
General Mathematics Vol. 16, No. 3 (2008), 133–143

Steepest descent approximations in Banach
space1
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Abstract

Let E be a real Banach space and let A : E → E be a Lipschitzian

generalized strongly accretive operator. Let z ∈ E and x0 be an arbi-

trary initial value in E for which the steepest descent approximation

scheme is defined by

xn+1 = xn − αn(Ayn − z),

yn = xn − βn(Axn − z), n = 0, 1, 2 . . . ,

where the sequences {αn} and {βn} satisfy the following conditions:

(i) 0 ≤ αn, βn ≤ 1,

(ii)
∞

∑

n=0

αn = +∞,

(iii) lim
n→∞

αn = 0 = lim
n→∞

βn,

converges strongly to the unique solution of the equation Ax = z.
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1 Introduction

Let E be a real Banach space and let E∗ be its dual space. The normalized

duality mapping J : E → 2E∗

is defined by

Jx = {u ∈ E∗ : 〈x, u〉 = ‖x‖ ‖u‖ , ‖u‖ = ‖x‖} ,

where 〈., .〉 denotes the generalized duality pairing.

A mapping A with domain D(A) and range R(A) in E is said to be

strongly accretive if there exist a constant k ∈ (0, 1) such that for all x, y ∈

D(A), there exists j(x − y) ∈ J(x − y) such that

〈Ax − Ay, j(x − y)〉 ≥ k ‖x − y‖2 ,

and is called φ-strongly accretive if there is a strictly increasing function

φ : [0,∞) → [0,∞) with φ(0) = 0 such that for any x, y ∈ D(A) there exist

j(x − y) ∈ J(x − y) such that

〈Ax − Ay, j(x − y)〉 ≥ φ(‖x − y‖) ‖x − y‖ .

The mapping A is called generalized Φ-accretive if there exist a strictly

increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0 such that for all

x, y ∈ D(A) there exist j(x − y) ∈ J(x − y) such that

〈Ax − Ay, j(x − y)〉 ≥ Φ(‖x − y‖).

It is well known that the class of generalized Φ-accretive mappings in-

cludes the class of φ-strongly accretive operators as a special case (one set

Φ(s) = sφ(s) for all s ∈ [0,∞)).

Let N(A) := {x ∈ D(A) : Ax = 0} 6= Ø.

The mapping A is called strongly quasi-accretive if there exist k ∈ (0, 1)

such that for all x ∈ D(A), p ∈ N(A) there exist j(x − p) ∈ J(x − p) such

that

〈Ax − Ap, j(x − p)〉 ≥ k ‖x − p‖2 .
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A is called φ-strongly quasi-accretive if there exist a strictly increasing

function φ : [0,∞) → [0,∞) with φ(0) = 0 such that for all x ∈ D(A),

p ∈ N(A) there exist j(x − p) ∈ J(x − p) such that

〈Ax − Ap, j(x − p)〉 ≥ φ(‖x − p‖) ‖x − p‖ .

Finally, A is called generalized Φ-quasi-accretive if there exist a strictly

increasing function Φ : [0,∞) → [0,∞) with Φ(0) = 0 such that for all

x ∈ D(A), p ∈ N(A) there exist j(x − p) ∈ J(x − p) such that

(1) 〈Ax − Ap, j(x − p)〉 ≥ Φ(‖x − p‖).

A mapping G : E → E is called Lipschitz if there exists a constants

L > 0 such that ‖Gx − Gy‖ ≤ L ‖x − y‖ for all x, y ∈ D(G).

Closely related to the class of accretive-type mappings are those of

pseudo-contractive types.

A mapping T : E → E is called strongly pseudo-contractive if and only if

I−T is strongly accretive, and is called strongly φ-pseudo-contractive if and

only if (I − T ) is φ-strongly accretive. The mapping T is called generalized

Φ-pseudo-contractive if and only if (I − T ) is generalized Φ-accretive.

In [5, page 9], Ciric et al. showed by taking an example that a generalized

Φ-strongly quasi-accretive operator is not necessarily a φ-strongly quasi-

accretive operator.

If F (T ) := {x ∈ E : Tx = x} 6= Ø, the mapping T is called strongly

hemi-contractive if and only if (I−T ) is strongly quasi-accretive; it is called

φ-hemi-contractive if and only if (I−T ) is φ-strongly quasi-accretive; and T

is called generalized Φ-hemi-contractive if and only if (I −T ) is generalized

Φ-quasi-accretive.

The class of generalized Φ-hemi-contractive mappings is the most general

(among those defined above) for which T has a unique fixed point. The

relation between the zeros of accretive-type operators and the fixed points

of pseudo-contractive-type mappings is well known [1,8,11].
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The steepest descent approximation process for monotone operators was

introduced independently by Vainberg [13] and Zarantonello [15]. Mann [9]

introduced an iteration process which, under suitable conditions, converges

to a zero in Hilbert space. The Mann iteration scheme was further developed

by Ishikawa [6]. Recently, Ciric et al. [5], Zhou and Guo [16], Morales

and Chidume [12], Chidume [3], Xu and Roach [14] and many others have

studied the characteristic conditions for the convergence of the steepeast

descent approximations.

Morales and Chidume proved the following theorem:

Theorem 1.. Let X be a uniformly smooth Banach space and let T : X → X

be a φ- strongly accretive operator, which is bounded and demicontinous. Let

z ∈ X and let x0 be an arbitrary initial value in X for which lim
t→∞

inf φ(t) >

‖Tx0‖ . Then the steepest descent approximation scheme

xn+1 = xn − (Txn − z), n = 0, 1, 2 . . . ,

converges strongly to the unique solution of the equation Tx = z provided

that the sequence {αn} of positive real numbers satisfies the following:

(i) {αn} is bounded above by some fixed constant,

(ii)
∞

∑

n=0

αn = +∞,

(iii)
∞

∑

n=0

αnb(αn) < +∞,

where b : [0,∞) → [0,∞) is a nondecreasing continuous function.

In [5], Ciric et al. proved the following theorem:

Theorem 2.. Let X be a uniformly smooth Banach space and let T : X → X

be a bounded and demicontinous generalized strongly accretive operator. Let

z ∈ X and let x0 be an arbitrary initial value in X for which ‖Tx0‖ <
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sup {Φ(t)/t : t > 0} . Then a steepest descent approximation scheme defined

by

xn+1 = xn − αn(Tyn − z), n = 0, 1, 2 . . . ,

yn = xn − βn(Txn − z), n = 0, 1, 2, . . . ,

where the sequence {αn} of positive real numbers satisfies the following con-

ditions:

(i) αn ≤ λ, where λ is some fixed constant,

(ii)
∞

∑

n=0

αn = +∞,

(iii) αn → 0 as n → ∞, converges strongly to the unique solution

of the equation Tx = z.

The purpose of this paper is to continue a study of sufficient conditions

for the convergence of the steepest descent approximation process to the zero

of a generalized strongly accretive operator. We also extend and improve

the results which include the steepest descend method considered by Ciric

et al. [5], Morales and Chidume [12], Chidume [3] and Xu and Roach [14]

for a bounded φ-strongly quasi-accretive operator and also the generalized

steepest descend method considered by Zhou and Guo [16] for a bounded

φ-strongly quasi-accretive operator.

2 Main results

The following lemmas are now well known.

Lemma 1. [2] Let J : E → 2E be the normalized duality mapping. Then

for any x, y ∈ E, we have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, for all j(x + y) ∈ J(x + y).

Suppose there exist a strictly increasing function Φ : [0,∞) → [0,∞) with

Φ(0) = 0.
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Lemma 2. [10] Let Φ : [0,∞) → [0,∞) be a strictly increasing function

with Φ(0) = 0 and {an}, {bn}, {cn} be nonnegative real sequences such that

lim
n→∞

bn = 0, cn = o(bn),
∞

∑

n=0

bn = ∞.

Suppose that for all n ≥ 0,

a2

n+1 ≤ a2

n − Φ(an+1)bn + cn,

then lim
n→∞

an = 0.

Theorem 3.. Let E be a real Banach space and let A : E → E be a

Lipschitzian generalized strongly accretive operator. Let z ∈ E and x0 be

an arbitrary initial value in E for which the steepest descent approximation

scheme is defined by

xn+1 = xn − αn(Ayn − z),

yn = xn − βn(Axn − z), n = 0, 1, 2 . . . ,(2)

where the sequences {αn} and {βn} satisfy the following conditions:

(i) 0 ≤ αn, βn ≤ 1,

(ii)
∞

∑

n=0

αn = +∞,

(iii) lim
n→∞

αn = 0 = lim
n→∞

βn,

converges strongly to the unique solution of the equation Ax = z.

Proof. Following the tehnique of Chidume and Chidume [4], without loss

of generality we may assume that z = 0. Define by p the unique zero of A.

By lim
n→∞

αn = 0 = lim
n→∞

βn, imply there exist n0 ∈ N such that,

for all n ≥ n0, αn ≤ δ and βn ≤ δ′;

0 < δ = min

{

1

3L
,

Φ(2Φ−1(a0))

36L2 [Φ−1(a0)]
2

}

,

0 < δ′ = min

{

1

2L
,

Φ(2Φ−1(a0))

24L2 [Φ−1(a0)]
2

}

.
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Define a0 := ‖Axn0
‖ ‖xn0

− p‖ . Then from (1), we obtain that ‖xn0
− p‖ ≤

Φ−1(a0).

By induction, we shall prove that ‖xn − p‖ ≤ 2Φ−1(a0) for all

n ≥ n0. Clearly, the inequality holds for n = n0. Suppose it holds for

some n ≥ n0, i.e., ‖xn − p‖ ≤ 2Φ−1(a0). We prove that ‖xn+1 − p‖ ≤

2Φ−1(a0). Suppose that this is not true. Then ‖xn+1 − p‖ > 2Φ−1(a0), so

that Φ(‖xn+1 − p‖) > Φ(2Φ−1(a0)). Using the recursion formula (2), we

have the following estimates

‖Axn‖ = ‖Axn − Ap‖ ≤ L ‖xn − p‖ ≤ 2LΦ−1(a0),

‖yn − p‖ = ‖xn − p − βnAxn‖ ≤ ‖xn − p‖ + βn ‖Axn‖

≤ 2Φ−1(a0) + 2LΦ−1(a0)βn ≤ 3Φ−1(a0),

‖xn+1 − p‖ = ‖xn − p − αnAyn‖ ≤ ‖xn − p‖ + αn ‖Ayn‖

≤ ‖xn − p‖ + Lαn ‖yn − p‖

≤ 2Φ−1(a0) + 3LΦ−1(a0)αn ≤ 3Φ−1(a0).

With these estimates and again using the recursion formula (2), we obtain

by Lemma 1 that

‖xn+1 − p‖2 = ‖xn − p − αnAyn‖
2(3)

≤ ‖xn − p‖2 − 2αn〈Ayn, j(xn+1 − p)〉

= ‖xn − p‖2 − 2αn〈Axn+1, j(xn+1 − p)〉

+ 2αn〈Axn+1 − Ayn, j(xn+1 − p)〉

≤ ‖xn − p‖2 − 2αnΦ(‖xn+1 − p‖)

+ 2αn ‖Axn+1 − Ayn‖ ‖xn+1 − p‖

≤ ‖xn − p‖2 − 2αnΦ(‖xn+1 − p‖)

+ 2αnL ‖xn+1 − yn‖ ‖xn+1 − p‖ ,

where

‖xn+1 − yn‖ ≤ ‖xn+1 − xn‖ + ‖xn − yn‖ = αn ‖Ayn‖ + βn ‖Axn‖

≤ Lαn ‖yn − p‖ + Lβn ‖xn − p‖ ≤ LΦ−1(a0)(3αn + 2βn),
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and consequently from (3), we get

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − 2αnΦ(‖xn+1 − p‖)(4)

+ 2L2Φ−1(a0)(3α
2

n + 2αnβn) ‖xn+1 − p‖

≤ ‖xn − p‖2 − 2αnΦ(2Φ−1(a0))

+ 6L2
[

Φ−1(a0)
]2 (

3α2

n + 2αnβn

)

≤ ‖xn − p‖2 − 2αnΦ(2Φ−1(a0)) + αnΦ(2Φ−1(a0))

= ‖xn − p‖2 − αnΦ(2Φ−1(a0)).

Thus

αnΦ(2Φ−1(a0)) ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 ,

implies

Φ(2Φ−1(a0))

j
∑

n=n0

αn ≤

j
∑

n=n0

(‖xn − p‖2 − ‖xn+1 − p‖2) = ‖xn0
− p‖2 ,

so that as j → ∞ we have

Φ(2Φ−1(a0))
∞

∑

n=n0

αn ≤ ‖xn0
− p‖2 < ∞,

which implies that
∞

∑

n=0

αn < ∞, a contradiction. Hence, ‖xn+1 − p‖ ≤

2Φ−1(a0); thus {xn} is bounded. Consider

‖yn − xn‖ = ‖xn − βnAxn − xn‖ = βn ‖Axn‖ ≤ Lβn ‖xn − p‖

≤ 2LΦ−1(a0)βn → 0 as n → ∞,

implies the sequence {yn − xn} is bounded. Since ‖yn − p‖ ≤ ‖yn − xn‖ +

‖xn − p‖ , further implies the sequence {yn} is bounded.

Now from (4), we get

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − 2αnΦ(‖xn+1 − p‖)(5)

+ 4L2
[

Φ−1(a0)
]2

(3α2

n + 2αnβn).
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Denote
an = ‖xn − p‖ ,

bn = 2αn,

cn = 4L2 [Φ−1(a0)]
2
(3α2

n + 2αnβn).

Condition lim
n→∞

αn = 0 ensures the existence of a rank n0 ∈ N such that

bn = 2αn ≤ 1, for all n ≥ n0. Now with the help of
∞

∑

n=0

αn = ∞, lim
n→∞

αn =

0 = lim
n→∞

βn and Lemma 2, we obtain from (5) that

lim
n→∞

‖xn − p‖ = 0,

completing the proof.

Theorem 4.. Let E be a real Banach space and let A : E → E be a

Lipschitzian generalized strongly quasi-accretive operator such that N(A) 6=

Ø. Let z ∈ E and x0 be an arbitrary initial value in E for which the steepest

descent approximation scheme is defined by

xn+1 = xn − αn(Ayn − z),

yn = xn − βn(Axn − z), n = 0, 1, 2 . . . ,

where the sequences {αn} and {βn} satisfy the following conditions:

(i) 0 ≤ αn, βn ≤ 1,

(ii)
∞

∑

n=0

αn = +∞,

(iii) lim
n→∞

αn = 0 = lim
n→∞

βn,

converges strongly to the unique solution of the equation Ax = z.

Remark 1. One can easily see that if we take αn =
1

nσ
; 0 < σ <

1

2
,

then
∑

αn = ∞, but also
∑

α2 ≮ ∞. Hence the results of Chidume and

Chidume in [4] are not true in general and consequently the results presented

in this manuscript are independent of interest.
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