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On a class of p-valent non-Bazilevic functions 1

Khalida Inayat Noor, Ali Muhammad, Muhammad Arif

Abstract

In this paper, we introduce a class Nλ,µ
p,α (a, c, A, B). We investigate

a number of inclusion relationships, distortion theorems for the class

Nλ,µ
p,α (a, c, A, B), the lower and upper bounds of Re

(
zp

Iλ
p (a,c)f(z)

)µ

for

f(z) ∈ N
λ,µ
p,α (a, c, A, B) and some other interesting properties of p-valent

functions which are defined here by means of a certain linear integral

operator Iλ
p (a, c) f (z).
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1 Introduction

Let A(p) denote the class of functions f (z) normalized by

(1) f(z) = zp +
∞∑

k=1

ak+pz
k+p, (p ∈ N = {1, 2, . . .}),
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which are analytic and p-valent in the open unit disc E = {z : |z| < 1}. If f(z)

and g(z) are analytic in E, we say that f(z) is subordinate to g(z), written

symbolically as follows:

f ≺ g in E or f(z) ≺ g(z), z ∈ E,

if there exists a Schwarz function w(z), which is analytic in E with

|w(0)| = 0 and |w(z)| < 1, z ∈ E,

such that

f(z) = g(w(z)), z ∈ E.

Indeed it is known that

f(z) ≺ g(z) (z ∈ E) ⇒ f(0) = g(0) and f(E) ⊂ g(E).

Furthermore, if the function g(z) is univalent in E, then we have the following

equivalence, see [6, 7],

f(z) ≺ g(z) (z ∈ E) ⇔ f(0) = g(0) and f(E) ⊂ g(E).

For functions fj(z) ∈ A(p), given by

(2) fj(z) = zp +
∞∑

k=1

ak+p,jz
k+p (j = 1, 2) ,

we define the Hadamard product (or convolution) of f1(z) and f2(z) by

(3) (f1 ? f2) (z) = zp +
∞∑

k=1

ak+p,1ak+p,2z
k+p = (f2 ? f1) (z) (z ∈ E) .

In our present investigation we shall make use of the Gauss hypergeometric

functions defined by

(4) 2F1 (a, b; c; z) =
∞∑

k=0

(a)k (b)k

(c)k (1)k

zk (z ∈ E) ,
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where a, b, c ∈ C, c /∈ Z−0 = {0,−1,−2, . . .} and (k)n denote the Pochhammer

symbol (or the shifted factorial) given, in terms of the Gamma function Γ, by

(k)n =
Γ (k + n)

Γ (k)
=





k (k + 1) (k + 2) . . . (k + n− 1) , n ∈ N
1, n = 0.

We note that the series defined by (4) converges absolutely for z ∈ E and

hence 2F1 (a, b; c; z) represents an analytic function in E, see [13].

We define a function Φp (a, c; z) by

Φp (a, c; z) = zp +
∞∑

k=0

(a)k

(c)k

zk+p
(
a ∈ R; c ∈ R\Z−0 = {0,−1, . . .}) .

With the aid of the function Φp (a, c; z), we consider a function Φ†p (a, c; z)

defined by

Φp (a, c; z) ? Φ†p (a, c; z) =
zp

(1− z)λ+p
, z ∈ E,

where λ > −p. This function yields the following family of linear operators

(5) Iλ
p (a, c) f(z) = Φ†p (a, c; z) ? f(z), z ∈ E,

where a, c ∈ R\Z−0 . For a function f(z) ∈ A(p), given by (1), it follows from

(5) that for λ > −p and a, c ∈ R\Z−0

Iλ
p (a, c) f(z) = zp +

∞∑

k=0

(c)k (λ + p)k

(a)k (1)k

ap+kz
p+k(6)

= zp
2F1 (c, λ + p; a; z) ? f(z), z ∈ E.

From equation (6) we deduce that

(7) z
(
Iλ
p (a, c) f(z)

)′
= (λ + p) Iλ+1

p (a, c) f(z)− λIλ
p (a, c) f(z),

and

(8) z
(
Iλ
p (a + 1, c) f(z)

)′
= aIλ

p (a, c) f(z)− (a− p) Iλ
p (a + 1, c) f(z).
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We also note that

I0
p (a + 1, 1) f(z) = p

z∫

0

f(t)
t

dt,

I0
p (p, 1) f(z) = I1

p (p + 1, 1) f(z) = f(z),

I1
p (p, 1) f(z) =

zf ′(z)
p

,

I2
p (p, 1) f(z) =

2zf ′(z) + z2f ′′(z)
p (p + 1)

,

I2
p (p + 1, 1) f(z) =

f(z) + zf ′(z)
p (p + 1)

,

In
p (a, a) f(z) = Dn+p−1f(z), n ∈ N, n > −p,

where Dn+p−1f(z) is the Ruscheweyh derivative of (n+p−1)th order, see [4].

The operator Iλ
p (a, c)

(
λ > −p, a; c ∈ R\Z−0

)
was recently introduced by

Cho et al [1], who investigated (among other things) some inclusion relation-

ships and argument properties of various subclasses of multivalent functions

in A(p), which were defined by means of the operator Iλ
p (a, c).

For λ = c = 1 and a = n + p, the Cho-Kown-Srivastava operator yields

I1
p (n + p, 1) f(z) = In,p (n > −p) ,

where In,p denotes an integral operator of the (n + p− 1)th order, which was

studied by Liu and Noor [5], see also [9, 10]. The linear operator Iλ
1 (µ + 2, 1)

(λ > −1, µ > −2) was also recently introduced and studied by Choi et al [2].

For relevant details about further special cases of the Choi-Saigo-Srivastava

operator I1 (λ + 2, 1), the interested reader may refer to the works by Cho et

al [2] and Choi et al [1], see also [3].

Using the Cho-Kown-Srivastava operator Iλ
p (a, c), we now define a subclass

of A(p) as follows:
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Definition 1 Assume that 0 < µ < 1, α ∈ C, −1 ≤ B ≤ 1, A 6= B, A ∈ R,

we say that a function f(z) ∈ A(p) is in the class Nλ,µ
p,α (a, c, A, B) if it satisfies:

{
(1−α)

(
zp

Iλ
p (a, c) f(z)

)µ

−α

(
Iλ+1
p (a, c)
Iλ
p (a, c)

)(
zp

Iλ
p (a, c) f(z)

)µ
}
≺ 1+Az

1+Bz
, z ∈ E,

where the powers are understood as a principal values.

In particular, we let Nλ,µ
p,α (a, c, 1− 2ρ,−1) = Nλ,µ

p,α (a, c, ρ) denote the sub-

class Nλ,µ
p,α (a, c, A, B) for A = 1 − 2ρ, B = −1 and 0 ≤ ρ < p. It is obvious

that f(z) ∈ Nλ,µ
p,α (a, c, ρ) if and only if f(z) ∈ A(p) and it satisfies

Re

{
(1−α)

(
zp

Iλ
p (a, c) f(z)

)µ

−α

(
Iλ+1
p (a, c)
Iλ
p (a, c)

)(
zp

Iλ
p (a, c) f(z)

)µ
}

>ρ, z ∈ E.

Special Cases

(i) When a = c = p = 1, λ = 0, then N0,µ
1,α (1, 1, A, B) is the class studied

by Z. Wang et al [14].

(ii) The subclass N0,µ
1,−1 (1, 1, 1,−1) = N (µ) has been studied by Obradovic

[11].

(iii) If a = c = p = 1, λ = 0, α = B = −1 and A = 1 − 2ρ, then the

class N0,µ
1,−1 (1, 1, 1− 2ρ,−1) reduces to the class of non-Bazilevic func-

tions of order ρ(0 ≤ ρ < 1). The Fekete-Szegö problem of the class

N0,µ
1,−1 (1, 1, 1− 2ρ,−1) were considered by N. Tuneski and M .Darus [12].

2 Preliminary Results

In this section we recall some known results.
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Lemma 1 Let the function h(z) be analytic and convex (univalent) in E with

h(0) = 1. Suppose also that the function Φ(z) given by

Φ(z) = 1 + c1z + c2z
2 + . . .

is analytic in E. If

(9) Φ(z) +
z Φ′(z)

γ
≺ h(z) (z ∈ E; Reγ ≥ 0; γ 6= 0) ,

then

Φ(z) ≺ Ψ(z) =
γ

zγ

z∫

0

tγ−1h(t)dt ≺ h(z) (z ∈ E) ,

and Ψ(z) is the best dominant of (9).

3 Main Result

Theorem 1 Let Reα > 0 and f(z) ∈ Nλ,µ
p,α (a, c, A, B). Then

(10)
(

zp

Iλ
p (a, c) f(z)

)µ

≺ (λ + p) µ

α

1∫

0

1 + Azu

1 + Bzu
u

(λ+p)µ
α

−1du ≺ 1 + Az

1 + Bz
.

Proof. Let

(11) Φ(z) =
(

zp

Iλ
p (a, c) f(z)

)µ

.

Then Φ(z) is analytic in E with Φ(0) = 1. Taking logarithmic differentiation

of (11) both sides and using the identity (7) in the resulting equation, we

deduce that

{
(1− α)

(
zp

Iλ
p (a, c) f(z)

)µ

− α

(
Iλ+1
p (a, c)
Iλ
p (a, c)

)(
zp

Iλ
p (a, c) f(z)

)µ
}
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= Φ(z) +
αz Φ′(z)
(λ + p) µ

≺ 1 + Az

1 + Bz
.

Now, by Lemma 1 for γ = (λ+p)µ
α , we deduce that

(
zp

Iλ
p (a, c) f(z)

)µ

≺ q(z) =
(λ + p)µ

α
z−

(λ+p)µ
α

z∫

0

t
(λ+p)µ

α
−1

(
1 + At

1 + Bt

)
dt

=
(λ + p) µ

α

1∫

0

1 + Azu

1 + Bzu
u

(λ+p)µ
α

−1du ≺ 1 + Az

1 + Bz
,

and the proof is complete.

Theorem 2 Let 0 ≤ α2 ≤ α1. Then

Nλ,µ
p,α1

(a, c, A, B) ⊂ Nλ,µ
p,α2

(a, c, A,B) .

Proof. Let f(z) ∈ Nλ,µ
p,α1 (a, c, A, B). Then by Theorem 3.1 we have

f(z) ∈ Nλ,µ
p,0 (a, c, A, B) .

Since
{

(1 + α2)
(

zp

Iλ
p (a, c) f(z)

)µ

− α2

(
Iλ+1
p (a, c)
Iλ
p (a, c)

)(
zp

Iλ
p (a, c) f(z)

)µ
}

=
(

1 +
α2

α1

)(
zp

Iλ
p (a, c) f(z)

)µ

− α2

α1

{
(1 + α1)

(
zp

Iλ
p (a, c) f(z)

)µ

−α1

(
Iλ+1
p (a, c)
Iλ
p (a, c)

)(
zp

Iλ
p (a, c) f(z)

)µ
}
≺ 1 + Az

1 + Bz
.

Wee see that f (z) ∈ Nλ,µ
p,α2 (a, c, A, B).
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Theorem 3 Let Reα > 0, 0 < µ < 1, −1 ≤ B < A ≤ 1 and f(z) ∈
Nλ,µ

p,α (a, c, A, B). Then

(λ + p) µ

α

1∫

0

1 + Au

1 + Bu
u

(λ+p)µ
α

−1du < Re

(
zp

Iλ
p (a, c) f(z)

)µ

<
(λ + p) µ

α

1∫

0

1−Au

1−Bu
u

(λ+p)µ
α

−1du,(12)

and the inequality (12) is sharp, with the extremal function defined by

(13) Iλ
p (a, c) Fα,µ,A,B(z) = zp





(λ + p) µ

α

1∫

0

1 + Azu

1 + Bzu
u

(λ+p)µ
α

−1du





−1
µ

.

Proof. Since f(z) ∈ Nλ,µ
p,α (a, c, A,B), according to Theorem 1, we have

(
zp

Iλ
p (a, c) f(z)

)µ

≺ (λ + p) µ

α

1∫

0

1 + Azu

1 + Bzu
u

(λ+p)µ
α

−1du,

Therefore it follows from the definition of subordination and A > B that

Re

(
zp

Iλ
p (a, c) f(z)

)µ

< sup
z∈E

Re





(λ + p) µ

α

1∫

0

1 + Azu

1 + Bzu
u

(λ+p)µ
α

−1du





≤ (λ + p) µ

α

1∫

0

sup
z∈E

Re

{
1 + Azu

1 + Bzu

}
u

(λ+p)µ
α

−1du

<
(λ + p) µ

α

1∫

0

1 + Au

1 + Bu
u

(λ+p)µ
α

−1du.
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Also

Re

(
zp

Iλ
p (a, c) f(z)

)µ

> inf
z∈E

Re





(λ + p) µ

α

1∫

0

1 + Azu

1 + Bzu
u

(λ+p)µ
α

−1du





≥ (λ + p) µ

α

1∫

0

inf
z∈E

Re

{
1 + Azu

1 + Bzu

}
u

(λ+p)µ
α

−1du

>
(λ + p) µ

α

1∫

0

1−Au

1−Bu
u

(λ+p)µ
α

−1du.

Note that the function Iλ
p (a, c) Fα,µ,A,B(z) defined by (13) belongs to the

class Nλ,µ
p,α (a, c, A,B) and hence we obtain that the inequality (12) is sharp.

By applying the similar techniques that we used in proving Theorem 12, we

have the following result.

Theorem 4 Let Reα > 0, 0 < µ < 1, −1 ≤ A < B ≤ 1 and f(z) ∈
Nλ,µ

p,α (a, c, A,B). Then

(λ + p) µ

α

1∫

0

1 + Au

1 + Bu
u

(λ+p)µ
α

−1du < Re

(
zp

Iλ
p (a, c) f(z)

)µ

<
(λ + p) µ

α

1∫

0

1−Au

1−Bu
u

(λ+p)µ
α

−1du,(14)

and the inequality (14) is sharp, with the extremal function defined by (13).

Theorem 5 Let 0 < µ < 1, Reα ≥ 0, −1 ≤ B < A ≤ 1 and f(z) ∈
Nλ,µ

p,α (a, c, A,B). Then

(λ + p) µ

α

1∫

0

1−Au

1−Bu
u

(λ+p)µ
α

−1du




1
2

< Re

(
zp

Iλ
p (a, c) f(z)

)µ
2

(15)

<


(λ + p) µ

α

1∫

0

1 + Au

1 + Bu
u

(λ+p)µ
α

−1du




1
2

,
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and inequality (15) is sharp, with the extremal function defined by (13).

Proof. According to Theorem 1, we have

(
zp

Iλ
p (a, c) f(z)

)µ

≺ 1 + Az

1 + Bz
.

Since −1 ≤ B < A ≤ 1, we have

0 <
1−A

1−B
< Re

(
zp

Iλ
p (a, c) f(z)

)µ

<
1 + A

1 + B
.

Hence the result follows by Theorem 3.

Note that the function defined by (13) belongs to Nλ,µ
p,α (a, c, A, B), we

obtain that the inequality (15) is sharp. By applying the similar arguments

as in Theorem 5, we have the following Theorem.

Theorem 6 Let 0 < µ < 1, Reα ≥ 0, −1 ≤ A < B ≤ 1 and f(z) ∈
Nλ,µ

p,α (a, c, A, B). Then


(λ + p) µ

α

1∫

0

1 + Au

1 + Bu
u

(λ+p)µ
α

−1du




1
2

< Re

(
zp

Iλ
p (a, c) f(z)

)µ
2

(16)

<


(λ + p) µ

α

1∫

0

1−Au

1−Bu
u

(λ+p)µ
α

−1du




1
2

,

and inequality (16) is sharp, with the extremal function defined by (13).

Theorem 7 Let 0 < µ < 1, Reα ≥ 0, −1 ≤ B < A ≤ 1 and f(z) ∈
Nλ,µ

p,α (a, c, A, B). Then

(i)If α = 0, the for |z| = r < 1, we have

(17) rp

(
1 + Br

1 + Ar

) 1
µ

≤
∣∣∣Iλ

p (a, c) f(z)
∣∣∣ ≤ rp

(
1−Br

1−Ar

) 1
µ
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and inequality (17) is sharp , with the extremal function defined by

(18) Iλ
p (a, c) f(z) = zp

(
1 + Bz

1 + Az

) 1
µ

.

(ii) If α 6= 0, the for |z| = r < 1, we have

rp


(λ + p) µ

α

1∫

0

1 + Aru

1 + Bru
u

(λ+p)µ
α

−1du



− 1

µ

≤
∣∣∣Iλ

p (a, c) f(z)
∣∣∣(19)

≤ rp


(λ + p) µ

α

1∫

0

1−Aru

1−Bru
u

(λ+p)µ
α

−1du



− 1

µ

,

and inequality (19) is sharp with the extremal function defined by (13).

Proof. (i) If α = 0. Since f(z) ∈ Nλ,µ
p,α (a, c, A, B), −1 ≤ B < A ≤ 1, we

obtain from the definition of Nλ,µ
p,α (a, c, A, B) that

(
zp

Iλ
p (a, c) f(z)

)µ

≺ 1 + Az

1 + Bz
.

Therefore it follows from the definition of the subordination that

(
zp

Iλ
p (a, c) f(z)

)µ

=
1 + Aw(z)
1 + Bw(z)

,

where w(z) = c1z + c2z
2 + . . . is analytic E and |w(z)| ≤ |z|, so when |z| =

r < 1, we have

∣∣∣∣
(

zp

Iλ
p (a, c) f(z)

)∣∣∣∣
µ

=
∣∣∣∣
1 + Aw(z)
1 + Bw(z)

∣∣∣∣ ≤
1 + A |w(z)|
1 + B |w(z)| ≤

1 + Ar

1 + Br
,

and ∣∣∣∣
(

zp

Iλ
p (a, c) f(z)

)∣∣∣∣
µ

≥ Re

(
zp

Iλ
p (a, c) f(z)

)µ

≥ 1−Ar

1−Br
.

It is obvious that (17) is sharp, with the extremal function defined by (18).
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(ii) If α 6= 0. according to Theorem 1 we have

(
zp

Iλ
p (a, c) f(z)

)µ

≺ (λ + p) µ

α

1∫

0

1 + Azu

1 + Bzu
u

(λ+p)µ
α

−1du.

Therefore it follows from the definition of the subordination

(
zp

Iλ
p (a, c) f(z)

)µ

=
(λ + p) µ

α

1∫

0

1 + Aw(z)u
1 + Bw(z)u

u
(λ+p)µ

α
−1du,

where w(z) = c1z + c2z
2 + . . . is analytic E and |w(z)| ≤ |z|, so when |z| =

r < 1, we have

∣∣∣∣
(

zp

Iλ
p (a, c) f(z)

)∣∣∣∣
µ

≤ (λ + p) µ

α

1∫

0

∣∣∣∣
1 + Aw(z)u
1 + Bw(z)u

∣∣∣∣u
(λ+p)µ

α
−1du

≤ (λ + p) µ

α

1∫

0

1 + Au |w(z)|
1 + Bu |w(z)|u

(λ+p)µ
α

−1du

≤ (λ + p) µ

α

1∫

0

1 + Aur

1 + Bur
u

(λ+p)µ
α

−1du,

and

∣∣∣∣
(

zp

Iλ
p (a, c) f(z)

)∣∣∣∣
µ

≥ Re

(
zp

Iλ
p (a, c) f(z)

)µ

≥ (λ + p) µ

α

1∫

0

1−Aur

1−Bur
u

(λ+p)µ
α

−1du.

Note that the function defined by (13) belongs to the class Nλ,µ
p,α (a, c, A,B),

we obtain that the inequality (19) is sharp. By applying the similar method

as in Theorem 5 we have

Theorem 8 Let 0 < µ < 1, Reα ≥ 0, −1 ≤ A < B ≤ 1 and f(z) ∈
Nλ,µ

p,α (a, c, A, B). Then
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(i) If α = 0, the for |z| = r < 1, we have

(20) rp

(
1−Br

1−Ar

) 1
µ

≤
∣∣∣Iλ

p (a, c) f(z)
∣∣∣ ≤ rp

(
1 + Br

1 + Ar

) 1
µ

and inequality (20) is sharp, with the extremal function defined by (18).

(ii) If α 6= 0, the for |z| = r < 1, we have

rp


(λ + p) µ

α

1∫

0

1−Au

1−Bu
u

(λ+p)µ
α

−1du



− 1

µ

≤
∣∣∣Iλ

p (a, c) f(z)
∣∣∣(21)

≤ rp


(λ + p) µ

α

1∫

0

1 + Au

1 + Bu
u

(λ+p)µ
α

−1du



− 1

µ

,

and inequality (21) is sharp with the extremal function defined by (13).

Theorem 9 Let Reα≥0 and f(z)∈Nλ,µ
p,0 (a,c,A,B) .Then f(z)∈Nλ,µ

p,α (a, c, A, B)

for |z| < R (λ, α, µ, p), where

(22) R (λ, α, µ, p) =
(λ + p) µ

α +
√

α2 + (λ + p)2 µ2

.

Proof. Set

(23)
(

zp

Iλ
p (a, c) f(z)

)µ

= ρ + (p− ρ) h(z).

Then clearly, h(z) is analytic in E and h(0) = 1. Taking logarithmic differen-

tiation of (23) both sides and using identity (7) in the resulting equation, we

observe that

Re

{
(1− α)

(
zp

Iλ
p (a, c) f(z)

)µ

− α

(
Iλ+1
p (a, c)
Iλ
p (a, c)

)(
zp

Iλ
p (a, c) f(z)

)µ

− ρ

}
(24)

= (p− ρ) Re

{
h(z) +

αzh′(z)
(λ + p) µ

}
≥ (p− ρ) Re

{
h(z)− α |zh′(z)|

(λ + p) µ

}
.
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Now by using the following well known estimate, see [8],

∣∣zh′(z)
∣∣ ≤ 2rReh(z)

1− r2
(|z| = r < 1) ,

in (24), we have

Re

{
(1− α)

(
zp

Iλ
p (a, c) f(z)

)µ

− α

(
Iλ+1
p (a, c)
Iλ
p (a, c)

)(
zp

Iλ
p (a, c) f(z)

)µ

− ρ

}

(25) = (p− ρ) Reh(z)
{

1− 2αr

(λ + p) µ (1− r2)

}
.

The right hand side of (25) is positive if r < R (λ, α, µ, p) where R (λ, α, µ, p)

is given by (22).

Sharpness of this result follows by taking
(

zp

Iλ
p (a, c) f(z)

)µ

= ρ + (p− ρ)
1 + z

1− z
.

where 0 ≤ ρ < p, λ > −p and z ∈ E.
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