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On a subclass of analytic functions with negative

coefficient associated with convolution structure 1

V.B.L. Chaurasia, Anil Sharma

Abstract

The main object of this paper is to study the subclass SC(γ, λ, β)

of analytic univalent functions with negative coefficients in unit disc U

= {z : |z| < 1}. Further coefficient estimates, distortion theorem and

integral operators for this class are also obtained. We also discuss radii

of convexity and closure properties for functions belonging to the class

SC(γ, λ, β).
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1 Introduction

Let A denote the class of the functions

(1) f(z) = z +
∞∑

k=2

akz
k
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which are analytic in the unit disk U = {z : |z| < 1}.
A function f ∈ A is said to belong to the class A of Starlike functions of

order α (0 ≤ α < 1), if it is satisfies, for z ∈ U , the conditions

(2) Re

{
zf ′(z)
f(z)

}
> α.

We denote this class by S∗(α). Further, f ∈ A is said to be convex function

of order α in U, if it satisfies

(3) Re
{

1 +
zf ′′(z)
f ′(z)

}
> α, z ∈ U,

for some α (0 ≤ α < 1). We denote this class K(α).

Let T denote subclass of A, consisting functions of the form

(4) f(z) = z −
∞∑

k=2

akz
k, ak ≥ 0.

The function

(5) Sα(z) = z(1− z)−2(1−α), α(0 ≤ α ≤ 1)

is the familiar extremal function for the class S∗(α), setting

(6) C (α, k) =

k
Π

i=2
(i− 2α)

(k − 1)!
, k ≥ 2,

using (5) and (6) we can write

(7) Sα(z) = z +
∞∑

k=2

C(α, k)zk.

Clearly, C(α, k) is a decreasing function in α, and that

(8) lim
k→∞

C (α, k) =





∞, α < 1/2

1, α = 1/2

0, α > 1/2.
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If we now define g(z) as

(9) g(z) = z +
∞∑

k=2

bkz
k

then the Hadamard product (or convolution) of two analytic functions f(z)

and g(z), where f(z) , g(z) is given by equations (1) and (9) respectively, is

defined as

(10) (f ∗ g)(z) = z +
∞∑

k=2

akbkz
k

For a function f(z) in A, we can define the differential operator Dn, intro-

duced by Salagean [9] as

D0f(z) = f(z)

D1f(z) = Df(z) = zf ′(z) = z +
∞∑

k=2

kakz
k

D2f(z) = D(Df(z)) = z +
∞∑

k=2

k2akz
k

(11) Dnf(z) = D(D)n−1f(z) = z +
∞∑

k=2

knakz
k

We also define a subclass ofA consisting of functions f(z), denoted by SC(γ, λ, β)

which satisfy the following condition

Re

[
1 +

1
γ

(
z [λz(Dnf ∗ Sα)′(z) + (1− λ)(Dnf ∗ Sα)′(z)]

λz(Dnf ∗ Sα)′(z) + (1− λ)(Dnf ∗ Sα)(z)
− 1

)]
> β,(12)

(0 ≤ λ ≤ 1, 0 ≤ β< 1; γ ∈ C, z ∈ U).

Special case of class.

(a) When λ = 0, and α = 1/2 then our class reduces in class of starlike
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functions of order β.

(b) When λ = 0, then our class reduces in class of starlike functions of complex

order γ.

(c) When α = 1/2 then this class reduces in class defined and studied by

Altintas, Irmak, Owa and Srivastava [5].

2 Coefficient estimates.

Theorem 1 Let the function f(z)εA is in the class SC(γ, λ, β), if and only

if

(13)
∞∑

k=2

kn [λk + 1− λ] [k − 1− γ(β − 1)] C(α, k)ak ≤ γ (1−β)

Proof. Assume that the inequality (13) holds true, then

∣∣∣∣
1
γ

(
z [λz(Dnf ∗ Sα)′(z) + (1− λ)(Dnf ∗ Sα)′(z)]

λz(Dnf ∗ Sα)′(z) + (1− λ)(Dnf ∗ Sα)(z)
− 1

) ∣∣∣∣

=

∣∣∣∣∣∣∣∣

1
γ




∞∑
k=2

kn [λk + 1− λ] (1− k)C(α, k)akz
k−1

1−
∞∑

k=2

kn [λk + 1− λ] C(α, k)akzk−1




∣∣∣∣∣∣∣∣
≤ (1− β).

Hence, by using the maximum modulus principle, f(z) ∈ SC(γ, λ, β). Con-

versely, assume that the function f(z) defined by (1) is in the class SC(γ, λ, β).

Then we will have

Re

{
1 +

1
γ

(
z [λ z(Dnf ∗ Sα)′(z) + (1− λ)(Dnf ∗ Sα)′(z)]

λz(Dnf ∗ Sα)′(z) + (1− λ)(Dnf ∗ Sα)(z)
− 1

)}
> β,

Re


1 +

1
γ





∞∑
k=2

kn [λk + 1− λ] (1− k)C(α, k)akz
k

z −
∞∑

k=2

kn [λk + 1− λ] C(α, k)akzk






 > β,
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Re


1 +

1
γ





∞∑
k=2

kn [λk + 1− λ] (1− k)C(α, k)akz
k−1

1−
∞∑

k=2

kn [λk + 1− λ] C(α, k)akzk−1






 > β,

and now when z → 1−, we obtain

∞∑
k=2

kn [λk + 1− λ] (1− k)C(α, k)ak

1−
∞∑

k=2

kn [λk + 1− λ] C(α, k)ak

≥ γ(β − 1)

and finally,

∞∑

k=2

kn [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)ak ≤ γ(1− β).

Corollary 1 Let the function f(z) defined by (1) be in the class SC(γ, λ, β).

Then

(14) ak ≤ γ(1− β)
kn [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)

, (k ≥ 2)

and the equality is attained for the function f(z) given by

(15) f(z) = z− γ(1− β)
kn [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)

zk.

3 Distortion Theorem.

Theorem 2 Let the function f(z) be in class SC(γ, λ, β) then for 0 ≤| z |= r

(16) r− γ(1− β)
kn [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)

rk ≤ |f(z) |

(17) ≤ r +
γ(1− β)

kn [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)
rk.
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Proof. From equation (15), easy to find that

|z| − γ(1− β)
kn [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)

|z|k ≤ |f(z)|

≤ |z|+ γ(1− β)
kn [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)

|z|k

Now using the fact that |z| = r < 1, we obtain the desired result.

Corollary 2 If the function f(z) is in the class SC(γ, λ, β) then f(z) is in-

cluded in a disc with centre at the origin and radius r, where

(18) r = 1 +
γ(1− β)

kn [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)

Theorem 3 Let the function f(z) be in the class SC(γ, λ, β) , then

1− γ(1− β)
kn−1 [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)

rk−1 ≤ |f(z)|

≤ 1 +
γ(1− β)

kn−1 [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)
rk−1

Where equality holds for the function f(z) given by (15).

1− kγ(1− β)
kn [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)

|z|k−1 ≤ |f(z)|

≤ 1 +
kγ(1− β)

kn [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)
|z|k−1

Again using the fact that |z| = r, we obtain the desired result.

4 Integral Operators

Theorem 4 Let the function f(z) defined by (1) be in the class SC(γ, λ, β)

and let c be a real number such that c > −1. Then F(z), defined by

(19) F(z) =
c + 1
zc

∫ z

0
tc−1f(t)dt

also belongs to the class SC(γ, λ, β).
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Proof. From the representation of F(z), it is obtained that

(20) F(z) = z −
∞∑

k=2

bkz
k,

where bk =
(

c+1
k+c

)
ak

Therefore
∞∑

k=2

kn [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)bk

=
∞∑

k=2

kn [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)
(

c + 1
k + c

)
ak

≤
∞∑

k=2

kn [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)ak

≤ γ(β − 1),

since f(z) belongs to SC(γ, λ, β) so by virtue of Theorem 1, F(z) is also element

of SC(γ, λ, β).

Theorem 5 Let the function

F (z) = z −
∞∑

k=2

akz
k, ak ≥ 0

be in the class SC(γ, λ, β) and is defined by equation (19). Now if c > −1,

then F(z) is univalent in |z| < R∗, where

(21) R∗=inf
{

kn−1 [λk+1−λ] [k−1−γ(β−1)] C(α, k)(c+1)
(c+k)γ(1−β)

} 1
k−1

, k≥2

The result is sharp.

Proof. From (19) we have

f(z) =
z1−c (zcF (z))′

c + 1
= z −

∞∑

k=2

(
c + k

c + 1

)
akz

k.
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In order to obtain the required result, it is sufficient to prove that

∣∣f ′(z)− 1
∣∣ < 1 for |z| < R∗.

Now since

∣∣f ′(z)− 1
∣∣ =

∣∣∣∣∣−
∞∑

k=2

k
(

c + k

c + 1

)
akz

k−1

∣∣∣∣∣(22)

≤
∞∑

k=2

k
(

c + k

c + 1

)
ak |z|k−1

≤
∞∑

k=2

k
(

c + k

c + 1

)
ak |z|k−1

≤
∞∑

k=2

k
(

c + k

c + 1

)
ak |z|k−1 ≤ 1

But from Theorem 1, we know that

(23)
∞∑

k=2

kn [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)ak

γ(1− β)
< 1

From equation (22) and (23) we have

k
(

c + k

c + 1

)
|z|k−1 ≤ kn [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)

γ(1− β)

or

(24) |z|≤
{

kn−1 [λk+1−λ] [k−1−γ(β−1)] C(α, k)(c+1)
(c + k)γ(1−β)

} 1
k−1

, (k≥2),

we obtain the desired result. The result is sharp for the function

f(z) = z − (c + k)γ(1− β)
kn [λk + 1− λ] [k− 1− γ(β − 1)] (c + k)C(α, k)

zk, (k ≥ 2).
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5 Radius of Convexity

Theorem 6 If f(z) given by (1) is in class SC(γ, λ, β) then f(z) is convex in

|z| < Rp, where

(25) Rp = inf
{

kn−2 [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)ak

γ(1− β)

} 1
(k−1)

The result is sharp.

Proof. In order to establish the required result it is sufficient to show that
∣∣∣∣
zf ′(z)
f ′(z)

∣∣∣∣ < 1, |z| < Rp

in view of (1), we have

∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ ≤

∞∑
k=2

k(k − 1)ak |z|k−1

1−
∞∑

k=2

kak |z|k−1

Hence, we obtain

(26)
∞∑

k=2

k2ak |z|k−1 ≤ 1

but from Theorem 1, we know that

(27)
∞∑

k=2

kn [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)ak

γ(1− β)
< 1

and thus from (26) and (27) we have

k2 |z|k−1 ≤ kn [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)
γ(1− β)

or

|z| ≤
{

kn−2 [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)
γ(1− β)

} 1
(k−1)

Hence, f(z) is convex in |z| < Rp. The result is sharp and is given by (25).
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6 Closure Theorem

Theorem 7 Let the function fj(z), (j = 1, 2, , m) be defined by

(28) fj(z) = z −
∞∑

k=2

akjzk (akj > 0)

for z ∈ U , be in the class SC(γ, λ, β) then the function h(z) defined by

h(z) = z −
∞∑

k=2

bkzk

also belongs to the class SC(γ, λ, β), where

bk =
1
m

m∑

j=1

akj

Proof. Since fj(z) SC(γ, λ, β), it follows from Theorem 1, that

∞∑

k=2

kn [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)akj < γ(1− β), (j = 1, 2, , m).

Therefore, ∞∑

k=2

kn [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)bk

=
∞∑

k=2

kn [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)


 1

m

m∑

j=1

akj




=
1
m

m∑

j=1

( ∞∑

k=2

kn [λk + 1− λ] [k− 1− γ(β − 1)] C(α, k)akj

)

< γ(1− β).

Hence by Theorem 1, h(z) ∈ SC(γ, λ, β) also.

Theorem 8 The class SC(γ, λ, β) is closed under linear combination.

Proof. Employing same techniques used by Silverman [14] with the aid of

Theorem 8, it can be easily proved.
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