Starlike image of a class of analytic functions ${ }^{1}$

Szász Róbert

Abstract

It is proved that a subclass of the class of close-to-convex functions it is mapped by the Alexander Operator to the class of starlike functions.

2000 Mathematics Subject Clasification: 30C45

Key words: the operator of Alexander, starlike functions, convolution.

1 Introduction

We introduce the notation $U=\{z \in \mathbb{C}:|z|<1\}$.
Let \mathcal{A} be the class of analytic functions defined on the unit disc U with normalization of the form $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$.

The subclass of \mathcal{A} consisting of functions, for which the domain $f(U)$ is starlike with respect to 0 , is denoted by S^{*}. An analytic description of S^{*} is given by

$$
S^{*}=\left\{f \in \mathcal{A}: \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0, z \in U\right\} .
$$

The subset of \mathcal{A} defined by

$$
C=\left\{f \in \mathcal{A} \mid \exists g \in S^{*}: \operatorname{Re} \frac{z f^{\prime}(z)}{g(z)}>0, z \in U\right\}
$$

[^0]is called the class of close - to - convex functions.
We mention that C and S^{*} contain univalent functions.
The Alexander integral operator is defined by the equality:
$$
A(f)(z)=\int_{0}^{z} \frac{f(t)}{t} d t
$$

Recall that if f and g are analytic in U and g is univalent, then the function f is said to be subordinate to g, written $f \prec g$ if $f(0)=g(0)$ and $f(U) \subset g(U)$.

In [2] the authors proved the following result:
Theorem 1. Let A be the operator of Alexander and let $g \in \mathcal{A}$ satisfy

$$
\begin{equation*}
\operatorname{Re} \frac{z g^{\prime}(z)}{g(z)} \geq\left|\operatorname{Im} \frac{z\left(z g^{\prime}(z)\right)^{\prime}}{g(z)}\right|, \quad z \in U \tag{1}
\end{equation*}
$$

If $f \in \mathcal{A}$ satisfies

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{g(z)}>0, z \in U
$$

then $F=A(f) \in S^{*}$.
This Theorem says that a subclass of C is mapped by the Alexander Operator to S^{*}. This result naturally rises the question whether the Alexander Operator can map the whole class of close-to convex functions in S^{*}. In [4] the author proved that this did not happen. In the followings we are going to determine another subclass of C which is mapped by the Alexander Operator in S^{*}.

2 Preliminaries

We need the following definitions and lemmas in our study .
Definition 1. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ be two analytic functions in U.The convolution of the functions f and g is defined by the equality

$$
(f * g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}
$$

Definition 2. Let A_{0} be the the class of analytic functions in U which satisfy $f(0)=1$. If $V \subset A_{0}$, then the dual of V denoted by V^{d} consists of functions g which satisfy $g \in A_{0}$ and $(f * g)(z) \neq 0$ for every $f \in V$ and every $z \in U$.

Let h_{T} be the function defined by the equality

$$
h_{T}(z)=\frac{1}{1+i T}\left[i T \frac{z}{1-z}+\frac{z}{(1-z)^{2}}\right], \quad T \in \mathbb{R} .
$$

It is simple to observe that h_{T} is an element of class \mathcal{A}.
The class \mathcal{P} is the subset of A_{0} defined by

$$
\mathcal{P}=\left\{f \in A_{0}: \operatorname{Re}(f(z))>0, z \in U\right\} .
$$

Lemma 1. ([3],p.23) (duality theorem) The dual of \mathcal{P} is

$$
\mathcal{P}^{d}=\left\{f \in A_{0} \left\lvert\, \operatorname{Re}(f(z))>\frac{1}{2}\right., z \in U\right\} .
$$

Lemma 2. ([3],p.94) The function $f \in \mathcal{A}$ belongs to the class of the starlike functions (denoted by S^{*}) if and only if $\frac{f(z)}{z} * \frac{h_{T}(z)}{z} \neq 0$ for all $T \in \mathbb{R}$ and for all $z \in U$.

Lemma 3. [1](The Herglotz formula) For all $f \in \mathcal{P}$ there exists a probability measure μ on the interval $[0,2 \pi]$ so that

$$
f(z)=\int_{0}^{2 \pi} \frac{1+z e^{-i t}}{1-z e^{-i t}} d \mu(t)
$$

or in developed form

$$
f(z)=1+2 \int_{0}^{2 \pi}\left(\sum_{n=1}^{\infty} z^{n} e^{-i n t}\right) d \mu(t)
$$

The converse of the theorem is also valid.

Lemma 4. ([1] p. 54) Let $\alpha, \beta \in(0, \infty)$ be arbitrary numbers. Let $G_{\alpha}=\left\{f \in A_{0}: f(z)=\int_{0}^{2 \pi} \frac{1}{\left(1-z e^{-i t}\right)^{\alpha}} d \mu(t), \mu\right.$ is a probability measure. $\}$. If $f \in G_{\alpha}$ and $g \in G_{\beta}$, then $f g \in G_{\alpha \beta}$.
Lemma 5. ([1] p. 51) Let $\alpha \in(0, \infty), c \in \mathbb{C},|c| \leq 1, c \neq-1$,
$F_{\alpha}=\left(\frac{1+c z}{1-z}\right)^{\alpha}$. If $f \prec F_{\alpha}$, then there is a probability measure μ, so that

$$
f(z)=\int_{0}^{2 \pi}\left(\frac{1+c z e^{-i t}}{1-z e^{-i t}}\right)^{\alpha} d \mu(t)
$$

Lemma 6. ([2] p. 22) Let $p(z)=a+\sum_{k=n}^{\infty} a_{k} z^{k}$ be analytic in U with $p(z) \not \equiv a, n \geq 1$ and let $q: U(0,1) \rightarrow \mathbb{C}$ be a univalent function with $q(0)=a$. If $p \nprec q$ then there are two points $z_{0} \in U(0,1), \zeta_{0} \in \partial U(0,1)$ and a real number $m \in[n,+\infty)$ so that q is defined in $\zeta_{0}, p\left(z_{0}\right)=q\left(\zeta_{0}\right)$, $p\left(U\left(0, r_{0}\right)\right) \subset q(U), r_{0}=\left|z_{0}\right|$, and
(i) $z_{0} p^{\prime}\left(z_{0}\right)=m \zeta_{0} q^{\prime}\left(\zeta_{0}\right)$
(ii) $\operatorname{Re}\left(1+\frac{z_{0} p^{\prime \prime}\left(z_{0}\right)}{p^{\prime}\left(z_{0}\right)}\right) \geq m \operatorname{Re}\left(1+\frac{\zeta_{0} q^{\prime \prime}\left(\zeta_{0}\right)}{q^{\prime}\left(\zeta_{0}\right)}\right)$.

We mention that $z_{0} p^{\prime}\left(z_{0}\right)$ is the outward normal to the curve $p\left(\partial U\left(0, r_{0}\right)\right)$ at the point $p\left(z_{0}\right),\left(\partial U\left(0, r_{0}\right)\right.$ denotes the border of the disc $\left.U\left(0, r_{0}\right)\right)$

3 The Main Result

Theorem 2. Let A be the operator of Alexander and let $g \in \mathcal{A}$ satisfy

$$
\begin{equation*}
\frac{z g^{\prime}(z)}{g(z)} \prec \frac{2-z}{2(1-z)}, \quad z \in U . \tag{2}
\end{equation*}
$$

If $f \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{g(z)} \prec \frac{1}{\sqrt{1-z}}, z \in U \tag{3}
\end{equation*}
$$

then $F=A(f) \in S^{*}$.

Proof. The first step is to show that the condition (2) implies the subordination

$$
\begin{equation*}
\frac{g(z)}{z} \prec \frac{1}{\sqrt{1-z}} . \tag{4}
\end{equation*}
$$

Using the notation $p(z)=\frac{g(z)}{z}$, condition (2) becomes

$$
\begin{equation*}
\frac{z p^{\prime}(z)}{p(z)} \prec \frac{z}{2(1-z)}=h(z) . \tag{5}
\end{equation*}
$$

If the subordination $p(z) \prec \frac{1}{\sqrt{1-z}}$ does not hold true then according to Lemma 6 there are two points $z_{0} \in U$ and $\zeta_{0} \in \partial U$ and a real number $m \in[1, \infty)$, so that

$$
p\left(z_{0}\right)=\frac{1}{\sqrt{1-\zeta_{0}}} \text { and } z_{0} p^{\prime}\left(z_{0}\right)=\frac{m}{2} \zeta_{0}\left(1-\zeta_{0}\right)^{-\frac{3}{2}} .
$$

This implies that

$$
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=m h\left(\zeta_{0}\right) .
$$

Since h is a starlike function with respect to $0, m \geq 1$ and $h\left(\zeta_{0}\right)$ is on the border of $h(U)$, we obtain that

$$
m h\left(\zeta_{0}\right) \notin h(U) \text { and } \quad \text { so } \frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)} \notin h(U) .
$$

This contradicts (5) and consequently (4) holds true.
Lemma 5 implies that there are two probability measures μ and ν so that

$$
\frac{g(z)}{z}=\int_{0}^{2 \pi} \frac{1}{\sqrt{1-z e^{-i t}}} d \mu(t)
$$

and

$$
\frac{z f^{\prime}(z)}{g(z)}=\int_{0}^{2 \pi} \frac{1}{\sqrt{1-z e^{-i s}}} d \nu(s) .
$$

A simple computation leads to

$$
\begin{aligned}
f^{\prime}(z)= & \int_{0}^{2 \pi} \frac{1}{\sqrt{1-z e^{-i t}}} d \mu(t) \int_{0}^{2 \pi} \frac{1}{\sqrt{1-z e^{-i s}}} d \nu(s)= \\
& \int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{1}{\sqrt{1-z e^{-i t}}} \frac{1}{\sqrt{1-z e^{-i s}}} d \mu(t) d \nu(s) .
\end{aligned}
$$

According to Lemma 4 there is a probability measure λ so that

$$
\begin{equation*}
f^{\prime}(z)=\int_{0}^{2 \pi} \frac{1}{1-z e^{-i t}} d \lambda(t) \tag{6}
\end{equation*}
$$

We get after integrating the equality (6) that

$$
\begin{array}{r}
f(z)=\int_{0}^{2 \pi} e^{-i t} \log \left(\frac{1}{1-z e^{-i t}}\right) d \lambda(t)= \\
\sum_{n=1}^{\infty} \frac{z^{n}}{n} \int_{0}^{2 \pi} e^{-i t(n-1)} d \lambda(t)
\end{array}
$$

and

$$
F(z)=A(f)(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}} \int_{0}^{2 \pi} e^{-i t(n-1)} d \lambda(t)
$$

We obtain after a simple calculation that

$$
h_{T}(z)=z+\sum_{n=1}^{\infty} \frac{n+1+i T}{1+i T} z^{n+1}, z \in U
$$

Lemma 2 says that the function F is starlike if and only if

$$
\begin{equation*}
\frac{F(z)}{z} * \frac{h_{T}(z)}{z} \neq 0 \text { for all } T \in \mathbb{R} \text { and for all } z \in U \tag{7}
\end{equation*}
$$

We have:

$$
\begin{array}{r}
\frac{F(z)}{z} * \frac{h_{T}(z)}{z}=1+\sum_{n=1}^{\infty} \frac{z^{n}(n+1+i T)}{(n+1)^{2}(1+i T)} \int_{0}^{2 \pi} e^{-i t n} d \lambda(t)= \\
\left(1+2 \sum_{n=1}^{\infty} z^{n} \int_{0}^{2 \pi} e^{-i t n} d \lambda(t)\right) *\left(1+\sum_{n=1}^{\infty} \frac{z^{n}(n+1+i T)}{2(n+1)^{2}(1+i T)}\right) .
\end{array}
$$

According to the Lemma 1, to prove (4) we have to show that

$$
\operatorname{Re}\left(1+\sum_{n=1}^{\infty} \frac{z^{n}(n+1+i T)}{2(n+1)^{2}(1+i T)}\right)>\frac{1}{2}, z \in U, T \in \mathbb{R}
$$

or equivalently

$$
\begin{equation*}
\operatorname{Re}\left(1+\sum_{n=1}^{\infty} \frac{z^{n}(n+1+i T)}{(n+1)^{2}(1+i T)}\right)>0, z \in U, T \in \mathbb{R} \tag{8}
\end{equation*}
$$

A simple calculation leads to

$$
\begin{gathered}
\operatorname{Re}\left(1+\sum_{n=1}^{\infty} \frac{z^{n}(n+1+i T)}{(n+1)^{2}(1+i T)}\right) \\
=\operatorname{Re}\left(1+\frac{1}{1+i T} \sum_{n=1}^{\infty} \frac{z^{n}}{1+n}+\frac{i T}{1+i T} \sum_{n=1}^{\infty} \frac{z^{n}}{(1+n)^{2}}\right) .
\end{gathered}
$$

Because of the minimum principle to prove (8) it is enough to show that

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{1}{1+i T} \sum_{n=1}^{\infty} \frac{e^{i n \theta}}{1+n}+\frac{i T}{1+i T} \sum_{n=1}^{\infty} \frac{e^{i n \theta}}{(1+n)^{2}}\right)>0 \tag{9}
\end{equation*}
$$

$\theta \in(0,2 \pi), T \in \mathbb{R}$.
We consider the function $f(z)=\frac{e^{i \theta z}}{(\beta+z)\left(e^{2 \pi i z}-1\right)}, \beta>0$, where $\theta \in$ $(0,2 \pi)$ is a fixed number.
Let $\Gamma(r, n)$ be the contour constructed in the following way: $\Gamma(r, n)=$ $\gamma_{1} \cup \gamma_{3} \cup \gamma_{2} \cup \gamma_{4}$, where $\gamma_{1}(t)=R_{n} e^{i\left(\pi t-\frac{\pi}{2}\right)}, \gamma_{2}(t)=r e^{i\left(-\pi t+\frac{\pi}{2}\right)}, t \in[0,1]$, $\gamma_{3}(t)=i R_{n}+t\left(i r-i R_{n}\right), \gamma_{4}(t)=-i r+t\left(i r-i R_{n}\right), t \in[0,1], r \in(0,1)$ and $R_{n}=n+\frac{1}{2}$, where n belongs the set of natural numbers. We obtain from the residue theorem that

$$
\int_{\Gamma(r, n)} f(z) d z=2 \pi i \sum_{0<k<n+\frac{1}{2}} \operatorname{Res}(f, k) .
$$

A straightforward computation yields

$$
\begin{array}{r}
\lim _{r \rightarrow 0} \int_{\gamma_{2}} f(z) d z=-i \pi \cdot \operatorname{Res}(f, 0) \\
\operatorname{Res}\left(f, z_{k}\right)=\operatorname{Res}(f, k)=\frac{e^{i \theta k}}{2 \pi i(k+\beta)}, \quad k \in \mathbb{N} .
\end{array}
$$

We finally get that if $\theta \in(0,2 \pi)$ and $\beta>0$, then the following identity holds true:

$$
\begin{array}{r}
\int_{0}^{\infty} \frac{x\left(e^{\theta x}+e^{(2 \pi-\theta) x}\right)}{\left(\beta^{2}+x^{2}\right)\left(e^{2 \pi x}-1\right)} d x+i \beta \int_{0}^{\infty} \frac{e^{(2 \pi-\theta) x}-e^{\theta x}}{\left(\beta^{2}+x^{2}\right)\left(e^{2 \pi x}-1\right)} d x= \\
\frac{1}{2 \beta}+\sum_{k=1}^{\infty} \frac{e^{i \theta k}}{k+\beta} . \tag{11}
\end{array}
$$

If we differentiate this equality with respect to β it results that

$$
\begin{align*}
& 2 \beta \int_{0}^{\infty} \frac{x\left(e^{\theta x}+e^{(2 \pi-\theta) x}\right)}{\left(\beta^{2}+x^{2}\right)^{2}\left(e^{2 \pi x}-1\right)} d x+i \int_{0}^{\infty} \frac{\left(\beta^{2}-x^{2}\right)\left(e^{(2 \pi-\theta) x}-e^{\theta x}\right)}{\left(\beta^{2}+x^{2}\right)^{2}\left(e^{2 \pi x}-1\right)} d x= \\
& \text { (12) } \frac{1}{2 \beta^{2}}+\sum_{k=1}^{\infty} \frac{e^{i \theta k}}{(k+\beta)^{2}} . \tag{12}
\end{align*}
$$

Using (10) and (11) the expression from (9) becomes
(13) $\frac{1}{1+T^{2}}\left(\frac{1}{2}+\int_{0}^{\infty} \frac{x\left(e^{\theta x}+e^{(2 \pi-\theta) x}\right)}{\left(1+x^{2}\right)\left(e^{2 \pi x}-1\right)} d x+2 T \int_{0}^{\infty} \frac{x^{2}\left(e^{(2 \pi-\theta) x}-e^{\theta x}\right)}{\left(1+x^{2}\right)^{2}\left(e^{2 \pi x}-1\right)} d x\right.$

$$
\left.+T^{2}\left(\frac{1}{2}+2 \int_{0}^{\infty} \frac{x\left(e^{(2 \pi-\theta) x}+e^{\theta x}\right)}{\left(1+x^{2}\right)^{2}\left(e^{2 \pi x}-1\right)} d x\right)\right) \geq 0
$$

for all $\theta \in(0,2 \pi), T \in \mathbb{R}$.
If we prove that

$$
\begin{align*}
& \int_{0}^{\infty} \frac{x\left(e^{\theta x}+e^{(2 \pi-\theta) x}\right)}{\left(1+x^{2}\right)\left(e^{2 \pi x}-1\right)} d x+2 T \int_{0}^{\infty} \frac{x^{2}\left(e^{(2 \pi-\theta) x}-e^{\theta x}\right)}{\left(1+x^{2}\right)^{2}\left(e^{2 \pi x}-1\right)} d x \tag{14}\\
+ & 2 T^{2} \int_{0}^{\infty} \frac{x\left(e^{(2 \pi-\theta) x}+e^{\theta x}\right)}{\left(1+x^{2}\right)^{2}\left(e^{2 \pi x}-1\right)} d x \geq 0, \text { for all } \theta \in(0,2 \pi), T \in \mathbb{R} .
\end{align*}
$$

then (12) results . The expression in (13) is a polynomial of degree two with respect to T. The discriminant of the polynomial is

$$
\begin{array}{r}
\Delta_{T}=4\left(\int_{0}^{\infty} \frac{x^{2}\left(e^{(2 \pi-\theta) x}-e^{\theta x}\right)}{\left(1+x^{2}\right)^{2}\left(e^{2 \pi x}-1\right)} d x\right)^{2}- \\
8 \int_{0}^{\infty} \frac{x\left(e^{(2 \pi-\theta) x}+e^{\theta x}\right)}{\left(1+x^{2}\right)^{2}\left(e^{2 \pi x}-1\right)} d x \int_{0}^{\infty} \frac{x\left(e^{\theta x}+e^{(2 \pi-\theta) x}\right)}{\left(1+x^{2}\right)\left(e^{2 \pi x}-1\right)} d x
\end{array}
$$

The condition (14) holds true if $\Delta_{T} \leq 0, \theta \in(0,2 \pi), T \in \mathbb{R}$. This inequality is a simple consequence of the Cauchy-Schwarz inequality.

References

[1] D.J. Hallenbeck, T.H. Mac Gregor, Linear problems and convexity techniques in geometric function theory, Pitman Advanced Publishing Program (1984).
[2] S.S. Miller, P.T. Mocanu, Differential subordinations Theory and Applications, Marcel Dekker 2000.
[3] Stephan Rouchwey, Convolution in Geometric Function Theory Les Presses de Université de Montréal, Montréal 1982.
[4] Róbert Szász, A Counter-Example Concerning Starlike Functions, Studia Univ. "Babeş-Bolyai" Mathematica Vol.LII, Number 3(2007)pp.167-170

Universitatea Sapientia
Facultatea de Ştiinţe Tehnice şi Umaniste
Şoseaua Sighişoarei, 1C
540485, Tg. Mureş, Romania
E-mail: szasz_robert2001@yahoo.com

[^0]: ${ }^{1}$ Received 13 July, 2007
 Accepted for publication (in revised form) 4 December, 2007
 This work was supported by the Research Foundation Sapientia

