On a class of p-valent non-Bazilevic functions ${ }^{1}$

Khalida Inayat Noor, Ali Muhammad, Muhammad Arif

Abstract

In this paper, we introduce a class $N_{p, \alpha}^{\lambda, \mu}(a, c, A, B)$. We investigate a number of inclusion relationships, distortion theorems for the class $N_{p, \alpha}^{\lambda, \mu}(a, c, A, B)$, the lower and upper bounds of $\operatorname{Re}\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu}$ for $f(z) \in N_{p, \alpha}^{\lambda, \mu}(a, c, A, B)$ and some other interesting properties of p -valent functions which are defined here by means of a certain linear integral operator $I_{p}^{\lambda}(a, c) f(z)$.

2000 Mathematics Subject Classification: 30C45, 30C50.
Key words and phrases: Multivalent functions, Non-Bazilevic functions, Choi-Saigo-Srivastava operator, Cho-Kown-Srivastava operator, Differential Subordination.

1 Introduction

Let $A(p)$ denote the class of functions $f(z)$ normalized by

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{k+p} z^{k+p},(p \in \mathbb{N}=\{1,2, \ldots\}), \tag{1}
\end{equation*}
$$

[^0]which are analytic and p-valent in the open unit disc $E=\{z:|z|<1\}$. If $f(z)$ and $g(z)$ are analytic in E, we say that $f(z)$ is subordinate to $g(z)$, written symbolically as follows:
$$
f \prec g \text { in } E \text { or } f(z) \prec g(z), z \in E,
$$
if there exists a Schwarz function $w(z)$, which is analytic in E with
$$
|w(0)|=0 \text { and }|w(z)|<1, z \in E,
$$
such that
$$
f(z)=g(w(z)), z \in E
$$

Indeed it is known that

$$
f(z) \prec g(z)(z \in E) \Rightarrow f(0)=g(0) \text { and } f(E) \subset g(E) .
$$

Furthermore, if the function $g(z)$ is univalent in E, then we have the following equivalence, see $[6,7]$,

$$
f(z) \prec g(z)(z \in E) \Leftrightarrow f(0)=g(0) \text { and } f(E) \subset g(E)
$$

For functions $f_{j}(z) \in A(p)$, given by

$$
\begin{equation*}
f_{j}(z)=z^{p}+\sum_{k=1}^{\infty} a_{k+p, j} z^{k+p}(j=1,2) \tag{2}
\end{equation*}
$$

we define the Hadamard product (or convolution) of $f_{1}(z)$ and $f_{2}(z)$ by

$$
\begin{equation*}
\left(f_{1} \star f_{2}\right)(z)=z^{p}+\sum_{k=1}^{\infty} a_{k+p, 1} a_{k+p, 2} z^{k+p}=\left(f_{2} \star f_{1}\right)(z) \quad(z \in E) \tag{3}
\end{equation*}
$$

In our present investigation we shall make use of the Gauss hypergeometric functions defined by

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}(1)_{k}} z^{k} \quad(z \in E), \tag{4}
\end{equation*}
$$

where $a, b, c \in \mathbb{C}, c \notin \mathbb{Z}_{0}^{-}=\{0,-1,-2, \ldots\}$ and $(k)_{n}$ denote the Pochhammer symbol (or the shifted factorial) given, in terms of the Gamma function Γ, by

$$
(k)_{n}=\frac{\Gamma(k+n)}{\Gamma(k)}=\left\{\begin{array}{l}
k(k+1)(k+2) \ldots(k+n-1), n \in \mathbb{N} \\
1, n=0
\end{array}\right.
$$

We note that the series defined by (4) converges absolutely for $z \in E$ and hence ${ }_{2} F_{1}(a, b ; c ; z)$ represents an analytic function in E, see [13].

We define a function $\Phi_{p}(a, c ; z)$ by

$$
\Phi_{p}(a, c ; z)=z^{p}+\sum_{k=0}^{\infty} \frac{(a)_{k}}{(c)_{k}} z^{k+p}\left(a \in \mathbb{R} ; c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-}=\{0,-1, \ldots\}\right) .
$$

With the aid of the function $\Phi_{p}(a, c ; z)$, we consider a function $\Phi_{p}^{\dagger}(a, c ; z)$ defined by

$$
\Phi_{p}(a, c ; z) \star \Phi_{p}^{\dagger}(a, c ; z)=\frac{z^{p}}{(1-z)^{\lambda+p}}, z \in E,
$$

where $\lambda>-p$. This function yields the following family of linear operators

$$
\begin{equation*}
I_{p}^{\lambda}(a, c) f(z)=\Phi_{p}^{\dagger}(a, c ; z) \star f(z), z \in E \tag{5}
\end{equation*}
$$

where $a, c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-}$. For a function $f(z) \in A(p)$, given by (1), it follows from (5) that for $\lambda>-p$ and $a, c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-}$

$$
\begin{align*}
I_{p}^{\lambda}(a, c) f(z) & =z^{p}+\sum_{k=0}^{\infty} \frac{(c)_{k}(\lambda+p)_{k}}{(a)_{k}(1)_{k}} a_{p+k} z^{p+k} \tag{6}\\
& =z^{p}{ }_{2} F_{1}(c, \lambda+p ; a ; z) \star f(z), z \in E .
\end{align*}
$$

From equation (6) we deduce that

$$
\begin{equation*}
z\left(I_{p}^{\lambda}(a, c) f(z)\right)^{\prime}=(\lambda+p) I_{p}^{\lambda+1}(a, c) f(z)-\lambda I_{p}^{\lambda}(a, c) f(z) \tag{7}
\end{equation*}
$$

and
(8) $\quad z\left(I_{p}^{\lambda}(a+1, c) f(z)\right)^{\prime}=a I_{p}^{\lambda}(a, c) f(z)-(a-p) I_{p}^{\lambda}(a+1, c) f(z)$.

We also note that

$$
\begin{aligned}
I_{p}^{0}(a+1,1) f(z) & =p \int_{0}^{z} \frac{f(t)}{t} d t \\
I_{p}^{0}(p, 1) f(z) & =I_{p}^{1}(p+1,1) f(z)=f(z) \\
I_{p}^{1}(p, 1) f(z) & =\frac{z f^{\prime}(z)}{p} \\
I_{p}^{2}(p, 1) f(z) & =\frac{2 z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{p(p+1)} \\
I_{p}^{2}(p+1,1) f(z) & =\frac{f(z)+z f^{\prime}(z)}{p(p+1)} \\
I_{p}^{n}(a, a) f(z) & =D^{n+p-1} f(z), n \in \mathbb{N}, n>-p
\end{aligned}
$$

where $D^{n+p-1} f(z)$ is the Ruscheweyh derivative of $(n+p-1)$ th order, see [4].
The operator $I_{p}^{\lambda}(a, c)\left(\lambda>-p, a ; c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-}\right)$was recently introduced by Cho et al [1], who investigated (among other things) some inclusion relationships and argument properties of various subclasses of multivalent functions in $A(p)$, which were defined by means of the operator $I_{p}^{\lambda}(a, c)$.

For $\lambda=c=1$ and $a=n+p$, the Cho-Kown-Srivastava operator yields

$$
I_{p}^{1}(n+p, 1) f(z)=I_{n, p}(n>-p),
$$

where $I_{n, p}$ denotes an integral operator of the $(n+p-1)$ th order, which was studied by Liu and Noor [5], see also [9,10]. The linear operator $I_{1}^{\lambda}(\mu+2,1)$ ($\lambda>-1, \mu>-2$) was also recently introduced and studied by Choi et al [2]. For relevant details about further special cases of the Choi-Saigo-Srivastava operator $I_{1}(\lambda+2,1)$, the interested reader may refer to the works by Cho et al [2] and Choi et al [1], see also [3].

Using the Cho-Kown-Srivastava operator $I_{p}^{\lambda}(a, c)$, we now define a subclass of $A(p)$ as follows:

Definition 1 Assume that $0<\mu<1, \alpha \in \mathbb{C},-1 \leq B \leq 1, A \neq B, A \in \mathbb{R}$, we say that a function $f(z) \in A(p)$ is in the class $N_{p, \alpha}^{\lambda, \mu}(a, c, A, B)$ if it satisfies:

$$
\left\{(1-\alpha)\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu}-\alpha\left(\frac{I_{p}^{\lambda+1}(a, c)}{I_{p}^{\lambda}(a, c)}\right)\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu}\right\} \prec \frac{1+A z}{1+B z}, z \in E,
$$

where the powers are understood as a principal values.
In particular, we let $N_{p, \alpha}^{\lambda, \mu}(a, c, 1-2 \rho,-1)=N_{p, \alpha}^{\lambda, \mu}(a, c, \rho)$ denote the subclass $N_{p, \alpha}^{\lambda, \mu}(a, c, A, B)$ for $A=1-2 \rho, B=-1$ and $0 \leq \rho<p$. It is obvious that $f(z) \in N_{p, \alpha}^{\lambda, \mu}(a, c, \rho)$ if and only if $f(z) \in A(p)$ and it satisfies $\operatorname{Re}\left\{(1-\alpha)\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu}-\alpha\left(\frac{I_{p}^{\lambda+1}(a, c)}{I_{p}^{\lambda}(a, c)}\right)\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu}\right\}>\rho, z \in E$.

Special Cases

(i) When $a=c=p=1, \lambda=0$, then $N_{1, \alpha}^{0, \mu}(1,1, A, B)$ is the class studied by Z. Wang et al [14].
(ii) The subclass $N_{1,-1}^{0, \mu}(1,1,1,-1)=N(\mu)$ has been studied by Obradovic [11].
(iii) If $a=c=p=1, \lambda=0, \alpha=B=-1$ and $A=1-2 \rho$, then the class $N_{1,-1}^{0, \mu}(1,1,1-2 \rho,-1)$ reduces to the class of non-Bazilevic functions of order $\rho(0 \leq \rho<1)$. The Fekete-Szegö problem of the class $N_{1,-1}^{0, \mu}(1,1,1-2 \rho,-1)$ were considered by N. Tuneski and M .Darus [12].

2 Preliminary Results

In this section we recall some known results.

Lemma 1 Let the function $h(z)$ be analytic and convex (univalent) in E with $h(0)=1$. Suppose also that the function $\Phi(z)$ given by

$$
\Phi(z)=1+c_{1} z+c_{2} z^{2}+\ldots
$$

is analytic in E. If

$$
\begin{equation*}
\Phi(z)+\frac{z \Phi^{\prime}(z)}{\gamma} \prec h(z)(z \in E ; \operatorname{Re} \gamma \geq 0 ; \gamma \neq 0) \tag{9}
\end{equation*}
$$

then

$$
\Phi(z) \prec \Psi(z)=\frac{\gamma}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} h(t) d t \prec h(z) \quad(z \in E),
$$

and $\Psi(z)$ is the best dominant of (9).

3 Main Result

Theorem 1 Let Re $\alpha>$ and $f(z) \in N_{p, \alpha}^{\lambda, \mu}(a, c, A, B)$. Then

$$
\begin{equation*}
\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu} \prec \frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1+A z u}{1+B z u} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u \prec \frac{1+A z}{1+B z} \tag{10}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
\Phi(z)=\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu} \tag{11}
\end{equation*}
$$

Then $\Phi(z)$ is analytic in E with $\Phi(0)=1$. Taking logarithmic differentiation of (11) both sides and using the identity (7) in the resulting equation, we deduce that

$$
\left\{(1-\alpha)\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu}-\alpha\left(\frac{I_{p}^{\lambda+1}(a, c)}{I_{p}^{\lambda}(a, c)}\right)\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu}\right\}
$$

$$
=\Phi(z)+\frac{\alpha z \Phi^{\prime}(z)}{(\lambda+p) \mu} \prec \frac{1+A z}{1+B z} .
$$

Now, by Lemma 1 for $\gamma=\frac{(\lambda+p) \mu}{\alpha}$, we deduce that

$$
\begin{aligned}
\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu} & \prec q(z)=\frac{(\lambda+p) \mu}{\alpha} z^{-\frac{(\lambda+p) \mu}{\alpha}} \int_{0}^{z} t^{\frac{(\lambda+p) \mu}{\alpha}-1}\left(\frac{1+A t}{1+B t}\right) d t \\
& =\frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1+A z u}{1+B z u} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u \prec \frac{1+A z}{1+B z}
\end{aligned}
$$

and the proof is complete.

Theorem 2 Let $0 \leq \alpha_{2} \leq \alpha_{1}$. Then

$$
N_{p, \alpha_{1}}^{\lambda, \mu}(a, c, A, B) \subset N_{p, \alpha_{2}}^{\lambda, \mu}(a, c, A, B)
$$

Proof. Let $f(z) \in N_{p, \alpha_{1}}^{\lambda, \mu}(a, c, A, B)$. Then by Theorem 3.1 we have

$$
f(z) \in N_{p, 0}^{\lambda, \mu}(a, c, A, B)
$$

Since

$$
\begin{aligned}
& \left\{\left(1+\alpha_{2}\right)\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu}-\alpha_{2}\left(\frac{I_{p}^{\lambda+1}(a, c)}{I_{p}^{\lambda}(a, c)}\right)\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu}\right\} \\
& =\left(1+\frac{\alpha_{2}}{\alpha_{1}}\right)\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu}-\frac{\alpha_{2}}{\alpha_{1}}\left\{\left(1+\alpha_{1}\right)\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu}\right. \\
& \left.\quad-\alpha_{1}\left(\frac{I_{p}^{\lambda+1}(a, c)}{I_{p}^{\lambda}(a, c)}\right)\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu}\right\} \prec \frac{1+A z}{1+B z} .
\end{aligned}
$$

Wee see that $f(z) \in N_{p, \alpha_{2}}^{\lambda, \mu}(a, c, A, B)$.

Theorem 3 Let Rea $>0,0<\mu<1,-1 \leq B<A \leq 1$ and $f(z) \in$ $N_{p, \alpha}^{\lambda, \mu}(a, c, A, B)$. Then

$$
\frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1+A u}{1+B u} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u<\operatorname{Re}\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu}
$$

$$
\begin{equation*}
<\frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1-A u}{1-B u} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u \tag{12}
\end{equation*}
$$

and the inequality (12) is sharp, with the extremal function defined by

$$
\begin{equation*}
I_{p}^{\lambda}(a, c) F_{\alpha, \mu, A, B}(z)=z^{p}\left\{\frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1+A z u}{1+B z u} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u\right\}^{\frac{-1}{\mu}} \tag{13}
\end{equation*}
$$

Proof. Since $f(z) \in N_{p, \alpha}^{\lambda, \mu}(a, c, A, B)$, according to Theorem 1, we have

$$
\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu} \prec \frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1+A z u}{1+B z u} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u
$$

Therefore it follows from the definition of subordination and $A>B$ that

$$
\begin{aligned}
\operatorname{Re}\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu} & <\sup _{z \in E} \operatorname{Re}\left\{\frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1+A z u}{1+B z u} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u\right\} \\
& \leq \frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \sup _{z \in E} R e\left\{\frac{1+A z u}{1+B z u}\right\} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u \\
& <\frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1+A u}{1+B u} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u .
\end{aligned}
$$

Also

$$
\begin{aligned}
\operatorname{Re}\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu} & >\inf _{z \in E} \operatorname{Re}\left\{\frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1+A z u}{1+B z u} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u\right\} \\
& \geq \frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \inf _{z \in E} \operatorname{Re}\left\{\frac{1+A z u}{1+B z u}\right\} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u \\
& >\frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1-A u}{1-B u} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u .
\end{aligned}
$$

Note that the function $I_{p}^{\lambda}(a, c) F_{\alpha, \mu, A, B}(z)$ defined by (13) belongs to the class $N_{p, \alpha}^{\lambda, \mu}(a, c, A, B)$ and hence we obtain that the inequality (12) is sharp. By applying the similar techniques that we used in proving Theorem 12, we have the following result.

Theorem 4 Let Rea $>0,0<\mu<1,-1 \leq A<B \leq 1$ and $f(z) \in$ $N_{p, \alpha}^{\lambda, \mu}(a, c, A, B)$. Then

$$
\begin{align*}
\frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1+A u}{1+B u} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u & <\operatorname{Re}\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu} \\
& <\frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1-A u}{1-B u} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u \tag{14}
\end{align*}
$$

and the inequality (14) is sharp, with the extremal function defined by (13).
Theorem 5 Let $0<\mu<1$, Re $\alpha \geq 0,-1 \leq B<A \leq 1$ and $f(z) \in$ $N_{p, \alpha}^{\lambda, \mu}(a, c, A, B)$. Then

$$
\begin{align*}
& \left(\frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1-A u}{1-B u} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u\right)^{\frac{1}{2}}<\operatorname{Re}\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\frac{\mu}{2}} \tag{15}\\
& <\left(\frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1+A u}{1+B u} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u\right)^{\frac{1}{2}},
\end{align*}
$$

and inequality (15) is sharp, with the extremal function defined by (13).

Proof. According to Theorem 1, we have

$$
\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu} \prec \frac{1+A z}{1+B z}
$$

Since $-1 \leq B<A \leq 1$, we have

$$
0<\frac{1-A}{1-B}<\operatorname{Re}\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu}<\frac{1+A}{1+B}
$$

Hence the result follows by Theorem 3 .
Note that the function defined by (13) belongs to $N_{p, \alpha}^{\lambda, \mu}(a, c, A, B)$, we obtain that the inequality (15) is sharp. By applying the similar arguments as in Theorem 5, we have the following Theorem.

Theorem 6 Let $0<\mu<1$, Re $\alpha \geq 0,-1 \leq A<B \leq 1$ and $f(z) \in$ $N_{p, \alpha}^{\lambda, \mu}(a, c, A, B)$. Then

$$
\begin{align*}
& \left(\frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1+A u}{1+B u} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u\right)^{\frac{1}{2}}<\operatorname{Re}\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\frac{\mu}{2}} \tag{16}\\
& <\left(\frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1-A u}{1-B u} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u\right)^{\frac{1}{2}},
\end{align*}
$$

and inequality (16) is sharp, with the extremal function defined by (13).

Theorem 7 Let $0<\mu<1$, Re $\alpha \geq 0,-1 \leq B<A \leq 1$ and $f(z) \in$ $N_{p, \alpha}^{\lambda, \mu}(a, c, A, B)$. Then
(i)If $\alpha=0$, the for $|z|=r<1$, we have

$$
\begin{equation*}
r^{p}\left(\frac{1+B r}{1+A r}\right)^{\frac{1}{\mu}} \leq\left|I_{p}^{\lambda}(a, c) f(z)\right| \leq r^{p}\left(\frac{1-B r}{1-A r}\right)^{\frac{1}{\mu}} \tag{17}
\end{equation*}
$$

and inequality (17) is sharp, with the extremal function defined by

$$
\begin{equation*}
I_{p}^{\lambda}(a, c) f(z)=z^{p}\left(\frac{1+B z}{1+A z}\right)^{\frac{1}{\mu}} \tag{18}
\end{equation*}
$$

(ii) If $\alpha \neq 0$, the for $|z|=r<1$, we have

$$
\begin{align*}
& r^{p}\left(\frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1+A r u}{1+B r u} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u\right)^{-\frac{1}{\mu}} \leq\left|I_{p}^{\lambda}(a, c) f(z)\right| \tag{19}\\
& \leq r^{p}\left(\frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1-A r u}{1-B r u} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u\right)^{-\frac{1}{\mu}}
\end{align*}
$$

and inequality (19) is sharp with the extremal function defined by (13).

Proof. (i) If $\alpha=0$. Since $f(z) \in N_{p, \alpha}^{\lambda, \mu}(a, c, A, B),-1 \leq B<A \leq 1$, we obtain from the definition of $N_{p, \alpha}^{\lambda, \mu}(a, c, A, B)$ that

$$
\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu} \prec \frac{1+A z}{1+B z}
$$

Therefore it follows from the definition of the subordination that

$$
\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu}=\frac{1+A w(z)}{1+B w(z)}
$$

where $w(z)=c_{1} z+c_{2} z^{2}+\ldots$ is analytic E and $|w(z)| \leq|z|$, so when $|z|=$ $r<1$, we have

$$
\left|\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)\right|^{\mu}=\left|\frac{1+A w(z)}{1+B w(z)}\right| \leq \frac{1+A|w(z)|}{1+B|w(z)|} \leq \frac{1+A r}{1+B r}
$$

and

$$
\left|\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)\right|^{\mu} \geq \operatorname{Re}\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu} \geq \frac{1-A r}{1-B r}
$$

It is obvious that (17) is sharp, with the extremal function defined by (18).
(ii) If $\alpha \neq 0$. according to Theorem 1 we have

$$
\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu} \prec \frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1+A z u}{1+B z u} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u
$$

Therefore it follows from the definition of the subordination

$$
\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu}=\frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1+A w(z) u}{1+B w(z) u} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u
$$

where $w(z)=c_{1} z+c_{2} z^{2}+\ldots$ is analytic E and $|w(z)| \leq|z|$, so when $|z|=$ $r<1$, we have

$$
\begin{aligned}
\left|\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)\right|^{\mu} & \leq \frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1}\left|\frac{1+A w(z) u}{1+B w(z) u}\right| u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u \\
& \leq \frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1+A u|w(z)|}{1+B u|w(z)|} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u \\
& \leq \frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1+A u r}{1+B u r} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u
\end{aligned}
$$

and

$$
\left|\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)\right|^{\mu} \geq \operatorname{Re}\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu} \geq \frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1-A u r}{1-B u r} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u
$$

Note that the function defined by (13) belongs to the class $N_{p, \alpha}^{\lambda, \mu}(a, c, A, B)$, we obtain that the inequality (19) is sharp. By applying the similar method as in Theorem 5 we have

Theorem 8 Let $0<\mu<1$, Re $\alpha \geq 0,-1 \leq A<B \leq 1$ and $f(z) \in$ $N_{p, \alpha}^{\lambda, \mu}(a, c, A, B)$. Then
(i) If $\alpha=0$, the for $|z|=r<1$, we have

$$
\begin{equation*}
r^{p}\left(\frac{1-B r}{1-A r}\right)^{\frac{1}{\mu}} \leq\left|I_{p}^{\lambda}(a, c) f(z)\right| \leq r^{p}\left(\frac{1+B r}{1+A r}\right)^{\frac{1}{\mu}} \tag{20}
\end{equation*}
$$

and inequality (20) is sharp, with the extremal function defined by (18).
(ii) If $\alpha \neq 0$, the for $|z|=r<1$, we have

$$
\begin{align*}
& r^{p}\left(\frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1-A u}{1-B u} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u\right)^{-\frac{1}{\mu}} \leq\left|I_{p}^{\lambda}(a, c) f(z)\right| \tag{21}\\
& \leq r^{p}\left(\frac{(\lambda+p) \mu}{\alpha} \int_{0}^{1} \frac{1+A u}{1+B u} u^{\frac{(\lambda+p) \mu}{\alpha}-1} d u\right)^{-\frac{1}{\mu}},
\end{align*}
$$

and inequality (21) is sharp with the extremal function defined by (13).

Theorem 9 Let Re $\alpha \geq 0$ and $f(z) \in N_{p, 0}^{\lambda, \mu}(a, c, A, B)$.Then $f(z) \in N_{p, \alpha}^{\lambda, \mu}(a, c, A, B)$ for $|z|<R(\lambda, \alpha, \mu, p)$, where

$$
\begin{equation*}
R(\lambda, \alpha, \mu, p)=\frac{(\lambda+p) \mu}{\alpha+\sqrt{\alpha^{2}+(\lambda+p)^{2} \mu^{2}}} \tag{22}
\end{equation*}
$$

Proof. Set

$$
\begin{equation*}
\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu}=\rho+(p-\rho) h(z) \tag{23}
\end{equation*}
$$

Then clearly, $h(z)$ is analytic in E and $h(0)=1$. Taking logarithmic differentiation of (23) both sides and using identity (7) in the resulting equation, we observe that
(24) $\operatorname{Re}\left\{(1-\alpha)\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu}-\alpha\left(\frac{I_{p}^{\lambda+1}(a, c)}{I_{p}^{\lambda}(a, c)}\right)\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu}-\rho\right\}$

$$
=(p-\rho) \operatorname{Re}\left\{h(z)+\frac{\alpha z h^{\prime}(z)}{(\lambda+p) \mu}\right\} \geq(p-\rho) \operatorname{Re}\left\{h(z)-\frac{\alpha\left|z h^{\prime}(z)\right|}{(\lambda+p) \mu}\right\}
$$

Now by using the following well known estimate, see [8],

$$
\left|z h^{\prime}(z)\right| \leq \frac{2 r \operatorname{Reh}(z)}{1-r^{2}} \quad(|z|=r<1)
$$

in (24), we have

$$
\begin{gather*}
\operatorname{Re}\left\{(1-\alpha)\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu}-\alpha\left(\frac{I_{p}^{\lambda+1}(a, c)}{I_{p}^{\lambda}(a, c)}\right)\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu}-\rho\right\} \\
=(p-\rho) \operatorname{Reh}(z)\left\{1-\frac{2 \alpha r}{(\lambda+p) \mu\left(1-r^{2}\right)}\right\} \tag{25}
\end{gather*}
$$

The right hand side of (25) is positive if $r<R(\lambda, \alpha, \mu, p)$ where $R(\lambda, \alpha, \mu, p)$ is given by (22).

Sharpness of this result follows by taking

$$
\left(\frac{z^{p}}{I_{p}^{\lambda}(a, c) f(z)}\right)^{\mu}=\rho+(p-\rho) \frac{1+z}{1-z}
$$

where $0 \leq \rho<p, \lambda>-p$ and $z \in E$.

References

[1] N. E. Cho, O. S. Kown, H. M. Srivastava, Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. App. 292, 2004, 470-483.
[2] J. H. Choi, M. Siago, H .M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276, 2002, 432445.
[3] N. E. Cho, O. H. Kown, H. M. Srivastava, Inclusion and argument properties for certain subclasses of meromorphic functions associated with a
family of multiplier transformations, J. Math. Anal. Appl. 300, 2004, 505520.
[4] R. M. Geol, N. S. Sohi, A new criterion for p-valent functions, Proc. Amer. Math. Soc. 78, 1980, 353-357.
[5] J. L. Liu, K. I. Noor, Some properties of Noor integral operator, J. Natur. Geom. 21, 2002, 81-90.
[6] S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28, 1981, 157-171.
[7] S. S. Miller, P.T Mocanu, Differential Subordination: Theory and Applications, in: Mongraphs and Textbooks in Pure and applied Mathematics, vol. 225, Marcel Dekker, New York, 2000.
[8] T. H. MacGregor, Radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 14 (963), 514-520.
[9] K. I. Noor, Some classes of p-valent analytic functions defined by certain integral operator, Appl. Math. Compute. 157, 2004, 835-840.
[10] K. I. Noor and M .A. Noor, On certain classes of analytic functions defined by Noor integral operator, J. Math. Appl. 281, 2003, 244-252.
[11] M. Obradovic, A class of univalent functions, Hokkaido Math. J., 27 (2), 1998, 329-355.
[12] N. Tuneski, M. Darus, Functional for non-Bazilevic functions, Acta Mathematica. Academiae Paedagogicae. Nyiregyhaziensis, 18, 2002, 63-65.
[13] E. T. Whittaker, G. N. Watson, A course on Modern Analysis: An introduction to the general Theory of Infinite processes and of Analytic Functions; With an account of the principle of Transcendental Functions, 4th Edition, Cambridge University Press, Cambridge, 1927.
[14] Z.Wang, C. Gao, M. Lio, On certain generalized class of Non-Bazilevic functions, Acta Mathematica. Academiae Paedagogicae. Nyiregyhaziensis $21,2005,147-154$.

Khalida Inayat Noor

Department of Mathematics
COMSATS Institute of Information Technology, Islamabad Pakistan email: khalidanoor@hotmail.com

Ali Muhammad

Department of Basic Sciences
University of Engineering and Technology, Peshawar Pakistan email: ali7887@gmail.com

Muhammad Arif

Department of Mathematics
Abdul Wali Khan University Mardan Pakistan
email: marifmaths@yahoo.com

[^0]: ${ }^{1}$ Received 18 September, 2008
 Accepted for publication (in revised form) 10 October, 2008

