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Abstract

This paper proves that a space X is a weak Cauchy sn-symmetric

space iff it is a sequentially-quotient, π-image of a metric space, which

answers a question posed by Z. Li.
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1 Introduction

sn-symmetric spaces is an important generalization of symmetric spaces. Re-

cently, Y. Ge and S. Lin [10] investigate sn-symmetric spaces and obtained

some interesting results. However, how characterize sn-symmetric spaces as

images of metric spaces? This question is still open. As is well known, each
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weak Cauchy symmetric space can be characterized as a quotient, π-image of

a metric space [11]. By viewing this result, Z. Li posed the following question

[12, Question 3.2].

Question 1 How characterize weak Cauchy sn-symmetric spaces by means

of certain π-images of metric spaces?

In this paper, we prove that a space X is a weak Cauchy sn-symmetric

space iff it is a sequentially-quotient, π-image of a metric space, which answers

Question 1 affirmatively.

Throughout this paper, all spaces are assumed to be Hausdorff, and all

mappings are continuous and onto. N denotes the set of all natural numbers.

Let P be a subset of a space X and {xn} be a sequence in X converging to

x. {xn} is eventually in P if {xn : n > k}⋃{x} ⊂ P for some k ∈ N; it is

frequently in P if {xnk
} is eventually in P for some subsequence {xnk

} of {xn}.
Let P be a family of subsets of a space X and x ∈ X.

⋃P and
⋂P denote

the union
⋃{P : P ∈ P} and the intersection

⋂{P : P ∈ P}, respectively.

(P)x = {P ∈ P : x ∈ P} and st(x,P) =
⋃

(P)x. A sequence {Pn : n ∈ N}
of subsets of a space X is abbreviated to {Pn}. A point b = (βn)n∈N of a

Tychonoff-product space is abbreviated to (βn).

2 Definitions and Remarks

Definition 1 ([4]) Let X be a space and x ∈ X. P is called a sequential

neighborhood of x, if each sequence {xn} converging to x is eventually in P .

Remark 1 ([5]) P is a sequential neighborhood of x iff each sequence {xn}
converging to x is frequently in P .
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Definition 2 ([6]) Let P be a family of subsets of a space X and x ∈ X. P
is called a network at x in X, if x ∈ ⋂P and for each neighborhood U of x,

there exists P ∈ P such that P ⊂ U . Moreover, P is called an sn-network at

x in X if in addition each element of P is also a sequential neighborhood of x.

Definition 3 Let X be a set. A non-negative real valued function d defined

on X ×X is called a d-function on X if d(x, x) = 0 and d(x, y) = d(y, x) for

any x, y ∈ X.

Let d be a d-function on a space X. For x ∈ X and n ∈ N , put Sn(x) =

{y ∈ X : d(x, y) < 1/n}.

Definition 4 ([10]) (X, d) is called an sn-symmetric space and d is called an

sn-symmetric on X, if {Sn(x) : n ∈ N} is an sn-network at x in X for each

x ∈ X.

For subsets A and B of an sn-symmetric space (X, d), we write d(A) =

sup{d(x, y) : x, y ∈ A} and d(A,B) = inf{d(x, y) : x ∈ A and y ∈ B}.

Definition 5 ([1]) Let (X, d) be an sn-symmetric space.

(1) A sequence {xn} in X is called d-Cauchy if for each ε > 0, there exists

k ∈ N such that d(xn, xm) < ε for all n,m > k.

(2) (X, d) is called satisfying weak Cauchy condition if each convergent

sequence has a d-Cauchy subsequence.

(3) An sn-symmetric space satisfying weak Cauchy condition is called a

weak Cauchy sn-symmetric space.

Remark 2 ([13]) (X, d) satisfies weak Cauchy condition iff for each conver-

gent sequence L in X and for each ε > 0, there exists a subsequence L′ of L

such that d(L′) < ε.
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Definition 6 ([8]) Let P be a cover of a space X. P is called a cs∗-cover if

for each convergent sequence L, there exists P ∈ P such that L is frequently

in P .

Definition 7 ([14]) Let {Pn} be a sequence of covers of a space X such that

Pn+1 refines Pn for each n ∈ N. P =
⋃{Pn : n ∈ N} is called a σ-strong

network of X, if {st(x,Pn) : n ∈ N} is a network at x in X for each x ∈ X.

Moreover, if in addition Pn is also a cs∗-cover of X for each n ∈ N, then P
is called a σ-strong network consisting of cs∗-covers.

Definition 8 ([7]). Let f : X −→ Y be a mapping. f is called a sequentially-

quotient mapping if for each convergent sequence S in Y , there exists a con-

vergent sequence L in X such that f(L) is a subsequence of S.

Remark 3 Sequentially-quotient mappings are namely presequential mappings

in the sense of J. R. Boone (see [2, 3, 9]).

Definition 9 ([10]) Let (X, d) be an sn-symmetric and let f : X −→ Y be a

mapping. f is called a π-mapping, if for each y ∈ Y and each neighborhood U

of y in Y , d(f−1(y), X − f−1(U)) > 0.

3 The Main Results

Lemma 1 Let (X, d) be an sn-symmetric space, n ∈ N and x ∈ X. Put

Pn = {P ⊂ X : d(P ) < 1/n}, then st(x,Pn) = Sn(x).

Proof. If y ∈ st(x,Pn), then there exists P ∈ Pn such that x, y ∈ P . So

d(x, y) ≤ d(P ) < 1/n, and hence y ∈ Sn(x). On the other hand, if y ∈
Sn(x), then d(x, y) < 1/n. So {x, y} ∈ Pn, thus y ∈ st(x,Pn). Consequently,

st(x,Pn) = Sn(x).
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Lemma 2 Let P =
⋃{Pn : n ∈ N} be a σ-strong network of X and x ∈ X,

If Pn ∈ (Pn)x for each n ∈ N, then {Pn} is a network at x in X.

Proof. Let x ∈ U with U open in X. Since P is a σ-strong network of X,

there exists m ∈ N such that st(x,Pm) ⊂ U . Note that Pm ⊂ st(x,Pm), so

x ∈ Pm ⊂ U . This proves that {Pn} is a network at x in X.

Lemma 3 Let {Pn} be a sequence of cs∗-covers of a space X, and S be a

sequence in X converging to x. Then there is a subsequence S′ of S such that

for each n ∈ N, S′ is eventually in Pn for some Pn ∈ Pn.

Proof. Since P1 is a cs∗-cover of X and S is a convergent sequence in X,

there is a subsequence S1 of S such that S1
⋃{x} ⊂ P1 for some P1 ∈ P1. Put

x1 is the first term of S1. Similarly, P2 is a cs∗-cover of X and S1 is a convergent

sequence in X, there is a subsequence S2 of S1 such that S2
⋃{x} ⊂ P2 for

some P2 ∈ P2. Put x2 is the second term of S2. Assume that x1, x2, · · · , xn−1,

S1, S2, · · · , Sn−1, and P1, P2, · · · , Pn−1 have been constructed as the above

method. we construct xn, Sn and Pn as follows. Since Pn is a cs∗-cover of X

and Sn−1 is a convergent sequence in X, there is a subsequence Sn of Sn−1 such

that Sn
⋃{x} ⊂ Pn for some Pn ∈ Pn. Put xn is the n-th term of Sn. By the

inductive method, we construct xn, Sn and Pn for each n ∈ N. Put S′ = {xn},
then S′ is a subsequence of S. For each n ∈ N, {xk, x} ∈ Sk ⊂ Sn ⊂ Pn for all

k > n, so S′ is eventually in Pn.

Now we give the main theorem in this paper.

Theorem 1 The following are equivalent for a space X.

(1) X is a weak Cauchy sn-symmetric space.

(2) X has a σ-strong network consisting of cs∗-covers.

(3) X is a sequentially-quotient, π-image of a metric space.
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Proof. (1) =⇒ (2): Let (X, d) be a weak Cauchy sn-symmetric space. For

each n ∈ N, put Pn = {P ⊂ X : d(P ) < 1/n}. By Lemma 1, st(x,Pn) = Sn(x)

for each x ∈ X and each n ∈ N . {st(x,Pn) : n ∈ N} is a network at x in X

for each x ∈ X because {Sn(x) : n ∈ N} is a network at x in X. It is clear

that Pn+1 ⊂ Pn, so Pn+1 refines Pn. Thus {Pn} is a σ-strong network of X.

Let n ∈ N and L = {xk} be a sequence in X converging to x. It suffices to

prove that L is frequently in P for some P ∈ Pn. Without loss of generality,

we may assume that d(x, xk) < 1/n for each k ∈ N . Since (X, d) satisfying

weak Cauchy condition, by Remake 2.7, there exists a subsequence L′ of L

such that d(L′) < 1/n. Put P = L′
⋃{x}, then d(P ) < 1/n, and hence L is

frequently in P ∈ Pn.

(2) =⇒ (3): Let X have a σ-strong network P =
⋃{Pn : n ∈ N} consisting

of cs∗-covers. For each n ∈ N, put Pn = {Pβ : β ∈ Λn}, and Λn is endowed

with discrete topology. Put

M = {b = (βn) ∈
∏

n∈N
Λn : {Pβn} is a network at some xb inX}.

Claim 1. M is a metric space:

In fact, Λn, as a discrete space, is a metric space for each n ∈ N. So

M , which is a subspace of the Tychonoff-product space
∏

n∈N Λn, is a metric

space.

The metric d on M can be described as follows. Let b = (βn), c = (γn) ∈ M .

If b = c, then d(b, c) = 0. If b 6= c, then d(b, c) = 1/min{n ∈ N : βn 6= γn}.
Claim 2. Let b = (βn) ∈ M . Then there exists unique xb ∈ X such that

{Pβn} is a network at xb in X:

The existence comes from the construction of M , we only need to prove the

uniqueness. Let {Pβn} be a network at both xb and x′b in X, then {xb, x
′
b} ⊂

Pβn for each n ∈ N. If xb 6= x′b, then there exists an open neighborhood U
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of xb such that x′b 6∈ U . Because {Pβn} is a network at xb in X, there exists

n ∈ N such that xb ∈ Pβn ⊂ U , thus x′b 6∈ Pβn , a contradiction. This proves

the uniqueness.

We define f : M −→ X as follows: for each b = (βn) ∈ M , put f(b) = xb,

where {Pβn} is a network at xb in X. By Claim 2, f is definable.

Claim 3. f is onto:

Let x ∈ X. For each n ∈ N, there exists βn ∈ Λn such that Pβn ∈ (Pn)x

because Pn is a cover of X. Since P is a σ-strong network of X, {Pβn} is a

network at x in X by Lemma 2. Put b = (βn), then b ∈ M and f(b) = x. This

proves that f is onto.

Claim 3. f is continuous:

Let b = (βn) ∈ M and let f(b) = x. If U is an open neighborhood of x,

then there exists k ∈ N such that x ∈ Pβk
⊂ U because {Pβn} is a network at

x in X. Put V = ((
∏{Λn : n < k})× {βk} × (

∏{Λn : n > k}))⋂
M , then V

is an open neighborhood of b. Let c = (γn) ∈ V , then {Pγn} is a network at

f(c) in X, so f(c) ∈ Pγn for each n ∈ N. Note that γk = βk, f(c) ∈ Pγk
= Pβk

.

This proves that f(V ) ⊂ Pβk
, and hence f(V ) ⊂ U . So f is continuous.

Claim 4. f is a π-mapping.

Let x ∈ U with U open in X. Since Pn is a σ-strong network of X, there

exists n ∈ N such that st(x,Pn) ⊂ U . It suffices to prove that d(f−1(x),M −
f−1(U)) ≥ 1/2n > 0. Let b = (βn) ∈ M . If d(f−1(x), b) < 1/2n, then there

is c = (γn) ∈ f−1(x) such that d(b, c) < 1/n, so βk = γk if k ≤ n. Notice

that x = f(c) ∈ Pγn ∈ Pn and f(b) ∈ Pβn = Pγn , so f(b) ∈ st(x,Pn) ⊂ U ,

thus b ∈ f−1(U). This proves that d(f−1(x), b) ≥ 1/2n if b ∈ M − f−1(U), so

d(f−1(x),M − f−1(U)) ≥ 1/2n > 0.

Claim 5. f is a sequentially-quotient mapping.
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Let S be a sequence in X converging to x ∈ X. By Lemma 3, there exists

a subsequence S′ = {xk} of S such that for each n ∈ N , S′ is eventually in

Pβn for some βn ∈ Λn. Note that x ∈ Pβn for each n ∈ N. Put b = (βn), then

b ∈ M and f(b) = x by Lemma 2. For each k ∈ N, we pick bk ∈ f−1(xk) as

follows. For each n ∈ N , if xk ∈ Pβn , put βkn = βn; if xk 6∈ Pβn , pick βkn ∈ Λn

such that xk ∈ Pβkn
. Put bk = (βkn) ∈ ∏

n∈N Λn, then bk ∈ M and f(bk) = xk

by Lemma 2. Put L = {bk}, then L is a sequence in M and f(L) = S′. It

suffices to prove that L converges to b. Let b ∈ U , where U is an element of

base of M . By the definition of Tychonoff-product spaces, we may assume

U = ((
∏{{βn} : n ≤ m}) × (

∏{Λn : n > m}))⋂
M , where m ∈ N. For each

n ≤ m, S′ is eventually in Pβn , so there is k(n) ∈ N such that xk ∈ Pβn for all

k > k(n), thus βkn = βn. Put k0 = max{k(1), k(2), ..., k(m),m}, then bk ∈ U

for all k > k0, so L converge to b.

By the above Claims, X is a sequentially-quotient, π-image of a metric

space.

(3) =⇒ (1): Let f be a sequentially-quotient, π-mapping from a metric

space (M, d) onto X. Put d′(x, y) = d(f−1(x), f−1(y)) for each x, y ∈ X. It

is clear that d′ is a d-function on X. For b ∈ M , x ∈ X and n ∈ N, put

Sn(b) = {c ∈ M : d(b, c) < 1/n} and S′n(x) = {y ∈ X : d′(x, y) < 1/n}.

Claim 1. {S′n(x) : n ∈ N} is a network at x in X for each x ∈ X:

Let U be an open neighborhood of x in X. Since f is a π-mapping, there

exists n ∈ N such that d(f−1(x),M−f−1(U)) ≥ 1/n. If y 6∈ U , then f−1(y) ⊂
M − f−1(U), hence d′(x, y) = d(f−1(x), f−1(y)) ≥ d(f−1(x),M − f−1(U)) ≥
1/n, so y 6∈ S′n(x). This proves that S′n(x) ⊂ U .

Claim 2. Let x ∈ X and n ∈ N. Then S′n(x) is a sequential neighborhood

of x:
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Let {xm} be a sequence converging to x. By Remark 1, it suffices to prove

that {xm} is frequently in S′n(x). Since f is sequentially-quotient, there ex-

ists a sequence {bk} converging to b ∈ f−1(x) such that each f(bk) = xmk
.

Pick k0 ∈ N such that d(b, bk) < 1/n for all k ≥ k0. So d′(x, xmk
) =

d(f−1(x), f−1(xmk
)) ≤ d(b, bk) < 1/n for all k ≥ k0, and hence xmk

∈ S′n(x)

for all k ≥ k0. Thus {xmk
} is eventually in S′n(x), that is, {xm} is frequently

in S′n(x).

Claim 3. (X, d′) satisfies weak Cauchy condition:

Let {xn} be a convergent sequence in X. Since f is sequentially-quotient,

there exists a convergent sequence L = {bk} in M such that f(bk) = xnk

for each k ∈ N. It suffices to prove that xnk
is a d-Cauchy subsequence.

Let ε > 0. Note that each convergent sequence in metric space (M, d) is a

d-Cauchy sequence. So there exists k0 ∈ N such that d(bi, bj) < ε for all

i, j > k0. Thus d′(xni , xnj ) = d(f−1(xni), f
−1(xnj )) ≤ d(bi, bj) < ε for all

i, j > k0. This proves that xnk
is a d-Cauchy subsequence.

By the above Claims, d′ is an sn-symmetric on X and (X, d′) satisfies weak

Cauchy condition. So X is a weak Cauchy sn-symmetric space.

Remark 4 “σ-strong network” in Theorem 1 can be replaced by “point-star

network”, where the concept of “point-star networks” is obtained by omitting

“Pn+1 refines Pn for each n ∈ N” in the Definition 7 [13].
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