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Abstract

Let E be a real Banach space and let A : E — E be a Lipschitzian
generalized strongly accretive operator. Let z € E and xy be an arbi-
trary initial value in E for which the steepest descent approximation

scheme is defined by
Tpgl = T — ap(Ayn — 2),
Yn = Tp—Pn(Az, —2), n=0,1,2...,
where the sequences {«,} and {3, } satisfy the following conditions:
(Z) 0<an,Bn<1,
oo
(i7) Z ay, = 400,
n=0
(797) lim ap, =0= lim f,,
n—oo n—oo

converges strongly to the unique solution of the equation Ax = z.
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1 Introduction

Let E be a real Banach space and let E* be its dual space. The normalized
duality mapping J : E — 2F" is defined by

Jr={ue £ (z,u) = ||zl ull, [lu] = ]|},

where (.,.) denotes the generalized duality pairing.

A mapping A with domain D(A) and range R(A) in E is said to be
strongly accretive if there exist a constant k € (0,1) such that for all z,y €
D(A), there exists j(x —y) € J(x —y) such that

(Aw — Ay, j(z —y)) = kllz —yIl”,

and is called ¢-strongly accretive if there is a strictly increasing function
¢ :[0,00) — [0,00) with ¢(0) = 0 such that for any z,y € D(A) there exist
j(x —y) € J(z —y) such that

(Ar — Ay, j(z —y)) = ¢(lz —yl) [l= = yll-

The mapping A is called generalized ®-accretive if there exist a strictly
increasing function ® : [0,00) — [0,00) with ®(0) = 0 such that for all
x,y € D(A) there exist j(z —y) € J(z — y) such that

(Az — Ay, j(xz —y)) > O(||z — y|).

It is well known that the class of generalized ®-accretive mappings in-
cludes the class of ¢-strongly accretive operators as a special case (one set
D (s) = s¢(s) for all s € [0,00)).

Let N(A) :={z € D(A): Az =0} # Q.

The mapping A is called strongly quasi-accretive if there exist & € (0, 1)
such that for all z € D(A),p € N(A) there exist j(z — p) € J(x — p) such
that

(Az = Ap, j(z = p) > k |lz — p|>.
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A is called ¢-strongly quasi-accretive if there exist a strictly increasing
function ¢ : [0, 00) — [0, 00) with ¢(0) = 0 such that for all z € D(A),
p € N(A) there exist j(z —p) € J(xz — p) such that

(Az — Ap, j(z —p)) = ¢(||lz — pl|) ||z — pl| -

Finally, A is called generalized ®-quasi-accretive if there exist a strictly
increasing function ® : [0,00) — [0,00) with ®(0) = 0 such that for all
x € D(A),p € N(A) there exist j(z — p) € J(x — p) such that

(1) (Az — Ap, j(x —p)) = @([|lz - pl).

A mapping G : E — FE is called Lipschitz if there exists a constants
L > 0 such that |Gz — Gy|| < L|jz —y|| for all z,y € D(G).

Closely related to the class of accretive-type mappings are those of
pseudo-contractive types.

A mapping T : F — F is called strongly pseudo-contractive if and only if
I—T is strongly accretive, and is called strongly ¢-pseudo-contractive if and
only if (I —T) is ¢-strongly accretive. The mapping 7" is called generalized
®-pseudo-contractive if and only if (I — T') is generalized ®-accretive.

In [5, page 9], Ciric et al. showed by taking an example that a generalized
d-strongly quasi-accretive operator is not necessarily a ¢-strongly quasi-
accretive operator.

If F(T) :={zxeE:Trx=x} # O, the mapping T is called strongly
hemi-contractive if and only if (I —T') is strongly quasi-accretive; it is called
¢-hemi-contractive if and only if (I —T') is ¢-strongly quasi-accretive; and T'
is called generalized ®-hemi-contractive if and only if (I —T") is generalized
®-quasi-accretive.

The class of generalized ®-hemi-contractive mappings is the most general
(among those defined above) for which 7" has a unique fixed point. The
relation between the zeros of accretive-type operators and the fixed points

of pseudo-contractive-type mappings is well known [1,8,11].
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The steepest descent approximation process for monotone operators was
introduced independently by Vainberg [13] and Zarantonello [15]. Mann [9]
introduced an iteration process which, under suitable conditions, converges
to a zero in Hilbert space. The Mann iteration scheme was further developed
by Ishikawa [6]. Recently, Ciric et al. [5], Zhou and Guo [16], Morales
and Chidume [12], Chidume [3], Xu and Roach [14] and many others have
studied the characteristic conditions for the convergence of the steepeast
descent approximations.

Morales and Chidume proved the following theorem:

Theorem 1.. Let X be a uniformly smooth Banach space and letT : X — X
be a ¢- strongly accretive operator, which is bounded and demicontinous. Let
z € X and let xy be an arbitrary initial value in X for which tlim inf ¢(t) >

|Txo||. Then the steepest descent approzimation scheme
Tps1 =%y — (Txy—2), n=0,1,2...,

converges strongly to the unique solution of the equation Tx = z provided

that the sequence {a,} of positive real numbers satisfies the following:

(1) {an} is bounded above by some fized constant,
) Z a, = 400,
n=0

(iid) Y amb(an) < +o0,

n=0

where b : [0,00) — [0,00) is a nondecreasing continuous function.
In [5], Ciric et al. proved the following theorem:

Theorem 2.. Let X be a uniformly smooth Banach space and letT : X — X
be a bounded and demicontinous generalized strongly accretive operator. Let

z € X and let xo be an arbitrary initial value in X for which |Txo| <
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sup{®(t)/t : t > 0}. Then a steepest descent approximation scheme defined
by
Tpy1 = xn_an(Tyn_Z), n=20,1,2...,
Yo = xp— Bn(Txp—2), n=0,1,2,...,

where the sequence {a,} of positive real numbers satisfies the following con-
ditions:

(1)  an <A, where X is some fized constant,

(41) i oy, = 400,
n=0

(1i1) a, — 0 as n — oo, converges strongly to the unique solution

of the equation Tx = z.

The purpose of this paper is to continue a study of sufficient conditions
for the convergence of the steepest descent approximation process to the zero
of a generalized strongly accretive operator. We also extend and improve
the results which include the steepest descend method considered by Ciric
et al. [5], Morales and Chidume [12], Chidume [3] and Xu and Roach [14]
for a bounded ¢-strongly quasi-accretive operator and also the generalized
steepest descend method considered by Zhou and Guo [16] for a bounded

¢-strongly quasi-accretive operator.

2 Main results

The following lemmas are now well known.

Lemma 1. [2] Let J : E — 2F be the normalized duality mapping. Then
for any x,y € E, we have

o+ > < lz)*+2(y, iz +y)), foral jlz+y)e J(x+y).

Suppose there exist a strictly increasing function ® : [0,00) — [0, 00) with

o(0) = 0.
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Lemma 2. [10] Let ® : [0,00) — [0,00) be a strictly increasing function
with ®(0) = 0 and {a,}, {bn}, {cn} be nonnegative real sequences such that

lim b, =0, cy=o0(b), P bp=

n—00
n=0

Suppose that for all n > 0,

a2y < ai — ®(ani1)by + o,

n

then lim a, = 0.

Theorem 3.. Let E be a real Banach space and let A : E — E be a
Lipschitzian generalized strongly accretive operator. Let z € E and xo be
an arbitrary initial value in E for which the steepest descent approrimation

scheme is defined by

T+l = Tp — an(Ayn - Z)a

(2) Yo = Tp—Lu(Az,—2), n=0,1,2...,
where the sequences {a,} and {B,} satisfy the following conditions:

(1) 0<an,pB, <1,

ian:—i—oo

(441) hm a, =0= hm B,

n—oo

converges strongly to the unique solution of the equation Ax = z.

Proof. Following the tehnique of Chidume and Chidume [4], without loss

of generality we may assume that z = 0. Define by p the unique zero of A.
By hm a, =0= hm B, imply there exist ng € N such that,

for all n > ng, Qp < 5 and G <0

1 2207 (a))
0<5—mm{3L 36L2[ <0>] }
1 222 '(ao)) }
2L 2412 [®(ay))

O<(5’—m1n{
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Define ag := || Az, || [0, — pl| - Then from (1), we obtain that ||x,, — p| <
O (ap).

By induction, we shall prove that ||z, —p|| < 2®(ag) for all
n > ng. Clearly, the inequality holds for n = ng. Suppose it holds for
some n > ng, i.e., ||z, —pl| < 207 (ay). We prove that ||z,.1 —p|| <
20 !(ag). Suppose that this is not true. Then ||z,11 — p|| > 2@ (ap), so
that ®(||z,1 — p||) > ®(297!(ag)). Using the recursion formula (2), we

have the following estimates

[Aza|l = [|Az, — Apl| < L ||z, — pl| < 2L27(ao),
lyn =Dl = llzn —p — BuAza|l < |l2n — pl| + Bu || Az
< 207 (ag) + 2L® Hap) B, < 3P H(ay),
[T =2l = llzn —p = anAyall < llzn — pll + au [[Aya|l
< |z —pll + Law [[yn — pl
< 207 (ag) + 3LP (ag)a, < 3P (ap).

With these estimates and again using the recursion formula (2), we obtain
by Lemma 1 that
(3) lznir = 2l* = e —p — an Ay’

<l = plI* = 200 (Ayn, j(@0s1 = p))

= o — pH2 — 200 (A1, j(Tnt1 — p))

+ 200 (ATp41 — AyYn, j(Tn1 — p))

<z = pl* = 200 @ (s — pl))

+ 2a, HAxn-&-l - AynH Hxn-&-l —p”

IN

20 — plI* = 20,2 (|| 2041 — pll)
+ 20, L ||2pg1 — Yul| |01 — 2|

where

IN

|Zni1 = Tull + |20 — ynll = an [[Aynll + Bn [| Az |
< Lo lyn — pll + LB || — pll < LO ™ (a0)(Bow, + 203,),

[Zn41 = ynll
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and consequently from (3), we get

@) N =pI” < llzn = pl” = 2008 ([[20s1 — pl))
+ 20207 (ao) (30, + 200 f3,) [|ns1 — p
< lzn = pl* = 20,® (297 (a0))
+ 6L [0 (ap)]” (302 + 2a,0,)
<l = pl* = 20,2297 (a9)) + @u (20 (ao))
= lan = pll* = n (207 (o).
Thus
@, ®(207 (a0)) < [l = p|I* = [0 — 2l
implies

j i
®(20 " (a0)) Y an < Y (ln = pl* = lwnss = plI*) = ll2ng — 2II”,

n=ng n=ng

so that as j — oo we have

(20 (ag)) D an < [, — pl* < o0,

n=ng

o

which implies that Zan < o0, a contradiction. Hence, ||z,+1 —p| <

n=0
20! (ap); thus {x,} is bounded. Consider

Hyn - In” = ”xn — BpAz, — an = [ HAan < LB, Hxn - pH
< 2LP Y(ag)B, — 0 as n — oo,

implies the sequence {y,, — z,,} is bounded. Since ||y, — p|| < ||y — 2a| +
|z, — p||, further implies the sequence {y,} is bounded.
Now from (4), we get

(5) Zni1 — > < Nlwn —pl* = 200 @ (|20 — p|)
+ 4L [0 Y(a)]” (302 4 20, 8,).
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Denote
an = ||z, —pll,
b, = 2a,,
o = 4L2 [®(ap)] (32 4 2a,3,).

Condition lim «, = 0 ensures the existence of a rank ng € N such that

n—oo

b, = 2a, < 1, for all n > ng. Now with the help of Za” =00, lim o, =
n=0

0 = lim f, and Lemma 2, we obtain from (5) that
lim [lz, —pl| = 0,

completing the proof.

Theorem 4.. Let E be a real Banach space and let A : E — E be a
Lipschitzian generalized strongly quasi-accretive operator such that N(A) #
D). Let z € E and xq be an arbitrary initial value in E for which the steepest

descent approzimation scheme is defined by

Tpy1 = Tn — an(Ayn — 2),

Yn = Tpn—Pu(Az, —2), n=0,1,2...,
where the sequences {a,} and {B,} satisfy the following conditions:

(1) 0<an,fB, <1,

(17) i o, = +00,
n=0

(¢4i) lim o, = 0= lim G,

n—oo n—oo

converges strongly to the unique solution of the equation Ax = z.
1 1
Remark 1. One can easily see that if we take o, = —;0 < 0 < o
nO'
then Z o, = 00, but also Zoz2 & 0o. Hence the results of Chidume and
Chidume in [/] are not true in general and consequently the results presented

in this manuscript are independent of interest.



142 A. Rafig, A.M. Acu, M. Acu

References

[1] F. E. Browder, Nonlinear mappings of non-expansive and accretive type
in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875-882.

[2] S.S. Chang, On Chidume’s open questions and aprozimate solutions of

multivalued strongly accretive mapping equations in Banach spaces, J.
Math. Anal. Appl. 216 (1997), 94-111.

[3] C. E. Chidume, Steepest descent approzimations for accretive operator
equations, Nonlinear Anal. 26 (1996), 299-311.

[4] C. E. Chidume , C. O. Chidume, Convergence theorems for fized point of
uniformly continous generalized ®-hemi-contractive mappings, J. Math.
Anal. Appl. 303 (2005), 545-554.

[5] Lj. B. Ciric et al., On the steepest descent approzimation method for
the zeros of generalized accretive operators, Nonlinear Analysis Series A:

Theory, Methods & Applications, in press.

[6] S. Ishikawa, Fized point and iteration of a nonexpansive mapping in a
Banach space, Proc. Amer. Math. Soc. 73 (1976), 65-71.

(7] A. G. Kartsatos, Zeros of demicontinous accretive operators in Banach
space, J. Integral Eqns. 8 (1985), 175-184.

[8] T. Kato, Nonlinear semi-groups and evolution equations, J. Math. Soc.
Japan 18/19 (1967), 508-520.

9] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc.
4 (1953). 506-510.

[10] C. Moore and B.V.C. Nnoli, Iterative solution of nonlinear equations

involving setvalued uniformly accretive operators, Comput. Math. Appl.
42 (2001), 131-140.



Steepest descent approximations in Banach space 143

[11] C. H. Morales, Surjectivity theorems for multi-valued mappings of ac-
cretive types, Comment. Math. Univ. Carol. 26 No. 2 (1985), 397-413.

[12] C. H. Morales, C. E. Chidume, Convergence of the steepest descent
method for accretive operators, Proc. Amer. Math. Soc. 127(12) (1999),
3677-3683.

[13] M. M. Vainberg, On the convergence of the method of steepest descent
for nonlinear equations, Sibirsk Math. Zb. (1961), 201-220.

[14] Z.B. Xu, G. F. Roach, Characteristic inequalities in uniformly convex
and uniformly smooth Banach spaces, J. Math. Anal. Appl. 157 (1991),
189-210.

[15] E. H. Zarantonello, The closure of the numerical range contains the
spectrum, Bull. Amer. Math. Soc. 70 (1964), 781-783.

[16] H. Y. Zhou, J. Guo, A characteristic condition for convergence of gen-
eralized steepest descent approximation to accretive equations, Indian J.
Pure Appl. Math. 32 (2) (2001), 277-284.

Arif Rafiq Ana Maria Acu & Mugur Acu
COMSATS Institute of "Lucian Blaga” University
Information Technology Department of Mathematics
Department of Mathematics Sibiu, Romania

Islamabad, Pakistan E-mail: acuana77@yahoo.com

E-mail: arafiq@comsats.edu.pk acu_mugur@yahoo.com



