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Existence of Solutions and Star-shapedness
in Generalized Minty Variational Inequalities

in Banach Spaces1

E. Naraghirad

Abstract

The purpose of this paper is to introduce and study General-

ized Minty Variational Inequalities in Banach spaces. We consider

a problem of vector variational inequalities, referred as Generalized

Minty VI(f ′

−
, K), in a real Banach space X, where K is a nonempty

subset of X and f ′

−
is the lower Dini directional derivative of a

real function f defined on an open set in X containing K. The

results presented in this paper generalize the corresponding results

of Giovanni P. Crespi, Ivan Ginchev and Matteo Rocca [Giovanni P.

Crespi, Ivan Ginchev and Matteo Rocca, Existence of solutions and

star-shapedness in Minty Variational Inequalities, Journal of Global

Optimization (2005), 32, 485-494].
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1 Introduction

Variational Inequalities provide a very general and suitable mathematical

model for a wide range of problems, in particular equilibrium problems

([1,5,8]). According to [6], Minty Variational Inequalities is the problem of

finding a vector x∗ ∈ K, such that:

Minty V I(F,K) < F (y), x∗ − y >≤ 0, ∀y ∈ K

where F : R
n −→ R

n, K ⊆ R
n is nonempty and < ., . > denotes the inner

product defined on R
n. In particular the case where the function F has a

primitive f : R
n −→ R, defined (and differentiable) on an open set contain-

ing K (i.e. the problem Minty V I(f ′, K)) has been widely studied, mainly

in relation with the minimization of the function f over the set K (see e.g.

[5]). In [3] a vector extension of Minty V I(f ′, K) is introduced and related

to optimality.

Let X be a Banach space, X∗ be the dual space of X, < ., . > denote

the duality pairing of X∗ and X. Generalized Minty Variational Inequality

(for short, Generalized Minty VI) is a problem of finding a vector x∗ ∈ K,

such that:

Find x0 ∈ K, such that < F (y), x∗ − y >≤ 0, ∀y ∈ K

where F : X −→ X∗ is a mapping and K ⊆ X is nonempty.

Throughout the paper f denotes a real function defined on an open set

containing K. For such a function, the Dini directional derivative of f

at the point x ∈ K in the direction u ∈ X is defined as an element of

R̄ := R ∪ {±∞} by:

f ′

−
(x, u) = lim inf

t−→+∞

f(x + tu) − f(x)

t
.

Now we introduce the following problem:
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Generalized Minty V I(f ′

−
, K) f ′

−
(y, x∗ − y) ≤ 0, ∀y ∈ K.

The problem is to find x∗ ∈ K for which the inequalities in Generalized

Minty V I(f ′

−
, K) are satisfied.

The main result of the paper is that, when K is star-shaped, x∗ ∈ kerK

and f is radially lower semicontinuous in K on the rays starting at x∗, the

point x∗ is a solution of Generalized Minty V I(f ′

−
, K) if and only if f is

increasing along such rays (for short, IAR). This condition means that

the level sets of f are star-shaped and can be regarded as a convexity-type

condition (recall for comparison that, by definition, a function is quasi-

convex if and only if its level sets are convex). Therefore we see that IAR

functions naturally arise when dealing with Generalized Minty Variational

Inequalities.

Moreover, we show that the class of IAR functions has relevant prop-

erties with regard to optimization problems and as it happens for convex

functions, relations with well-posedness can be established. The latter al-

lows to argue that, when Generalized Minty V I(f ′

−
, K) has a solution (or

more generally Generalized Minty V I(f ′

−
, K) is solvable), the primitive op-

timization problem has some well-posedness property.

The structure of this paper is as follows. In section 2, we give some

preliminary results on IAR functions. In section 3, we study Generalized

Minty Variational Inequalities and we prove that a radially lower semicon-

tinuous function f belongs to the class IAR(K, x∗) if and only if x∗ solves

Generalized Minty V I(f ′

−
, K). In section 4, we investigate well-posedness

properties of convex functions.

2 Preliminaries

In this section, we recall the notion of IAR function and we investigate some

basic properties of this class of functions. Such properties can be viewed as
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extensions of analogous properties holding for convex functions.

Definition 2.1. (i) Let K be a nonempty subset of X. The set kerK

consisting of all x ∈ K such that (y ∈ K, t ∈ [0, 1])=⇒ x + t(y − x) ∈ K is

called the kernel of K.

(ii) A nonempty set K is star-shaped if kerK 6= Ø.

In the following we will use the abbreviation st-sh for the word star-

shaped. It is known (see e.g. [7]) that the set kerK is convex for an arbitrary

st-sh set K. We will assume, by definition, that the empty set is st-sh.

Definition 2.2. A function f defined on X is called increasing along rays

at a point x∗ (for short, f ∈ IAR(x∗)) if the restriction of this function on

the ray Rx∗,x = {x∗ +αx : α ≥ 0} is increasing for each x ∈ X. (A function

g of one variable is called increasing if t2 ≥ t1 implies that g(t2) ≥ g(t1).

Definition 2.3. Let K ⊆ X be a st-sh set and x∗ ∈ kerK. A function f de-

fined on K is called increasing along rays at x∗ (for short, f ∈ IAR(K, x∗)),

if the restriction of this function on the intersection Rx∗,x∩K is increasing,

for each x ∈ K.

We consider the following problem:

P (f,K) min f(x), x ∈ K ⊆ X.

A point x∗ ∈ K is a (global) solution of P (f,K) when f(x) − f(x∗) ≥

0, ∀x ∈ K. The solution is strict if f(x) − f(x∗) > 0, ∀x ∈ K \ {0}. We

will denote by argmin(f,K) the set of solutions of P (f,K). Local solutions

of P (f,K) have a clear definition and we omit it.

The next results give some basic properties of functions which are increasing

along rays.

Proposition 2.1. K ⊆ X be a st-sh set, x∗ ∈ kerK and f ∈ IAR(K, x∗).

Then:

(i) x∗ is a solution of P (f,K);
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(ii) No point x ∈ K, x 6= x∗, can be a strict local solution of P(f,K);

(iii) x∗ ∈ kerargmin(f,K)

Proof. Let (i) x ∈ K and set z(t) = x∗ + t(x − x∗), t ∈ [0, 1]. Since

x∗ ∈kerK, then z(t) ∈kerK, then z(t) ∈ K, ∀t ∈ [0, 1] and since f ∈

IAR(K, x∗), we have f(z(t)) ≥ f(x∗) = f(z(t)), ∀t ∈ [0, 1] and in partic-

ular f(z(1)) = f(x) ≥ f(x∗). Since x ∈ K is arbitrary, then x∗ is a global

minimizer of f over K.

(ii) Let x and z(t) be as above. Since f ∈ IAR(K, x∗), it easily follows

f(z(t)) ≤ f(x) = f(z(1)), ∀t ∈ [0, 1]. If U is an arbitrary neighborhood of

x, then for t ’near enough’ to 1, we have z(t) ∈ U and so x cannot be a

strict local minimizer for f over K.

(iii) Let x ∈argmin(f,K), x 6= x∗. Since z(t) ∈ K, we have f(z(t)) ≤

f(x), ∀t ∈ [0, 1] and readily follows that for every t ∈ [0, 1], z(t) ∈argmin(f,K).

3 Generalized Minty Variational Inequalities

and IAR Functions

In this section, we prove that a radially lower semicontinuous function f

belongs to the class IAR(K, x∗) if and only if x∗ solves Generalized Minty

V I(f ′

−
, K).

Definition 3.1. Let K ⊆ X, x∗ ∈ kerK and let f be a function defined on

an open set containing K. The function f is said to be radially lower semi-

continuous in K along rays starting at x∗, if for each x ∈ K, the restriction

of this function on the intersection Rx∗,x ∩ K is lower semicontinuous

We will use the abbreviation f ∈ RLSC(K, x∗) to denote that f satisfies

the previous definition.

Theorem 3.1. (Mean value theorem).Let x∗ ∈ kerK, f ∈ RLSC(K, x∗), y ∈

K, and t > 0 such that y + t(x∗ − y) ∈ K. Then there exists a number
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α ∈ (0, t], such that:

f(y + t(x∗ − y)) − f(y) ≤ tf ′

−
(y + α(x∗ − y), x∗ − y).

Proof. Let h(s) = f(y + t(x∗ − y))−
s

t
[f(y + t(x∗ − y))− f(y)]. Then the

mean value inequality is equivalent to the existence of a number α ∈ (0, t]

such that:

h−(α) = lim inf
r−→+0

h(α + r) − h(α)

r
.

Clearly we can write y + s(x∗ − y) = x∗ + (1 − s)(y − x∗) and hence h

is lower semicontinuous. According to Weierstrass Theorem, it attains its

global minimum at some point t̂ ∈ [0, 1]. Indeed, we have h(0) = h(t) = f(y)

and therefore if the global minimum is achieved for t̂ = 0 it is also achieved

for t̂ = t. Hence, for α = t̂ we have h−(α) ≥ 0 and the Theorem is proved.

Theorem 3.2. Let K ⊆ X be a star-shaped set and x∗ ∈ kerK.

(i) If x∗ solves Generalized Minty V I(f ′

−
, K) and f ∈ RLSC(K, x∗), then

f ∈ IAR(K, x∗).

(ii) Conversely, if f ∈ IAR(K, x∗), then x∗ is a solution of V I(f ′

−
, K).

Proof. (i) Let x∗ be a solution of Generalized Minty V I(f ′

−
, K), y ∈ K

and y + t2(x
∗ − y), y + t1(x

∗ − y) be points in Rx∗,x ∩ K, with t2 ≥ t1 ≥ 0.

Applying Theorem 3.1 we have

f(y + t2(x
∗−y))−f(y + t1(x

∗−y)) ≤ (t2 − t1)f
′

−
(y +α(x∗−y), x∗−y) ≤ 0,

with α ∈]t1, t2]. It is easily seen that this proves f ∈ IAR(K, x∗).

(ii) Assume that f ∈ IAR(K, x∗) and let y ∈ K. For every t ∈ [0, 1], we

have

f(y + t(x∗ − y)) = f(x∗ + (1 − t)(y − x∗)).

This implies that
f(y + t(x∗ − y)) − f(y)

t
≤ 0.

Taking lim inf as t −→ 0, we obtain that x∗ solves Generalized Minty

V I(f ′

−
, K).
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In the previous Theorem the assumption f ∈ RLSC(K, x∗) appears in

only of the two opposite implications. A natural question arises, whether it

cannot be dropped at all (see, [4, examples 2, 3, p.489]).

Corollary 3.1. Let x∗ ∈ kerK and let f ∈ RLSC(K, x∗). If x∗ solves

Generalized Minty V I(f ′

−
, K), then x∗ solves Generalized Minty P (f,K).

Proof. It is immediate from Theorem 3.2 and Proposition 2.1.

Remark 3.1. The previous Corollary extends a classical result which states

that if K is a convex set, any solution of Generalized Minty V I(f ′, K), then

x∗ solves Generalized Minty P (f,K).

4 Generalized Minty Variational Inequalities

and Well-posedness

In this section, we show that any function f ∈ IAR(K, x∗) enjoys some

well-posedness properties, analogously to convex functions.

Definition 4.1. (i) A sequence xk ∈ K is a minimizing sequence for

P (f,K), when

lim
k−→∞

f(xk) = inf
x∈K

f(x).

(ii) A sequence xk ∈ K is a generalized minimizing sequence for P (f,K),

when

lim
k−→∞

f(xk) = inf
x∈K

f(x), lim
k−→∞

dist(xk, K) = 0

(here dist(x,K) denotes the distance from the point x to the set K.)

Definition 4.2. (i) Problem P (f,K) is Tykhonov well-posed when it admits

a unique solution x∗ and every minimizing sequence for P (f,K) converges

to x∗.

(ii) Problem P (f,K) is Levitin-Polyak well-posed when it admits a unique

solution x∗ and every generalized minimizing sequence for P (f,K) converges

to x∗.
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Let us denote with argmin(f,K) the set of solutions of P (f,K) and

consider the sets

Lf (ε) := {x ∈ K : f(x) ≤ inf
y∈K

f(y) + ε}

and

Lf
s (ε) := {x ∈ K : dist(x,K) ≤ ε, f(x) ≤ inf

y∈K
f(y) + ε}.

Definition 4.3. Problem P (f,K) is said Tykhonov well-posed in the gen-

eralized sense when argmin(f,K) 6= Ø and every minimizing sequence for

P (f,K) has some subsequence that converges to an element of argmin(f,K).

Of course, P (f,K) is Tykhonov well-posed if and only if argmin(f,K)

is a singleton and P (f,K) is well-posed in the generalized sense.

Definition 4.4. Problem P (f,K) is stable when argmin(f,K) 6= Ø and for

every sequence xk minimizing for P (f,K) we have

lim
k−→∞

dist(xk, argmin(f,K)) = 0.

The following results extends to IAR functions some classical well-posedness

properties of convex functions.

Theorem 4.1. Let K be a closed subset of X, x∗ ∈kerK and let f ∈

IAR(K, x∗) be a lower semicontinuous function. If argmin(f,K) is bounded,

then P (f,K) is stable.

Proof. Let xk ∈ K be a minimizing sequence for P (f,K), but, by con-

tradiction, assume that limk−→∞dist(xk, argmin(f,K)) 6= 0. Then, for in-

finitely many k we have

xk /∈ argmin(f,K) + δB,

for some positive δ (here B denotes the open ball in X). Without loss of

generality, we can assume that this holds for every k. If xk is a bounded
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sequence, one can think that xk converges to a point x̄ /∈ argmin(f,K), but

this is absurd.

We shall therefore assume xk is unbounded. If this holds, for every k there

exists tk ∈ (0, 1) such that yk = tkx
∗ + (1 − tk)x

k ∈ bd[argmin(f,K) + δB]

(here bd A denotes the boundary of the set A). Since argmin(f,K) is

bounded and K is closed, one can think that yk −→ ȳ ∈ K with ȳ /∈

argmin(f,K). Hence ∀ε > 0 and for k ’large enough’, since f ∈ IAR(K, x∗),

we get

f(x∗) ≤ f(yk) ≤ f(xk) ≤ inf
x∈K

f(x) + ε = f(x∗) + ε

and the lower semicontinuity of f gives the contradiction f(x∗) = f(ȳ).

Corollary 4.1. Let K be a closed convex subset of X, x∗ ∈kerK, f ∈

IAR(K, x∗) be lower semicontinuous and argmin(f,K) be compact. Then

P (f,K) is Tykhonov well-posed in the generalized sense.

Proof. It is easily follows observing that when argmin(f,K) is compact,

then stability is equivalent to Tykhonov generalized well-posedness.

Corollary 4.2. Let K be a closed convex subset of X, x∗ ∈kerK, f ∈

IAR(K, x∗) be lower semicontinuous and argmin(f,K) be singleton. Then

P (f,K) is Tykhonov well-posed.

The assumption that argmin(f,K) is bounded is essential to prove The-

orem 4.1, as it is shown in [4, example 4, p. 492].

Lemma 4.1. Let x∗ ∈kerK. Then dist(., K) ∈ IAR(x∗).

Proof. Without loss of generality we assume x∗ = 0. Consider a point

x ∈ X and two positive scalars t1, t2, with t2 ≥ t1 and set

dist(t2x,K) = inf
y∈K

‖ t2x − y ‖= l.



20 E. Naraghirad

Consider a sequence yk ∈ K, such that ‖ tkx− yk ‖≤ l + 1

k
. Since t1

t2
yk ∈ K,

we obtain

dist(t1x,K) ≤
t1
t2

‖ t2x − yk ‖≤
t1
t2

(l +
1

k
) ≤ l +

1

k

and for k −→ ∞ we get dist(t1x,K) ≤ l which completes the proof.

Theorem 4.2. Assume that K is a closed set, x∗ ∈kerK, f is a lower

semicontinuous function and there exists τ > 0 such that f ∈ IAR(Kτ , x
∗),

where Kτ = K+τB. If P (f,K) is Tykhonov well-posed, then diam Lf
s (ε) −→

0, as ε −→ ∞.

Proof. Assume on the contrary that lim
k−→∞

diam Lf
s (ε) 6= 0. Hence there

exists a positive number δ such that ∀ε > 0 one can find a point x(ε)

with dist(x,K) ≤ ε and f(x(ε)) ≤ f(x∗) + ε, but x(ε) /∈ x∗ + δB. Let

ε = 1

k
, xk := x(ε) and assume first that xk is bounded. Hence we can

assume that xk converges to some x̄. Since dist(xk, K) ≤
1

k
and K is closed,

then x̄ ∈ K. Furthermore we have f(xk) ≤ f(x∗)+ 1

k
and recalling that f is

lower semicontinuous and that x∗ minimizes f over K, we get f(x̄) = f(x∗),

which contradicts the assumption of Tykhonov well-posedness.

Let assume, therefore, xk is unbounded. Hence for k ’large enough’, xk ∈ Kτ

and we can find λ > 0 such thatxk /∈ x∗ + δB. Let now yk = tkx
k + (1 −

tk)x
∗ ∈ bd(x∗ + δB), for t ∈ (0, 1). Since x∗ ∈kerK, then dist(., K) ∈

IAR(x∗) and from

dist(yk, K) ≤ dist(xk, K) ≤
1

k
,

we get limk−→∞dist(yk, K) = 0. Since f ∈ IAR(Kτ , x
∗), for k ’large enough’

we have

f(x∗) ≤ f(yk) ≤ f(xk) ≤ f(x∗) +
1

k

and hence yk is a generalized minimizing sequence. Now the well-posedness

is contradicted since we can assume yk −→ ȳ ∈ K, ȳ 6= x∗ and the lower

semicontinuity of f implies f(x̄) = f(x∗), which completes the proof.
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