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On fourth order simultaneously zero-finding
method for multiple roots of complex
polynomial equations!

Nazir Ahmad Mir and Khalid Ayub

Abstract

In this paper, we present and analyse fourth order method for
finding simultaneously multiple zeros of polynomial equations. S.
M. Ili¢ and L. Ranci¢ modified cubically convergent Ehrlich_Aberth
method to fourth order for the simultaneous determination of simple
zeros [5]. We generalize this method to the case of multiple zeros
of complex polynomial equations. It is proved that the method has
fourth order convergence. Numerical tests show its efficient com-
putational behaviour in the case of multiple real/complex roots of

polynomial equations.
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1 Introduction

The methods for simultaneous finding of all roots of polynomials are very
popular as compared to the methods for individual finding of the roots. These
methods have a wider region of convergence and are more stable, (see, [2,6-
7.9-12]) and references cited therein. For fourth order simple zero-finding
simultaneous methods,(see, [4,8,13,15-16]).

S. M. Ili¢ and L. Rané¢i¢ modified cubically convergent Ehrlich-Aberth
method to fourth order for simultaneous finding of simple complex zeros of
polynomial equations [5]. We generalise this method to the case of multi-
ple zeros of complex polynomial equations. It is proved that the method
has fourth order convergence, if the roots have known multiplicities. Re-
cently, X. Zhang, H. Peng and G. Hu established a fifth order zero-finding
method for the simultaneous determination of simple complex zeros of poly-
nomial equations[15]. However, in case of multiple zeros, it has linear con-
vergence as is also obvious from the numerical tests. Results of numerical
tests show efficient computational behaviour of our method in case of mul-
tiple real/complex zeros of complex polynomial.

The method and its convergence analysis is considered in Section 2,
where as results of numerical tests are presented in Sectin 3. Section 4

contains conclusion.

2 The method and its convergence analysis

Let us consider a monic algebraic polynomial P of degree n having zeros w;

m
with multiplicities «;;, such that Z a; =mn,
j=1

(1) P(Z) :Zn+an—12n_1+"'+alz+a0:H(Z_wj)aj'
j=1
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We propose the following method for finding the multiple zeros of complex

polynomial (1):

. P(zi)
where N; = (2

eralization of the method presented by S. M. Ili¢c and L. Rancic¢ [5] to the
case of multiple zeros of a complex polynomial. We name this method as
N M M-method. We claim that the N M M-method is of convergence order

four.

is the Newton’s correction. The method (2) is the gen-

First, let us introduce the notations,

(3)
2 . 1 m m
d = min|w; —w;|,q= nd and Z, Z, instead ofz,z, respectively.

l?] . . - -
i#j J#i Jj=1 j=1
JFi

Further, suppose that the conditions,

d 1
=—, (t=1,..
2n—1 ¢’ (i=1.m)

(4) leif <

hold for all 7, where ¢; = z; — w;. We assume here that n > 3. We prove the

following lemma:

Lemma 1. Let zq, ..., z,,, be the distinct approximations to the zeros wq, ..., Wy,
respectively. Also, let £; = z; — w;,where z; is the new approzimation pro-
duced by the NMM-method (2). If (4) holds, then the following inequalities

also hold: 5
. ~ q
(4) €| < m\€i|22|€j|27
J#i
~ d 1
Y i =—, (t=1,....,m).
(17) G| <57 . (i m)

Proof. Considering (3), we get
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(5) lzi —wy| = [(wi —wy) + (2 —wi)| > |wi —wj| — [z —w;
d 2n — 2

> d- _
2n — 1 q

Considering (4) and (5), we get

(6) lzi — 25| = (2 —wy) + (wy — 25)| = |z — wy| — |wy — 2
2n — 2 1 2n — 3
q q q

Defining the notation

oY

1,2

we have

2 =>
J Zz—w]

1,4 jFi

Thus, using (5), we have

2.0

q —Ln—a-.
Szm—wﬂ -1 2% = o1 "

J#

Since n — a; < n — 1 for all 7, we have

(7) Z%‘ <

Also
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Now, using (4) and (7) in the above result, we have:

1
€ €
] 1 1,077 1 — ‘€l| Zl,’i a] 1 - — .=
q 2
ie.,
2
q
From (2), we have
€, = Z; —W; = 2 — ) o ! aZ.Nj — W;
_ J 7 7
N; Z 2i—2; T Z (zi—2;)?
j#1 J#1
Q;
—_= C,L' _— a a a2N‘
o j ] i Rt
o T Zzi—jwj B Zz’b_JZJ + Z (Zij_zj)Q
J#1 J#1 J#1
_ . Qi€
= P 2 )
7aj(zj7wj)(zifzj)+aij(Zi*wj)
(07} + 61); |: (zi—wj)(zi—Zj)Q
Using Newton’s correction, we have
~ Q€4
€; = € — - ooy
—ej(z,-—z]')-l—(ﬁ)(zi—wj)
J 1,5 %
Q; + GiJ;aj (Zi—wj)(zi_zj)2
) €
= Ei —_— r
6>, ei{=Gi=z)(astes Xy o) +ayzi—agw; |
v ’#1 J I (zi—w;)(zi—2)2 (ej+€ 3y j o)
€
e e’i —_ = T
] i(zj—wj)—(zi—2j)€5 D1 5
L+ 23 aje) | 2 -
@ z:#f J _(zi—wj)(zz‘—Zj)Q(aﬁej 21 O‘i)_
€;
= € — r ]
A 6 —(2i—2)e 21
1+ € s Q€5 \J
aizﬁf J _(Zifwj)(Zi*ZjV(aﬁfj W O‘i)_
€
e 5@'

1 + ;—’ZZ OéjE?Aij ’
Jj#1
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where
A aj— (5= 2) 2,
15 —
(%—WM%—%VQ%+@ZMQJ
implies
2
€; —f- ;_:ZQJG?AU — €
~ i#l
€; — 2 5
1+ Q—ZZO(]‘EJ-AZ‘]‘
J#1
or
2
;_li;ajG?Aij
(10) €; — ]52 5 .
1+ Q—ZZO&]‘EJ-AZ‘]‘
#1
From (8), we have
€; 2
|Ng| — | J’ < =
€535 1
implies
1 2
<
q e

aj+ €D,
Now using equations (5), (6) and (7), and the above result, we have

D

|| + [z — 2

A 5] < ;
lzi —wyl |z — 2] oy + 650,
oyl o
B 2 =2l |43
|2i — wj| |2 — zj] |y + € El,jaz
n a +g
< m—3 ' 2 :q_qQ 2n + (2n — 3)
= (2n—2> <2n—3)g’€'| q 2(n—1)(2n —3)%|¢]
q ¢ )27
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dn — 3
Since (271—3), n > 3 is monotonically decreasing sequence, so that finding
n —
the least upper bound for n > 3 of the sequence, we have
2
q 1
11 A il < &———
- Al 5 e
and
€ A < A <i !
ZO‘JEJ il = Z]ky’ A 5] < Zjlej‘ ( )‘ |
Y t gt €
|€z| Z 1 1 q2
- 1615 L) Yy T -
o < 2n—1) ¢4 g 2n—1)

< 5.m;aj < m(n—ai) ,

i 1 . .

since o; > 1 — ai <1 and M < —foralli. Using ) aj=n—ao; <n-—1
! Q; q g

for all 7, we obtain
€ 1 1

Also further, using (12), imples

(13) Zaj EA; ;| >1- Zaj e A; ; > -

]#l ]#z
Finally, using equation (11), (13) in (10), we get

¢ 1
|€Z| Za] ’€J| ( ) |€ |
~ J
(14) ‘ez‘ < I = ZO‘J €51 -

B J#i

This completes, the proof of Lemma 1(1). Now from (14), we obtain

2

~

q 1
€; < (n—l)?g Oé] E Qy
j#i ﬁéz
1
= ——(n—a).

(n—1)q
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~ 1 1
Since Y a; =n —a; <n—1 for all i, we have |¢| < ———(n—1) = —,
i (n—1)q q
namely
o] < 1 > < 1
€; = - = €; —
2n—1 ¢ q

and hence Lemma 1 (ii) is also valid.

Let zio), e 27(7?) be reasonably good initial approximations to the zeros
Ek) = zi(k) — w;, where z%k), e zﬁff)be
the approximtions obtained in the kth iterative step by the simultaneous
method (NMM-method).

Using Lemma 1, we now state the main convergence theorem concerned

with N M M-method.

Wi, ..., Wy, of the polynomial P, and let €

Theorem 1. Under the conditions

d 1
- (i=1,...,m),

(0) _
2n—1 ¢

(15) <

the NMM-method is convergent with the convergence order four.

Proof. In Lemma 1 (i) we established result (14) under the conditions (4).
Using the same argument under condition (15) of Theorem 1, we have from
(14)

3 2 2 1
(—:gl) < (nq— 1 (—:EO)‘ Zozj 650)‘ < 7 (i=1,..,m).
#1
So by Lemma 1 (ii), we have:
d 1 d 1
ego)‘< =-= 651)‘< =—, (i=1,...m)
2n—1 ¢ 2n—1 ¢
Using the mathematical induction, we can prove that the condition (15)
implies
3 2 2 1
(k+1) q (k) (k)
(16) ‘(—:i < =1 € ‘ Zaj ‘Ej < 7

J#1
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for each k =0,1,...and i =1,...,m.
(k)

£
Putting el(-k)‘ = - (16) becomes
q
( (k))Q )
(17) (Y] < ANy (69) (=1, m)
(n=15
Let t*) = max t*_ Then from condition (15), it follows that g ego)’ =
t§°) <t < 1fori=1,..,m, and from (17), we have tgk) < 1 for each

k=0,1,...and ¢ = 1, ...,m. Thus, from (17), we get

W < —(@D (=) (1)’

(19 < (@) G e s e

tz(k);i =1, ...,m} converge to 0. Conse-

(k)

i

This shows that the sequences {

quently, the sequences {‘e(»k)‘} also converge to 0, i.e., z

; — w; for all ¢

as k increases. Finally, from (18) it can be concluded that the method (2)
(NMM-method) has convergence order four.

3 Numerical Tests

We consider here some numerical examples of algebraic polynomials with
repeated real and complex zeros to demonstrate the performance of fourth
order method (2) (NMM-method).

We use the abbreviations as GHN(10), GHN(11) and GHN(12) to refer
to the formulae of convergence order two, three and three for multiple zeros
in [8] and ZPH to refer to the formula of convergence order five for distinct

zeros in [15].
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All the computations are performed using Mapple 7.0. We take e = 10718

as tolerance and use the following stopping criteria for estimating the zeros:
|2t — 2] <e.

Firstly, taking the multiplicities equal to one in our method (2), we re-
estimated the examples from [5]. We got the same estimates as by the

fourth order convergent method in [5] for distinct zeros.

Secondly, numerical tests for the algebraic polynomials with real and
complex repeated zeros from [8] are provided in tables 3.1(a) to 3.1(b).
The roots obtained by the methods GHN(10), GHN(11) and GHN(12) are
accurate to 18 digits in tables 3.1(a) to 3.1(b), where as the roots obtained
by the NMM-method are accurate to 20 to 30 digits in table 3.1(a) and
accurate to 21 to 32 digits in table 3.1(b).

Thirdly, the NMM-method is also compared with ZPH-method[15]. We
got the roots accurate to 64 digits at the first iteration, where as the ZPH-

method obtained roots accurate to 2 digits at fifth iteration.

Table 3.1(a) :

Examplel :

213 410212 — 90211 — 1000210 + 342529 4 3917428 + 8120027 — 74192026
+142512025 + 65001602% — 1569715223 — 1596672022 + 668736002
=(:-5":=-2"(=+3)(z+6)°

Exact Root: o= (5,2,—3,—6)

Initial Point Number of iterations for different methods

) GHN(10)x | GHN(11)x | GHN(12)% | NMM x %
(5.9,2.7,-3.9,—6.7) 7 5 5 3
(5.6,1.5,—2.7, —6.5) 6 4 4 3
(5.5,1.4,—2.6,—6.3) 6 4 4 3
(5.4,2.2,—2.8,—-5.9) 6 3 4 3

xAbsolute Errors are equal to10~18
s« Absolute Errors lie between10~18¢010 — 30
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Table 3.1(b) :
Example?2 :
27 =328 4525 — 7244723 —522432—1=(2—1)% (z+i)2 (z—1)3 = (z2+1)2 (z—1)3
Exact Root: o= (4,—1,1)

Initial Point Number of iterations for different methods

T0 GHN(10)x | GHN(11)* | GHN(12)* | NMM x x

(0.1-0.87,0.1+0.8¢,0.8—0.27) 5 4 4 3
(0.2—0.87,0.2+0.8¢,0.7—0.27) 23 5 12 3
(0.3—0.87,0.2+0.8¢,0.9—0.37) 11 4 6 3
(0.1-0.9¢,0.340.854,0.8—0.27) 6 3 4 3
*Absolute Errors are equal to10~18
s+ Absolute Errors lie between10~31t010732

Table 3.2

Example 3 :

24— 4234622 —4z+1=(z—1)*

Absolute error by NMM=0.000000F + 00.Accuracy upto 64 digits in first iteration
Absolute error by ZPH

Iteration egk) eék) egk) eﬁl’“
k=1 0.220767E + 00 | 0.205550FE + 00 | 0.205545E + 00 0.203993FE + 00
k=2 0.104195FE + 00 | 0.100922FE 4 00 | 0.996648F — 01 0.101043FE + 00
k=3 0.495872FE — 01 | 0.490962FE — 01 | 0.484233FE — 01 0.492193F — 01
k=4 0.237278E — 01 | 0.237661FE — 01 | 0.235053FE — 01 0.237900F — 01
k=5 0.548168FE — 02 | 0.553296FE — 02 | 0.550699F — 02 0.551863FE — 02

4 Conclusion

From the numerical comparison, we observe that the NMM-method is com-
pareable with fourth order methods in case of distinct zeros. It has got
better performance in case of multiple zeros over the third order methods

for multiple zeros and higher order methods for distinct zeros.
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