma
$$

where α, β and γ be real numbers such that $\alpha \geq 0, \beta \geq 0$ and $\alpha>\gamma$ then

$$
\Re\left(f^{\prime}(z)+z f^{\prime \prime}(z)\right)>\frac{\beta+\sqrt{\beta^{2}+4 \gamma(\alpha+\beta)}}{2(\alpha+\beta)}
$$

i.e. $f \in R$ and hence $f \in S^{*}$.

By taking $p=1$ and $\lambda=0$ in Theorem 3.2. We have the following
Corollary 4.9. If $f \in \mathcal{A}$ satisfies

$$
\Re\left[\alpha \sqrt[m]{\frac{D^{n+1} f(z)}{D^{n} f(z)}}+\beta z\left(\sqrt[m]{\frac{D^{n+1} f(z)}{D^{n} f(z)}}\right)^{\prime}\right]>\gamma
$$

where α, β, γ and m be real numbers such that $\alpha \geq 0, \beta \geq 0$ and $\alpha>\gamma$ then

$$
\Re \sqrt[2 m]{\frac{D^{n+1} f(z)}{D^{n} f(z)}}>\frac{\beta+\sqrt{\beta^{2}+4 \gamma(\alpha+\beta)}}{2(\alpha+\beta)}
$$

By taking $p=1, \lambda=0$ and $m=\frac{1}{2}$ in Theorem 3.2. We have the following
Corollary 4.10. If $f \in \mathcal{A}$ satisfies

$$
\Re\left[\alpha\left(\frac{D^{n+1} f(z)}{D^{n} f(z)}\right)^{2}+\beta z\left(\left(\frac{D^{n+1} f(z)}{D^{n} f(z)}\right)^{2}\right)^{\prime}\right]>\gamma
$$

where α, β and γ be real numbers such that $\alpha \geq 0, \beta \geq 0$ and $\alpha>\gamma$ then

$$
\Re \frac{D^{n+1} f(z)}{D^{n} f(z)}>\frac{\beta+\sqrt{\beta^{2}+4 \gamma(\alpha+\beta)}}{2(\alpha+\beta)}
$$

i.e. $f \in S(\delta)$, where $\delta=\frac{\beta+\sqrt{\beta^{2}+4 \gamma(\alpha+\beta)}}{2(\alpha+\beta)}, \quad 0 \leq \delta<1$.

By taking $p=1, n=0$ and $\lambda=0$ in Theorem 3.2. We have the following Corollary 4.11. If $f \in \mathcal{A}$ satisfies

$$
\Re\left[\alpha \sqrt[m]{\frac{z f^{\prime}(z)}{f(z)}}+\beta z\left(\sqrt[m]{\frac{z f^{\prime}(z)}{f(z)}}\right)^{\prime}\right]>\gamma
$$

where α, β, γ and m be real numbers such that $\alpha \geq 0, \beta \geq 0$ and $\alpha>\gamma$ then

$$
\Re\left[\sqrt[2 m]{\frac{z f^{\prime}(z)}{f(z)}}\right]>\frac{\beta+\sqrt{\beta^{2}+4 \gamma(\alpha+\beta)}}{2(\alpha+\beta)}
$$

By taking $p=1, n=0, \lambda=0$ and $m=\frac{1}{2}$ in Theorem 3.2. We have the following
Corollary 4.12. If $f \in \mathcal{A}$ satisfies

$$
\Re\left[\alpha\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{2}+\beta z\left(\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{2}\right)^{\prime}\right]>\gamma
$$

where α, β and γ be real numbers such that $\alpha \geq 0, \beta \geq 0$ and $\alpha>\gamma$ then

$$
\Re \frac{z f^{\prime}(z)}{f(z)}>\frac{\beta+\sqrt{\beta^{2}+4 \gamma(\alpha+\beta)}}{2(\alpha+\beta)}
$$

i.e. $f \in S^{*}(\delta)$, where $\delta=\frac{\beta+\sqrt{\beta^{2}+4 \gamma(\alpha+\beta)}}{2(\alpha+\beta)}, \quad 0 \leq \delta<1$.

By taking $p=1, n=1$ and $\lambda=0$ in Theorem 3.2. We have the following
Corollary 4.13. If $f \in \mathcal{A}$ satisfies

$$
\Re\left[\alpha \sqrt[m]{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}}+\beta z\left(\sqrt[m]{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}}\right)^{\prime}\right]>\gamma
$$

where α, β, γ and m be real numbers such that $\alpha \geq 0, \beta \geq 0$ and $\alpha>\gamma$ then

$$
\Re\left[\sqrt[2 m]{\frac{1+z f^{\prime \prime}(z)}{f^{\prime}(z)}}\right]>\frac{\beta+\sqrt{\beta^{2}+4 \gamma(\alpha+\beta)}}{2(\alpha+\beta)}
$$

By taking $p=1, n=1, \lambda=0$ and $m=\frac{1}{2}$ in Theorem 3.2. We have the following
Corollary 4.14. If $f \in \mathcal{A}$ satisfies

$$
\Re\left[\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}+\beta z\left(\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}\right)^{\prime}\right]>\gamma
$$

where α, β and γ be real numbers such that $\alpha \geq 0, \beta \geq 0$ and $\alpha>\gamma$ then

$$
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\frac{\beta+\sqrt{\beta^{2}+4 \gamma(\alpha+\beta)}}{2(\alpha+\beta)}
$$

i.e. $f \in K(\delta)$, where $\delta=\frac{\beta+\sqrt{\beta^{2}+4 \gamma(\alpha+\beta)}}{2(\alpha+\beta)}, \quad 0 \leq \delta<1$.

References

[1] R. Aghalary, Ali,M. Rosihan, S. B. Joshi and V. Ravichandran, Inequalities for analytic functions defined by certain linear operators, International J. of Math. Sci., to appear.
[2] M. K. Aouf and H. M. Hossen, A note on certain subclass of analytic functions, Mathematica (Cluj), 39(62), $N^{o} 1,1997$, pp.3-5.
[3] N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling, 37(2003), 39-49.
[4] N. E. Cho and T. H. Kim,Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc., 40(2003), 399410.
[5] J. Li and S. Owa,Properties of the Sălăgean operator, Georgian Math. J., 5, 4(1998), 361-366.
[6] S. S. Miller and P. T. Mocanu, Differential subordinations and inequalities in the complex plane, J. Diff. Eqns., 67(1987), 199-211.
[7] S. Owa, C.Y. Shen and M. Obradović, Certain subclasses of analytic functions, Tamkang J. Math., 20(1989), 105-115.
[8] S. Owa, Z. Wu, A note on certain subclass of analytic functions, Math. Japon, 34(1989), 413-416.
[9] G. S. Sălăgean,Subclasses of univalent functions, Lecture Notes in Math., 1013, 362-372, Springer-Verlag, Heideberg,1983.
[10] B. A. Uralegaddi and C. Somanatha, Certain classes of univalent functions, in Current Topics in Analytic Function Theory, H. M. Srivastava and S. Owa (ed.), World Scientific, Singapore, (1992), 371-374.

Sukhwinder Singh
Department of Applied Sciences
Baba Banda Singh Bahadur Engineering College
Fatehgarh Sahib -140407 (Punjab)
INDIA.
E-mail: ss_billing@yahoo.co.in

Sushma Gupta, Sukhjit Singh
Department of Mathematics
Sant Longowal Institute of Engineering \& Technology
Longowal-148106 (Punjab)
INDIA.
E-mail: sushmagupta1@yahoo.com
E-mail: sukhjit_d@yahoo.com

[^0]: ${ }^{1}$ Received 3 July, 2007
 Accepted for publication (in revised form) 25 September, 2007

