A note of the Conjectured of Sierpinski on triangular numbers ${ }^{1}$

Shichun Yang

Abstract

Recently, Bennett arononled that he proved a conjecture of Sierpinski on triangular numbers. In this paper, we firstly modified the mistakes in reference [7] of Bennett and [8] of Chen and Fang, and then using Störmer's theorem of the solutions of Pell equation, and a deep result of primitive divisor of Bilu, Hanrot and Voutier, we proved that there do not exist four distinct triangular numbers in geometric progression $\left\{A Q^{r}\right\}_{r=1}^{\infty}$. Therefore we totally solved the question of Sierpinski on triangular numbers.

Key words: triangular number, geometric progression, the question of Sierpinski, Pell equation, primitive divisor.
2000 Mathematics Subject Clasification: 11B85, 11D09

1 Introduction

Let $\mathbb{Q}, \mathbb{N}, \mathbb{P}$ be the sets of all rational number, positive integers and primes.
Let $n \in \mathbb{N}$, let T_{n} be the nth triangular number, then

$$
\begin{equation*}
T_{n}=\frac{1}{2} n(n+1) \tag{1}
\end{equation*}
$$

[^0]The study of triangular number problem is very active so far (see [1-5]). For example, power number in triangular numbers, Fibonacci number in triangular numbers, Lucas number in triangular numbers etc (see [2,3]).

The problem of finding three such three triangular numbers in geometric progression is readily reduced to finding solutions to a Pell equation, implies that there are infinitely many such triples, the smallest of which is $\left(T_{1}, T_{3}, T_{8}\right)$. In [5, D23] by Guy, it is stated that Sierpinski asked the question as following

Question. Are there four distinct triangular numbers in geometric progression?

Szymiczek conjecture that the answer to Sierpinski's question is negative [6]. Recently, Bennett[7] proved that there do not exist four distinct triangular numbers in geometric progression with the ratio being positive integer. Moreover Chen and Fang[8] extend Bennett's result to the rational common ratio. But their proof is not complete in reference [7] and [8]. Because they supposed that the four distinct triangular are $A, A Q, A Q^{2}, A Q^{3}$, where $A \in \mathbb{N}, Q \in \mathbb{Q}$. In fact, arbitrary four numbers in a geometric progression $\left\{A Q^{r}\right\}_{r=1}^{\infty}$, for example, $A Q, A Q^{2}, A Q^{3}, A Q^{6}$, does not in geometric progression.

In this paper, using Störmer's theorem of the solutions of Pell equation, and a deep result of primitive divisor of Bilu, Hanrot and Voutier ([9,10]), we completely solved the question of Sierpinski on triangular numbers. We prove a more general result as follows.

Theorem. There do not exist four distinct triangular numbers in geometric progression $\left\{A Q^{r}\right\}_{r=1}^{\infty}$.

2 Preliminaries

We give the following lemma.

Lemma 1. (Störmer theorem) If (x, y) is solution of the Pell equation

$$
\begin{equation*}
x^{2}-D y^{2}=1, D, x, y \in \mathbb{N} \tag{2}
\end{equation*}
$$

and ε is the fundamental solution of (2), then every solution of (2) can be expressed as $x+y \sqrt{D}=\varepsilon^{k}$, where $k \in \mathbb{N}$. If $y=y^{\prime}$, $\left.y^{\prime}\right|^{*} D$, where $\left.y^{\prime}\right|^{*} D$ denotes every prime factor of y^{\prime} dividing D, then

$$
\begin{equation*}
x+y \sqrt{D}=\varepsilon . \tag{3}
\end{equation*}
$$

Proof. See Lemma 2 of [1] p122-123.
A Lucas pair (α, β) is a pair of algebraic integers α, β, such as that $\alpha+\beta$ and $\alpha \beta$ are nor-zero co-prime rational integers, and $\frac{\alpha}{\beta}$ is not a root of unity. Further, let $s=\alpha+\beta$ and $t=\alpha \beta$, then we have

$$
\alpha=\frac{1}{2}(s+\lambda \sqrt{d}), \beta=(s-\lambda \sqrt{d})
$$

where $d=s^{2}-4 t, \lambda \in\{1,-1\}$. For a given Lucas pair (α, β), one defines the corresponding sequence of Lucas numbers by

$$
u_{n}(\alpha, \beta)=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, n=1,2,3, \ldots
$$

Definition. Let p be a prime. The prime p is a primitive divisor of the Lucas number $u_{n}(\alpha, \beta)$, if $p \mid u_{n}(\alpha, \beta)$ and $p \nmid(\alpha-\beta)^{2} u_{1}(\alpha, \beta) \cdots u_{n-1}(\alpha, \beta)$.
Lemma 2. If $4<n \leq 30, n \neq 6$, and the Lucas sequence whose nth term has no primitive divisor, then
$(1) n=5,(s, d)=(1,5),(1,-7),(2,-40),(1,-11),(1,-15),(12,-76)$, (12, -1346);
(2) $n=7,(s, d)=(1,-7),(1,-19)$;
(3) $n=8,(s, d)=(1,-7),(2,-24)$;
(4) $n=10,(s, d)=(2,-8),(5,-3),(5,-47)$;
(5) $n=12,(s, d)=(1,5),(1,-7),(1,-11),(2,-56),(1,-15),(1,-19)$;
$(6) n=13,(s, d)=(1,-7)$.
(7) $n=18,(s, d)=(1,-7)$.
(8) $n=30,(s, d)=(1,-7)$.

Proof. See Theorem 1 of [5].
Lemma 3. For any integer $n>30$, every n-th term of any Lucas sequence has a primitive divisor.
Proof. See Theorem 1.4 of [10].

3 Proof of Theorem

Suppose that there exist four distinct triangular numbers $T_{x}, T_{y}, T_{z}, T_{w}$ in a geometric progression $\left\{A Q^{r}\right\}_{r=1}^{\infty}$, let T_{x} be smallest, and the ratio is $Q=\frac{q}{p}$, $\operatorname{gcd}(q, p)=1, q>p$. Let $8 T_{x}=A$, then there exist $1 \leq r_{1}<r_{2}<r_{3} \in \mathbb{N}$, satisfy

$$
\begin{equation*}
8 T_{y}=A\left(\frac{q}{p}\right)^{r_{1}}, 8 T_{z}=A\left(\frac{q}{p}\right)^{r_{2}}, 8 T_{w}=A\left(\frac{q}{p}\right)^{r_{3}} \tag{4}
\end{equation*}
$$

where $x, y, z, w, q, p, A \in \mathbb{N}$. Because $8 T_{w}$ is positive integers, we have $p^{r_{3}} \mid A$. Let $A=a p^{r_{3}}, a \in \mathbb{N}$. By (1) and (4) we have
(5) $a p^{r_{3}}+1=u^{2}, a p^{r_{3}-r_{1}} q^{r_{1}}+1=v^{2}, a p^{r_{3}-r_{2}} q^{r_{2}}+1=w^{2}, a q^{r_{3}}+1=m^{2}$
where $u, v, w, m \in \mathbb{N}$.
Case 1: $p=1$
If there are two odd numbers among r_{1}, r_{2} and r_{3}. Without loss of generality, we may assume that $2 \not\left\langle r_{1}, 2 \not\left\langle r_{2}, r_{2}>r_{1} \geq 1\right.\right.$. By (5) we have $a q$ is not a perfect square, then by (5) we get,

$$
\begin{equation*}
a q\left(q^{\frac{r_{1}-1}{2}}\right)^{2}+1=v^{2}, a q\left(q^{\frac{r_{2}-1}{2}}\right)^{2}+1=w^{2} \tag{6}
\end{equation*}
$$

So Pell equation $x^{2}-a q y^{2}=1$ have solutions $(x, y)=\left(v, q^{\frac{r_{1}-1}{2}}\right),\left(w, q^{\frac{r_{2}-1}{2}}\right)$. Since $\left.q\right|^{*} a q$, by Lemma 1, we get

$$
\begin{equation*}
u+q^{\frac{r_{1}-1}{2}} \sqrt{A q}=\varepsilon, v+q^{\frac{r_{2}-1}{2}} \sqrt{A q}=\varepsilon \tag{7}
\end{equation*}
$$

where ε is the fundamental solution of $x^{2}-a q y^{2}=1$. But $r_{2}>r_{1}$, it is impossible.

If there are two odd numbers among r_{1}, r_{2} and r_{3}, we may assume that $2\left|r_{1}, 2\right| r_{2}, r_{2}>r_{1} \geq 2$, by (5), we get the Pell equation $x^{2}-a y^{2}=1$ have solutions $(x, y)=\left(u, q^{\frac{r_{1}}{2}}\right),\left(v, q^{\frac{r_{2}}{2}}\right)$. By (5), we have $a+1=u^{2}$, then the fundamental solution of $x^{2}-a y^{2}=1$ is $\varepsilon=a+\sqrt{a^{2}-1}$. Let $\bar{\varepsilon}=a-\sqrt{a^{2}-1}$, thus there exist $k_{1}<k_{2} \in \mathbb{N}$, satisfy that

$$
\begin{equation*}
q^{\frac{r_{1}}{2}}=\frac{\varepsilon^{k_{1}}-\bar{\varepsilon}^{k_{1}}}{\varepsilon-\bar{\varepsilon}}, q^{\frac{r_{2}}{2}}=\frac{\varepsilon^{k_{2}}-\bar{\varepsilon}^{k_{2}}}{\varepsilon-\bar{\varepsilon}} \tag{8}
\end{equation*}
$$

Let $\alpha=a+\sqrt{a^{2}-1}, \beta=a-\sqrt{a^{2}-1}$, then $\alpha+\beta$ and $\alpha \beta$ are nor-zero co-prime rational integers, and $\frac{\alpha}{\beta}$ is not a root of unity, then (α, β) is a Lucas pair. Let the sequence of Lucas numbers is

$$
\begin{equation*}
u_{n}=u_{n}(\varepsilon, \bar{\varepsilon})=\frac{\varepsilon^{n}-\bar{\varepsilon}^{n}}{\varepsilon-\bar{\varepsilon}} \tag{9}
\end{equation*}
$$

by (8), we have

$$
\begin{equation*}
u_{k_{1}}(\varepsilon, \bar{\varepsilon}) \mid u_{k_{2}}(\varepsilon, \bar{\varepsilon}) \tag{10}
\end{equation*}
$$

then $u_{k_{2}}\left(a+\sqrt{a^{2}-1}, a-\sqrt{a^{2}-1}\right)$ has no primitive divisor. By Lemma 2, Lemma 3, we have $k_{2}=2,3,4,5,6,7,8,10,12,13,18,30$. But by Lemma 2, k_{2} can not be $5,7,8,10,12,13,18,30$, then $k_{2}=2,3,4,6$.

By (9), we get $u_{1}=1, u_{2}=2 a, u_{3}=4 a^{2}-1, u_{4}=8 a^{3}-4 a, u_{5}=$ $16 a^{4}-12 a^{2}+1, u_{6}=32 a^{5}-32 a^{3}+6 a$. If $k_{2}=2$, then $k_{1}=1$, but by (5), (8), it is impossible. If $k_{2}=3$, then $k_{1}=2$, then by (5), (8), we have $q^{\frac{r_{1}}{2}}=2 a, q^{\frac{r_{2}}{2}}=4 a^{2}-1$, but $\operatorname{gcd}\left(2 a, 4 a^{2}-1\right)=1$, it is also impossible.

If $k_{2}=4$, then $k_{1}=3,2$. If $k_{1}=3$, then $\operatorname{gcd}\left(u_{3}, u_{4}\right)=\operatorname{gcd}\left(4 a^{2}-1,8 a^{3}-\right.$ $4 a)=\operatorname{gcd}\left(4 a^{2}-1,2 a\right)=1$, but by (10), it is impossible. If $k_{1}=2$, by (10), we have $q^{\frac{r_{1}}{2}}=2 a, q^{\frac{r_{2}}{2}}=8 a^{3}-4 a$, then $q^{\frac{3 r_{1}}{2}}-2 q^{\frac{r_{1}}{2}}=q^{\frac{r_{2}}{2}}$, then

$$
\begin{equation*}
q^{r_{1}}-2=q^{\frac{r_{2}-r_{1}}{2}} \tag{11}
\end{equation*}
$$

then by (11), we get $q=2, r_{1}=2, r_{2}=4$, then $a=1$, but by (5), it is also impossible.

If $k_{2}=6$, then $k_{1}=5,4,3,2$. Since $\operatorname{gcd}\left(u_{6}, u_{5}\right)=\operatorname{gcd}\left(32 a^{5}-32 a^{3}+\right.$ $\left.6 a, 16 a^{4}-12 a^{2}+1\right)=1, \frac{u_{6}}{u_{4}}=\frac{16 a^{4}-16 a^{2}+3}{4 a^{2}-2}$, but $2 \times\left(16 a^{4}-16 a^{2}+3\right)$, $\frac{16 a^{4}-16 a^{2}+3}{4 a^{2}-2} \notin \mathbf{N}, \operatorname{gcd}\left(\frac{u_{6}}{u_{3}}, u_{3}\right)=\operatorname{gcd}\left(8 a^{3}-6 a, 4 a^{2}-1\right)=1$, then if $k_{1}=5,4,3$, by (8), it is impossible. If $k_{1}=2, \operatorname{gcd}\left(\frac{u_{6}}{u_{2}}, u_{2}\right)=\operatorname{gcd}\left(16 a^{4}-\right.$ $\left.16 a^{2}+3,2 a\right)=1,3$, then $a=3$, by (8), it is also impossible.

Case 2: $p>1$
If $2 \backslash r_{3}, 2 \nmid r_{2}$, then by (5), we get

$$
\begin{equation*}
a q\left(p^{\frac{r_{3}-r_{2}}{2}} q^{\frac{r_{2}-1}{2}}\right)^{2}+1=w^{2}, a q\left(q^{\frac{r_{3}-1}{2}}\right)^{2}+1=m^{2} \tag{12}
\end{equation*}
$$

we have $a q$ is not a perfect square. Then Pell equation $x^{2}-a q y^{2}=1$ have solutions $(x, y)=\left(w, p^{\frac{r_{3}-r_{2}}{2}} q^{\frac{r_{2}-1}{2}}\right),\left(m, q^{\frac{r_{3}-1}{2}}\right)$. Since $\left.q^{\frac{r_{3}-1}{2}}\right|^{*} a q$, by Lemma 1, we have $\varepsilon=m+q^{\frac{r_{3}-1}{2}} \sqrt{a q}$ is the fundamental solution of Pell equation $x^{2}-a q y^{2}=1$, which is impossible, because $m>w$.

If $2 \nmid r_{3}, 2 \mid r_{2}$, then by (5), we get

$$
\begin{equation*}
a p\left(p^{\frac{r_{3}-1}{2}}\right)^{2}+1=u^{2}, a p\left(p^{\frac{r_{3}-r_{2}-1}{2}} q^{\frac{r_{2}}{2}}\right)^{2}+1=w^{2} \tag{13}
\end{equation*}
$$

Because $a p$ is not a perfect square, then Pell equation $x^{2}-a p y^{2}=1$ have solutions $(x, y)=\left(u, p^{\frac{r_{3}-1}{2}}\right),\left(w, p^{\frac{r_{3}-r_{2}-1}{2}} q^{\frac{r_{2}}{2}}\right)$. Since $\left.p^{\frac{r_{3}-1}{2}}\right|^{*} a p$, by Lemma 1, we have $\varepsilon=u+p^{\frac{r_{3}-1}{2}} \sqrt{a p}$ is the fundamental solution of Pell equation $x^{2}-a p y^{2}=1$, let $\bar{\varepsilon}=u-p^{\frac{r_{3}-1}{2}} \sqrt{a p}$, then there exist $k \in \mathbb{N}$, satisfy that

$$
\begin{equation*}
p^{\frac{r_{3}-r_{2}-1}{2}} q^{\frac{r_{2}}{2}}=\frac{\varepsilon^{k}-\bar{\varepsilon}^{k}}{2 \sqrt{a p}}=\frac{\varepsilon^{k}-\bar{\varepsilon}^{k}}{\varepsilon-\bar{\varepsilon}} p^{\frac{r_{3}-1}{2}} \tag{14}
\end{equation*}
$$

But $r_{2}>1, \operatorname{gcd}(p, q)=1$, which is impossible.
If $2 \mid r_{3}, 2 \nmid r r_{2}$, then by (5), we get

$$
\begin{equation*}
\operatorname{apq}\left(p^{\frac{r_{3}-r_{1}-1}{2}} q^{\frac{r_{1}-1}{2}}\right)^{2}+1=v^{2}, \operatorname{apq}\left(p^{\frac{r_{3}-r_{2}-1}{2}} q^{\frac{r_{2}-1}{2}}\right)^{2}+1=w^{2} \tag{15}
\end{equation*}
$$

Because $a p q$ is not a perfect square, then Pell equation $x^{2}-a p q y^{2}=1$ have solutions $(x, y)=\left(v, p^{\frac{r_{3}-r_{1}-1}{2}} q^{\frac{r_{1}-1}{2}}\right),\left(w, p^{\frac{r_{3}-r_{2}-1}{2}} q^{\frac{r_{2}-1}{2}}\right)$. Since $\left.q^{\frac{r_{3}-1}{2}}\right|^{*} a q$, by Lemma 1, we have $\varepsilon=v+p^{\frac{r_{3}-r_{1}-1}{2}} q^{\frac{r_{1}-1}{2}} \sqrt{a p}=w+p^{\frac{r_{3}-r_{2}-1}{2}} q^{\frac{r_{2}-1}{2}}$ is the fundamental solution of Pell equation $x^{2}-a p q y^{2}=1$, which is impossible.

If $2\left|r_{3}, 2\right| r_{1} r_{2}$, without loss of generality, we may assume that $2 \mid r_{1}$, then by (5), we get

$$
\begin{equation*}
a\left(p^{\frac{r_{3}}{2}}\right)^{2}+1=u^{2}, a\left(p^{\frac{r_{3}-r_{1}}{2}} q^{\frac{r_{1}}{2}}\right)^{2}+1=v^{2}, a\left(q^{\frac{r_{3}}{2}}\right)^{2}+1=m^{2} \tag{16}
\end{equation*}
$$

By (16) we have a is not a perfect square. Let $\varepsilon_{1}=x_{0}+y_{0} \sqrt{a}$ be the fundamental solution of Pell equation $x^{2}-a y^{2}=1$, then there exist $k_{1}, k_{2}, k_{3} \in \mathbb{N}$, satisfy that

$$
\begin{equation*}
p^{\frac{r_{3}}{2}}=\frac{\varepsilon_{1}^{k_{1}}-\bar{\varepsilon}_{1}^{k_{1}}}{2 \sqrt{a}}=\frac{\varepsilon_{1}^{k_{1}}-\bar{\varepsilon}_{1}^{k_{1}}}{\varepsilon_{1}-\bar{\varepsilon}_{1}} y_{0}, p^{\frac{r_{3}-r_{1}}{2}} q^{\frac{r_{1}}{2}}=\frac{\varepsilon_{1}^{k_{2}}-\bar{\varepsilon}_{1}^{k_{2}}}{\varepsilon_{1}-\bar{\varepsilon}_{1}} y_{0}, q^{\frac{r_{3}}{2}}=\frac{\varepsilon_{1}^{k_{3}}-\bar{\varepsilon}_{1}^{k_{3}}}{\varepsilon_{1}-\bar{\varepsilon}_{1}} y_{0} \tag{17}
\end{equation*}
$$

Where $\bar{\varepsilon}_{1}=x_{0}-y_{0} \sqrt{a}, k_{1}<k_{2}<k_{3}$. But $\operatorname{gcd}(p, q)=1$, by (17) we have $y_{0}=1$, then $x_{0}^{2}=a+1, a=x_{0}^{2}-1$, so $\varepsilon_{1}=x_{0}+\sqrt{x_{0}^{2}-1}$.

Since $k_{3}>k_{2}, \frac{r_{1}}{2} \geq 1, q>p$, then from (17) we obtain that $u_{k_{3}}\left(x_{0}+\right.$ $\left.\sqrt{x_{0}^{2}-1}, x_{0}-\sqrt{x_{0}^{2}-1}\right)$ has no primitive divisor. Same method of consideration as case 1 , we get it is also impossible.

The proof is complete.

References

[1] L. J. Mordell,Diophantine Equations, London: Academic Press, 1969.
[2] P. Erdös, On a Diophantine equations, J.London Math.Soc., 26(1951): 176-178.
[3] Z. F. Cao, On the diophantine equation $x^{2 n}-D y^{2}=1$, Proc. Amer. Math. Soc., 98(1986): 11-16.
[4] K. Szymiczek, L'équation uv $=w^{2}$ en nombres triangulaires, (French) Publ. Inst. Math.(Brograd)(N. S.), 3(17)(1963): 139-141.
[5] R. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer Verlag, New York, 2004.
[6] K. Szymiczek, The equation $\left(x^{2}-1\right)\left(y^{2}-1\right)=\left(z^{2}-1\right)^{2}$, Eureka, 35(1972): 21-25.
[7] M. A. Bennett, A question of Sierpinski on triangular numbers, Electronic J. Combinatorial Number Theory, 5(1)(2005)A25: 1-2.
[8] Y. G. Chen, J. H. Fang, Triangular numbers in geometric progression, Electronic J. Combinatorial Number Theory, 7(1)(2007)A19: 1-2.
[9] P. M. Voutier, Primitive divisons of Lucas and Lehmer sequences, Math. Comp., 64(1995), 869-888.
[10] Y. Bilu, G. Hanrot, P. M. Voutier (witn an Appendix by M. Mignotte), Existence of primitive divisons of Lucas and Lehmer numbers, J. Reine Anger. Math., 2001, 539, 75-122.

Department of Mathematics,
ABa Teachers' College ,
Wenchuan Sichuan,
P. R. China

E-mail: ysc1020@sina.com.cn

[^0]: ${ }^{1}$ Received 15 August 2007
 Accepted for publication (in revised form) 13 December 2007
 Supported by Natural Science Foundation of the Education Department of Sichuan Province (NO. 2006C057)

