On Certain Subclasses of Meromorphic Functions With Positive Coefficients ¹

M. K. Aouf

Abstract

In this paper, we obtain coefficient estimates, distortion theorem, radii of starlikeness and convexity for the class $\sum_{p}^{*}(A, B, \beta)$ of meromorphic functions with positive coefficients. Several interesting results involving Hadamard product of functions belonging to the classes $\sum_{p}^{*}(\alpha, \beta)$ and $\sum_{p}^{*}(A, B, \beta)$ are also derived.

2000 Mathematics Subject Classification: 30C45.

Key words and phrases: Meromorphic, distortion theorem, Hadamard product.

1 Introduction

Let \sum_{p} denote the class of functions of the form

(1.1)
$$f(z) = \frac{1}{z} + \sum_{n=p}^{\infty} a_n z^n \ (p \in N^* = \{2i - 1 : i \in N = \{1, 2, 3,\})$$

Accepted for publication (in revised form) 25 October, 2008

¹Received 19 September, 2008

which are analytic in the punctured disc $U^* = \{z : 0 < |z| < 1\}$ with a simple pole at the origin with residue one there.

A function $f(z) \in \sum_{p}$ is said to be meromorphically starlike of order α if it satisfies

(1.2)
$$\operatorname{Re}\left\{-\frac{z\,f'(z)}{f(z)}\right\} > \alpha$$

for some $\alpha(0 \le \alpha < 1)$ and for all $z \in U^*$.

Further a function $f(z) \in \sum_{p}$ is said to be meromorphically convex of order α if it satisfies

(1.3)
$$\operatorname{Re}\left\{-\left(1 + \frac{z f''(z)}{f'(z)}\right)\right\} > \alpha$$

for some $\alpha(0 \le \alpha < 1)$ and for all $z \in U^*$.

Some subclasses of \sum_1 when p=1 were recently introduced and studied by Pommerenke [8], Miller [6], Mogra. et al. [7], Cho [3], Cho et al. [4] and Aouf ([1] and [2]).

Let \sum_{p}^{*} be the subclass of \sum_{p} consisting of functions of the form

(1.4)
$$f(z) = \frac{1}{z} + \sum_{n=p}^{\infty} a_n \ z^n \quad (a_n \ge 0, \ p \in N^*).$$

We denote by $\sum_{p}^{*}(A, B)$ the class of functions $f(z) \in \sum_{p}^{*}$, that satisfy the condition

(1.5)
$$-z^{p+1} f^{(p)}(z) \prec p! \frac{1+Az}{1+Bz} \quad (z \in U^*),$$

where \prec denotes subordination, $-1 \le A < B \le 1$ and $-1 \le A < 0$.

It is easy to see that (1.5) is equivalent to

(1.6)
$$\left| \frac{z^{p+1} f^{(p)}(z) + p!}{B z^{p+1} f^{(p)}(z) + p! A} \right| < 1 \ (z \in U^*).$$

Definition 1 A function $f(z) \in \sum_{p=1}^{\infty} f(z)$ is said to be a member of the class $\sum_{p=1}^{\infty} (A, B, \beta)$ if it satisfies

(1.7)
$$\left| \frac{z^{p+1} f^{(p)}(z) + p!}{B z^{p+1} f^{(p)}(z) + p! A} \right| < \beta$$

for some $\beta(0 < \beta \le 1), -1 \le A < B \le 1$, $-1 \le A < 0$ and for all $z \in U^*$.

We note that:

(i)
$$\sum_{p}^{*}(-1,1,\beta) = T_{p}(\beta)$$
 (Kim et al. [5]);

(ii)
$$\sum_{1}^{*}(-A, -B, 1) = \sum_{d}(A, B)$$
 (Cho [3]);

(iii)
$$\sum_{1}^{*} (2\alpha\gamma - 1, 2\gamma - 1, \beta) = \sum_{d} (\alpha, \beta, \gamma)(0 \le \alpha < 1, 0 \le \gamma \le \frac{1}{2}, 0 < \beta \le 1)$$
 (Cho et al. [4]);

(iv)
$$\sum_{p}^{*}(\frac{2\alpha}{p!}-1,1,\beta) = \sum_{p}^{*}(\alpha,\beta)$$

 $= \left\{ f(z) \in \sum_{p}^{*}: \left| \frac{z^{p+1}f^{(p)}(z)+p!}{z^{p+1}f^{(p)}(z)+2\alpha-p!} \right| < \beta, 0 \le \alpha < p!, 0 < \beta \le 1 \right\};$
(v) $\sum_{p}^{*}\left(\frac{2\alpha}{p!}-1,1,1\right) = \sum_{p}^{*}(\alpha)$
 $= \left\{ f(z) \in \sum_{p}^{*}: \operatorname{Re}\left\{ -z^{p+1}f^{(p)}(z) \right\} > \alpha, 0 \le \alpha < p!, z \in U^{*} \right\}.$

In this paper, we obtain coefficient estimates, distortion theorem and radii of starlikeness and convexity for the class $\sum_{p}^{*}(A, B, \beta)$ of meromorphic functions with positive coefficients. Several interesting results involving Hadamard product of functions belonging to the classes $\sum_{p}^{*}(\alpha, \beta)$ and $\sum_{p}^{*}(A, B, \beta)$ are also derived.

2 Coefficient estimates

The following theorem gives a necessary and sufficient condition for a function to be in the class $\sum_{p}^{*}(A, B, \beta)$.

Theorem 1 A function $f(z) \in \sum_{p=1}^{\infty} f(z)$ is in the class $\sum_{p=1}^{\infty} f(A, B, \beta)$ if and only

(2.1)
$$\sum_{n=n}^{\infty} \binom{n}{p} a_n \le \frac{(B-A)\beta}{(1+\beta B)},$$

where

$$\left(\begin{array}{c} n \\ p \end{array}\right) = \frac{n!}{p!(n-p)!} \ .$$

Proof. Suppose (2.1) holds for all admissible values of A, B and β . Then we have

$$(2.2) |z^{p+1}f^{(p)}(z) + p!| - \beta |B|z^{p+1}f^{(p)}(z) + p! A|$$

$$= \left| \sum_{n=p}^{\infty} \frac{n!}{(n-p)!} a_n z^{n+1} \right| - \beta \left| p!(B-A) - B \sum_{n=p}^{\infty} \frac{n!}{(n-p)!} a_n z^{n+1} \right|$$

$$\leq \sum_{n=p}^{\infty} \frac{n!}{(n-p)!} (1+\beta B) a_n |z|^{n+1} - p!(B-A)\beta.$$

Since the above inequality holds for all r = |z|, 0 < r < 1, letting $r \to 1$, we have

(2.3)
$$\sum_{n=n}^{\infty} \frac{n!}{(n-p)!} (1+\beta B) a_n - p! (B-A)\beta \le 0,$$

which shows that $f(z) \in \sum_{p}^{*}(A, B, \beta)$. Conversely, if $f(z) \in \sum_{p}^{*}(A, B, \beta)$, then

(2.4)
$$\left| \frac{z^{p+1} f^{(p)}(z) + p!}{B z^{p+1} f^{(p)}(z) + p! A} \right|$$

$$= \left| \frac{\sum_{n=p}^{\infty} \frac{n!}{(n-p)!} a_n z^{n+1}}{p!(B-A) - B \sum_{n=p}^{\infty} \frac{n!}{(n-p)!} a_n z^{n+1}} \right| < \beta \quad (z \in U^*).$$

Since $Re(z) \leq |z|$ for all z, (2.4) gives

(2.5)
$$\operatorname{Re} \left\{ \frac{\sum_{n=p}^{\infty} \frac{n!}{(n-p)!} a_n z^{n+1}}{p!(B-A) - B \sum_{n=p}^{\infty} \frac{n!}{(n-p)!} a_n z^{n+1}} \right\} < \beta \quad (z \in U^*).$$

Choose values of z on the real axis so that $z^{p+1}f^{(p)}(z)$ is real. Upon clearing the denominator in (2.5) and letting $z \to 1^-$, we have

(2.6)
$$\sum_{n=p}^{\infty} \frac{n!}{(n-p)!} a_n \leq \frac{p!(B-A)\beta}{(1+\beta B)}.$$

Hence the result follows.

Corollary 1 If the function $f(z) = \frac{1}{z} + \sum_{n=p}^{\infty} a_n z^n (a_n \ge 0)$ is in the class $\sum_{p}^* (A, B, \beta)$, then

(2.7)
$$a_n \le \frac{(B-A)\beta}{\binom{n}{p}(1+\beta B)} \quad (n \ge p; \ p \in N^*).$$

The result is sharp for the function

(2.8)
$$f(z) = \frac{1}{z} + \frac{(B-A)\beta}{\binom{n}{p}(1+\beta B)} z^n \quad (n \ge p; \ p \in N^*).$$

Putting p = 1 in Theorem 1, we have

Corollary 2 $f(z) \in \sum_{1}^{*}(A, B, \beta)$ if and only if

(2.9)
$$\sum_{n=1}^{\infty} na_n \le \frac{(B-A)\beta}{(1+\beta B)}.$$

Putting $A = \frac{2\alpha}{p!} - 1(0 \le \alpha < p!)$ and B = 1 in Theorem 1, we obtain the following necessary and sufficient condition for functions in $\sum_{p}^{*}(\alpha, \beta)$.

Corollary 3 Let a function f(z) defined by (1.4). Then $f(z) \in \sum_{p}^{*}(\alpha, \beta)$ if and only if

(2.10)
$$\sum_{n=p}^{\infty} \binom{n}{p} a_n \le \frac{2\beta(1-\frac{\alpha}{p!})}{1+\beta}.$$

3 Distortion Theorem

Theorem 2 If the function $f(z) = \frac{1}{z} + \sum_{n=p}^{\infty} a_n \ z^n(a_n \ge 0)$ is in the class $\sum_{p=0}^{\infty} (A, B, \beta)$, then

(3.1)
$$|f^{(j)}(z)| \ge \frac{j!}{|z|^{j+1}} - \frac{p!(B-A)\beta}{(p-j)!(1+\beta B)} |z|^{p-j}$$

and

(3.2)
$$|f^{(j)}(z)| \le \frac{j!}{|z|^{j+1}} + \frac{p!(B-A)\beta}{(p-j)!(1+\beta B)} |z|^{p-j}$$

for $z \in U^*$, where $0 \le j \le p$ and $0 < \beta \le \frac{j!(p-j)!}{p!(B-A)-j!(p-j)!B}$. Equalities in (3.1) and (3.2) are attained for the function f(z) given by

(3.3)
$$f(z) = \frac{1}{z} + \frac{(B-A)\beta}{1+\beta B} z^p \quad (p \in N^*) .$$

Proof. It follows from Theorem 1, that

$$\frac{(3.4)}{(p-j)!(1+\beta B)} \sum_{n=p}^{\infty} \frac{n!}{(n-j)!} a_n \le \sum_{n=p}^{\infty} \binom{n}{p} (1+\beta B) a_n \le (B-A)\beta.$$

Therefore, we have

(3.5)
$$\sum_{n=p}^{\infty} \frac{n!}{(n-j)!} \ a_n \le \frac{p!(B-A)\beta}{(p-j)!(1+\beta B)} \ .$$

Thus we have

(3.6)
$$|f^{(j)}(z)| \ge \frac{j!}{|z|^{j+1}} - \sum_{n=p}^{\infty} \frac{n!}{(n-j)!} a_n |z|^{n-j}$$

$$\ge \frac{j!}{|z|^{j+1}} - \frac{p!(B-A)\beta}{(p-j)!(1+\beta B)} |z|^{p-j},$$

and

(3.7)
$$|f^{(j)}(z)| \le \frac{j!}{|z|^{j+1}} + \sum_{n=p}^{\infty} \frac{n!}{(n-j)!} a_n |z|^{n-j}$$

$$\leq \frac{j!}{|z|^{j+1}} + \frac{p!(B-A)\beta}{(p-j)!(1+\beta B)} |z|^{p-j}.$$

Hence we have Theorem 2.

Putting j = 0 in Theorem 2, we have

Corollary 4 If $f(z) \in \sum_{p}^{*}(A, B, \beta)$, then

(3.8)
$$\frac{1}{|z|} - \frac{(B-A)\beta}{1+\beta B} |z|^p \le |f(z)| \le \frac{1}{|z|} + \frac{(B-A)\beta}{1+\beta B} |z|^p$$

for $z \in U^*$. Equalities in (3.8) are attained for the function f(z) given by (3.3).

Putting j = 1 in Theorem 2, we have

Corollary 5 If $f(z) \in \sum_{p}^{*}(A, B, \beta)$, then

$$(3.9) \qquad \frac{1}{|z|^2} - \frac{p(B-A)\beta}{1+\beta B} |z|^{p-1} \le |f'(z)| \le \frac{1}{|z|^2} + \frac{p(B-A)\beta}{1+\beta B} |z|^{p-1}$$

for $z \in U^*$, where $0 < \beta \le \frac{1}{p(B-A)-B}$. Equalities in (3.9) are attained for the function f(z) given by (3.3).

Putting (i) p=1 and j=0 (ii) p=j=1 in Theorem 2, we obtain Corollary 6 If $f(z) \in \sum_{1}^{*}(A, B, \beta)$, then

(3.10)
$$\frac{1}{|z|} - \frac{(B-A)\beta}{1+\beta B} |z| \le |f(z)| \le \frac{1}{|z|} + \frac{(B-A)\beta}{1+\beta B} |z| ,$$

and

(3.11)
$$\frac{1}{|z|^2} - \frac{(B-A)\beta}{1+\beta B} \le |f'(z)| \le \frac{1}{|z|^2} + \frac{(B-A)\beta}{1+\beta B}$$

for $z \in U^*$. Equalities in (3.10)and (3.11) are attained for the function f(z) given by

(3.12)
$$f(z) = \frac{1}{z} + \frac{(B - A)\beta}{1 + \beta B} z.$$

4 Radii of starlikeness and convexity

Theorem 3 Let the function f(z) defined by (1.4) be in the class $\sum_{p}^{*}(A, B, \beta)$, then f(z) is meromorphically starlike of order $\delta(0 \leq \delta < 1)$ in $|z| < r_1$, where

(4.1)
$$r_1 = \inf_{n \ge p} \left\{ \frac{\binom{n}{p} (1 + \beta B)(1 - \delta)}{(B - A)\beta(n + 2 - \delta)} \right\}^{\frac{1}{n+1}}.$$

The result is sharp for the function f(z) given by (2.8). **Proof.** Let $f(z) \in \sum_{p}^{*}(A, B, \beta)$. Then, by Theorem 1

(4.2)
$$\sum_{n=n}^{\infty} \binom{n}{p} \frac{(1+\beta B)}{(B-A)\beta} a_n \le 1.$$

It is sufficient to show that

$$\left| \frac{z f'(z)}{f(z)} + 1 \right| \le 1 - \delta$$

for $|z| < r_1$. We note that

$$(4.4) \qquad \left| \frac{z f'(z)}{f(z)} + 1 \right| = \left| \frac{\sum_{n=p}^{\infty} (n+1) a_n z^n}{\frac{1}{z} + \sum_{n=p}^{\infty} a_n z^n} \right| \le \frac{\sum_{n=p}^{\infty} (n+1) a_n |z|^{n+1}}{1 - \sum_{n=p}^{\infty} a_n |z|^{n+1}}$$

This will be bounded by $1 - \delta$ if

(4.5)
$$\sum_{n=n}^{\infty} \frac{(n+2-\delta)}{(1-\delta)} a_n |z|^{n+1} \le 1.$$

In view of (4.3), it follows that (4.5) is true if

$$(4.6) \qquad \frac{(n+2-\delta)}{(1-\delta)}|z|^{n+1} \le \binom{n}{p} \frac{(1+\beta B)}{(B-A)\beta} \quad (n \ge p),$$

or

(4.7)
$$|z| \le \left\{ \frac{\binom{n}{p} (1 + \beta B)(1 - \delta)}{(B - A)\beta(n + 2 - \delta)} \right\}^{\frac{1}{n+1}} (n \ge p; p \in N^*).$$

Setting $|z| = r_1$ in (4.7), the result follows.

Theorem 4 Let the function f(z) defined by (1.4) be in the class $\sum_{p}^{*}(A, B, \beta)$, then f(z) is meromorphically convex of order δ in $|z| < r_2$, where

(4.9)
$$r_2 = \inf_{n \ge p} \left\{ \frac{\binom{n}{p} (1 + \beta B)(1 - \delta)}{(B - A)\beta \ n(n + 2 - \delta)} \right\}^{\frac{1}{n+1}} .$$

The result is sharp for the function f(z) defined by (2.8).

5 Convolution properties

For functions

(5.1)
$$f_j(z) = \frac{1}{z} + \sum_{n=p}^{\infty} a_{n,j} z^n \quad (a_{n,j} \ge 0, \ j = 1, 2; p \in N^*)$$

belonging to the class \sum_{p}^{*} , we denote by $(f_1 * f_2)(z)$ the convolution (or Hadamard product) of the functions $f_1(z)$ and $f_2(z)$, that is,

(5.2)
$$(f_1 * f_2)(z) = \frac{1}{z} + \sum_{n=p}^{\infty} a_{n,1} a_{n,2} z^n .$$

Theorem 5 Let the functions $f_j(z)$ (j = 1, 2) defined by (5.1) be in the class $\sum_{p}^{*}(\alpha, \beta)$, then $(f_1 * f_2)(z) \in \sum_{p}^{*}(\gamma, \beta)$, where

(5.3)
$$\gamma = p! - \frac{2\beta(p! - \alpha)^2}{p!(1+\beta)} .$$

The result is sharp for the functions

(5.4)
$$f_j(z) = \frac{1}{z} + \frac{2\beta(p! - \alpha)}{p!(1+\beta)} z^p \quad (j = 1, 2, p \in N^*).$$

Proof. Employing the technique used earlier Schild and Silverman [9], we need to find the largest γ such that

(5.5)
$$\sum_{n=n}^{\infty} \binom{n}{p} \frac{(1+\beta)}{2\beta(1-\frac{\gamma}{p!})} a_{n,1} a_{n,2} \le 1.$$

for $f_j(z) \in \sum_{p}^* (\alpha, \beta)(j = 1, 2)$. Since $f_j(z) \in \sum_{p}^* (\alpha, \beta)(j = 1, 2)$, we readily see that

(5.6)
$$\sum_{n=p}^{\infty} \binom{n}{p} \frac{(1+\beta)}{2\beta(1-\frac{\alpha}{p!})} a_{n,j} \le 1 \quad (j=1,2).$$

Therefore, by the Cauchy-Schwarz inequality, we obtain

(5.7)
$$\sum_{n=p}^{\infty} \binom{n}{p} \frac{(1+\beta)}{2\beta(1-\frac{\alpha}{p!})} \sqrt{a_{n,1} a_{n,2}} \le 1 ,$$

this implies that, we need only show that

(5.8)
$$\frac{a_{n,1} \ a_{n,2}}{1 - \frac{\gamma}{n!}} \le \frac{\sqrt{a_{n,1} \ a_{n,2}}}{1 - \frac{\alpha}{n!}} \quad (n \ge p)$$

or, equivalently, that

(5.9)
$$\sqrt{a_{n,1} \ a_{n,2}} \le \frac{1 - \frac{\gamma}{p!}}{1 - \frac{\alpha}{n!}} \quad (n \ge p).$$

Hence, by the inequality (5.7), it is sufficient to prove that

(5.10)
$$\frac{2\beta(1-\frac{\alpha}{p!})}{\binom{n}{p}(1+\beta)} \leq \frac{1-\frac{\gamma}{p!}}{1-\frac{\alpha}{p!}} \quad (n \geq p).$$

It follows from (5.10) that

(5.11)
$$\gamma \leq p! - \frac{2\beta(p! - \alpha)^2}{p! \binom{n}{p} (1+\beta)} \quad (n \geq p).$$

Now, defining the function $\phi(n)$ by

(5.12)
$$\phi(n) = p! - \frac{2\beta(p! - \alpha)^2}{p! \binom{n}{p} (1+\beta)} \quad (n \ge p).$$

We see that $\varphi(n)$ is an increasing function of n. Therefore, we conclude that

(5.13)
$$\gamma \le \phi(p) = p! - \frac{2\beta(p! - \alpha)^2}{p!(1+\beta)},$$

which evidently completes the proof of Theorem 5.

Using similar arguments as in the proof of Theorem 5, we can obtain the following result.

Theorem 6 If
$$f(z) = \frac{1}{z} + \sum_{n=p}^{\infty} a_{n,1} z^n \in \sum_{p}^{*} (\alpha, \beta)$$
 and $f_2(z) = \frac{1}{z} + \sum_{n=p}^{\infty} a_{n,2} z^n \in \sum_{p}^{*} (\gamma, \beta)$, then $(f_1 * f_2) \in \sum_{p}^{*} (\Im, \beta)$, where

(5.14)
$$\Im = p! - \frac{2\beta(p! - \alpha)(p! - \gamma)}{p!(1+\beta)}.$$

The result is possible for the functions $f_j(z)(j=1,2)$ given by

(5.15)
$$f_1(z) = \frac{1}{z} + \frac{2\beta(p! - \alpha)}{p!(1+\beta)} z^p \quad (p \in N^*)$$

and

(5.16)
$$f_2(z) = \frac{1}{z} + \frac{2\beta(p! - \gamma)}{p!(1+\beta)} z^p \ (p \in N^*).$$

Theorem 7 Let the functions $f_j(z)(j=1,2)$ defined by (5.1) be in the class $\sum_{p}^*(\alpha,\beta)$. Then the function h(z) defined by

(5.17)
$$h(z) = \frac{1}{z} + \sum_{n=n}^{\infty} (a_{n,1}^2 + a_{n,2}^2) z^n$$

also belongs to the class $\sum_{p}^{*}(\delta, \beta)$, where

(5.18)
$$\delta = p! - \frac{4\beta(p! - \alpha)^2}{p!(1+\beta)}.$$

The result is sharp for the functions $f_j(z)(j=1,2)$ defined by (5.4). **Proof.** Noting that

(5.19)
$$\sum_{n=p}^{\infty} \left[\binom{n}{p} \frac{1+\beta}{2\beta(1-\frac{\alpha}{p!})} \right]^2 a_{n,j}^2$$

$$\leq \left[\sum_{n=p}^{\infty} \binom{n}{p} \frac{1+\beta}{2\beta(1-\frac{\alpha}{p!})} a_{n,j} \right]^2 \leq 1 \quad (j=1,2)$$

for $f_j(z) \in \sum_{p=0}^{\infty} (\alpha, \beta)$ (j = 1, 2), we have

(5.20)
$$\sum_{n=p}^{\infty} \frac{1}{2} \left[\binom{n}{p} \frac{1+\beta}{2\beta(1-\frac{\alpha}{p!})} \right]^2 (a_{n,1}^2 + a_{n,2}^2) \le 1.$$

Therefore, we have to find the largest δ such that

(5.21)
$$\frac{\binom{n}{p}(1+\beta)}{2\beta(1-\frac{\delta}{p!})} \le \frac{1}{2} \binom{n}{p}^2 \frac{(1+\beta)^2}{4\beta^2(1-\frac{\alpha}{p!})^2} \quad (n \ge p),$$

that is, that

(5.22)
$$\delta \leq p! - \frac{4\beta(p! - \alpha)^2}{\binom{n}{p}p!(1+\beta)} \quad (n \geq p).$$

Now, defining a function $\Psi(n)$ by

(5.23)
$$\Psi(n) = p! - \frac{4\beta(p! - \alpha)^2}{\binom{n}{p}p!(1+\beta)} \quad (n \ge p).$$

We observe that $\Psi(n)$ is an increasing function of n. Thus, we conclude that

(5.24)
$$\delta \le \Psi(p) = p! - \frac{4\beta(p! - \alpha)^2}{p!(1+\beta)} ,$$

which completes the proof of Theorem 7.

In the remaining theorems, we consider the functions in the class $\sum_{p}^{*}(A, B, \beta)$.

Theorem 8 If
$$f(z) = \frac{1}{z} + \sum_{n=p}^{\infty} a_{n,1} z^n \in \sum_{p=0}^{\infty} (A, B, \beta)$$
 and $g(z) = \frac{1}{z} + \sum_{n=p}^{\infty} a_{n,2} z^n$ with $|a_{n,2}| \le 1 (n \ge p)$, then $(f_1 * f_2)(z) \in \sum_{p=0}^{\infty} (A, B, \beta)$.

Proof. Since

$$\sum_{n=p}^{\infty} \binom{n}{p} \frac{1+\beta B}{(B-A)\beta} |a_{n,1} a_{n,2}| = \sum_{n=p}^{\infty} \binom{n}{p} \frac{1+\beta B}{(B-A)\beta} a_{n,1} |a_{n,2}|$$

$$\leq \sum_{n=p}^{\infty} \binom{n}{p} \frac{1+\beta B}{(B-A)\beta} a_{n,1} \leq 1,$$

by Theorem 1, it follows that $(f_1 * f_2)(z) \in \sum_{p=0}^{\infty} (A, B, \beta)$.

Corollary 7 If
$$f_1(z) = \frac{1}{z} + \sum_{n=p}^{\infty} a_{n,1} z^n \in \sum_{p=p}^{\infty} (A, B, \beta)$$
 and $f_2(z) = \frac{1}{z} + \sum_{n=p}^{\infty} a_{n,2} z^n$ with $0 \le a_{n,2} \le 1, n \ge p$, then $(f_1 * f_2)(z) \in \sum_{p=p}^{\infty} (A, B, \beta)$.

Theorem 9 Let the functions $f_j(z)(j=1,2)$ defined by (5.1) be in the class $\sum_{p}^* (A, B, \beta)$ and $1 - \beta B + 2\beta A \ge 0$, then the function h(z) defined by (5.17) also belongs to $\sum_{p}^* (A, B, \beta)$.

Proof. Since $f_1(z) \in \sum_{p=0}^{\infty} (A, B, \beta)$, we have

$$\sum_{n=p}^{\infty} \binom{n}{p} \frac{1+\beta B}{(B-A)\beta} \ a_{n,1} \le 1$$

and so

$$\sum_{n=n}^{\infty} \left[\binom{n}{p} \frac{(1+\beta B)}{(B-A)\beta} \right]^2 a_{n,1}^2 \le 1.$$

Similarly, since $f_2(z) \in \sum_{p}^* (A, B, \beta)$, we have

$$\sum_{n=p}^{\infty} \left[\binom{n}{p} \frac{(1+\beta B)}{(B-A)\beta} \right]^2 a_{n,2}^2 \le 1.$$

Hence

$$\sum_{n=n}^{\infty} \frac{1}{2} \left[\binom{n}{p} \frac{1+\beta B}{(B-A)\beta} \right]^2 (a_{n,1}^2 + a_{n,2}^2) \le 1.$$

In view of Theorem 1, it is sufficient to show that

(5.25)
$$\sum_{n=p}^{\infty} \binom{n}{p} \frac{(1+\beta B)}{(B-A)\beta} (a_{n,1}^2 + a_{n,2}^2) \le 1.$$

Thus the inequality (5.25) will be satisfied if for $n \ge p$,

(5.26)
$$\binom{n}{p} \frac{(1+\beta B)}{(B-A)\beta} \le \frac{1}{2} \binom{n}{p}^2 \frac{(1+\beta B)^2}{(B-A)^2 \beta^2} ,$$

or if

(5.27)
$$\binom{n}{p} (1+\beta B) + 2\beta (A-B) \ge 0$$

for $n \ge p$ $(p \in N^*)$. The left hand side of (5.27) is an increasing function of n , hence (5.27) is satisfied for all n if

$$1 - \beta B + 2\beta A \ge 0$$
,

which is true by our assumption. Hence the theorem.

References

- [1] M. K. Aouf, A certain subclass of meromorphically starlike functions with positive coefficients, Rend. Mat. 9(1989), 225-235.
- [2] M. K. Aouf, On a certain class of meromorphic univalent functions with positive coefficients, Rend. Mat. 11(1991), 209-219.
- [3] N. E. Cho, On certain class of meromorphic functions with positive coefficients, J. Inst. Math. Comput. Sci. 3(1990), no.2, 119-125.
- [4] N. E. Cho, S. H. Lee, S. Owa, A class of meromorphic univalent functions with positive coefficients, Kobe J. Math. 4(1987), 43-50.
- [5] Y. G. Kim, S. H. Lee, S. Owa, On certain meromorphic functions with positive coefficients, Internat. J. Math. Math. Sci. 16(1993), no.2, 409-412.

[6] J. E. Miller, Convex meromorphic mapping and related functions, Proc. Amer. Math. Soc. 25(1970), 220-228.

- [7] M. L. Morga, T. Reddy, O. P. Juneja, Meromorphic univalent functions with positive coefficients, Bull. Austral. Math. Soc. 32(1985), 161-176.
- [8] Ch. Pommerenke, On meromorphic starlike functions, Pacific J. Math. 13(1963), 221-235.
- [9] A. Schild, H. Silverman, Convolution of univalent functions with negative coefficients, Ann. Univ Mariae Curre-Sklodowska sect. A29 (1975), 99-107.

M. K. Aouf
Department of Mathematics
Faculty of Science
Mansoura University, Mansoura 35516, Egypt.
e-mail: mkaouf127@yahoo.com