On a subclass of analytic functions with negative coefficient associated with convolution structure ${ }^{1}$

V.B.L. Chaurasia, Anil Sharma

Abstract

The main object of this paper is to study the subclass $S C(\gamma, \lambda, \beta)$ of analytic univalent functions with negative coefficients in unit disc U $=\{z:|z|<1\}$. Further coefficient estimates, distortion theorem and integral operators for this class are also obtained. We also discuss radii of convexity and closure properties for functions belonging to the class $S C(\gamma, \lambda, \beta)$.

2000 Mathematics Subject Classification: 30C45, 33C20
Key words and phrases: Coefficient estimates, Hadamard product, Distortion theorem, Closure properties.

1 Introduction

Let \mathcal{A} denote the class of the functions

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

[^0]which are analytic in the unit disk $U=\{\mathrm{z}:|\mathrm{z}|<1\}$.
A function $f \in \mathcal{A}$ is said to belong to the class A of Starlike functions of order $\alpha(0 \leq \alpha<1)$, if it is satisfies, for $z \in U$, the conditions
\[

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \tag{2}
\end{equation*}
$$

\]

We denote this class by $S^{*}(\alpha)$. Further, $f \in \mathcal{A}$ is said to be convex function of order α in U , if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha, \quad z \in U \tag{3}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$. We denote this class $K(\alpha)$.
Let T denote subclass of A, consisting functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}, a_{k} \geq 0 \tag{4}
\end{equation*}
$$

The function

$$
\begin{equation*}
S_{\alpha}(z)=z(1-z)^{-2(1-\alpha)}, \quad \alpha(0 \leq \alpha \leq 1) \tag{5}
\end{equation*}
$$

is the familiar extremal function for the class $S^{*}(\alpha)$, setting

$$
\begin{equation*}
C(\alpha, k)=\frac{\prod_{i=2}^{k}(i-2 \alpha)}{(k-1)!}, k \geq 2 \tag{6}
\end{equation*}
$$

using (5) and (6) we can write

$$
\begin{equation*}
\mathrm{S}_{\alpha}(z)=z+\sum_{k=2}^{\infty} C(\alpha, k) z^{k} \tag{7}
\end{equation*}
$$

Clearly, $C(\alpha, k)$ is a decreasing function in α, and that

$$
\lim _{k \rightarrow \infty} C(\alpha, k)=\left\{\begin{array}{l}
\infty, \alpha<1 / 2 \tag{8}\\
1, \alpha=1 / 2 \\
0, \alpha>1 / 2
\end{array}\right.
$$

If we now define $\mathrm{g}(\mathrm{z})$ as

$$
\begin{equation*}
\mathrm{g}(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \tag{9}
\end{equation*}
$$

then the Hadamard product (or convolution) of two analytic functions $f(z)$ and $g(z)$, where $f(z), g(z)$ is given by equations (1) and (9) respectively, is defined as

$$
\begin{equation*}
(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k} \tag{10}
\end{equation*}
$$

For a function $\mathrm{f}(\mathrm{z})$ in \mathcal{A}, we can define the differential operator D^{n}, introduced by Salagean [9] as

$$
\begin{gather*}
D^{0} f(z)=f(z) \\
D^{1} f(z)=D f(z)=z f^{\prime}(z)=z+\sum_{k=2}^{\infty} \mathrm{ka}_{k} z^{k} \\
D^{2} f(z)=D(D f(z))=z+\sum_{k=2}^{\infty} \mathrm{k}^{2} \mathrm{a}_{k} z^{k} \\
D^{n} f(z)=D(D)^{n-1} f(z)=z+\sum_{k=2}^{\infty} \mathrm{k}^{\mathrm{n}} \mathrm{a}_{k} z^{k} \tag{11}
\end{gather*}
$$

We also define a subclass of \mathcal{A} consisting of functions $\mathrm{f}(\mathrm{z})$, denoted by $S C(\gamma, \lambda, \beta)$ which satisfy the following condition
(12) $\operatorname{Re}\left[1+\frac{1}{\gamma}\left(\frac{z\left[\lambda z\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)+(1-\lambda)\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)\right]}{\lambda z\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)+(1-\lambda)\left(D^{n} f * S_{\alpha}\right)(z)}-1\right)\right]>\beta$,

$$
(0 \leq \lambda \leq 1,0 \leq \beta<1 ; \gamma \in C, z \in U) .
$$

Special case of class.

(a) When $\lambda=0$, and $\alpha=1 / 2$ then our class reduces in class of starlike
functions of order β.
(b) When $\lambda=0$, then our class reduces in class of starlike functions of complex order γ.
(c) When $\alpha=1 / 2$ then this class reduces in class defined and studied by Altintas, Irmak, Owa and Srivastava [5].

2 Coefficient estimates.

Theorem 1 Let the function $f(z) \varepsilon A$ is in the class $S C(\gamma, \lambda, \beta)$, if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n}[\lambda k+1-\lambda][k-1-\gamma(\beta-1)] \mathrm{C}(\alpha, \mathrm{k}) \mathrm{a}_{\mathrm{k}} \leq \gamma(1-\beta) \tag{13}
\end{equation*}
$$

Proof. Assume that the inequality (13) holds true, then

$$
\begin{aligned}
& \left|\frac{1}{\gamma}\left(\frac{z\left[\lambda z\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)+(1-\lambda)\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)\right]}{\lambda z\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)+(1-\lambda)\left(D^{n} f * S_{\alpha}\right)(z)}-1\right)\right| \\
& =\left|\frac{1}{\gamma}\left(\frac{\sum_{k=2}^{\infty} \mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda](1-k) \mathrm{C}(\alpha, k) \mathrm{a}_{\mathrm{k}} \mathrm{z}^{\mathrm{k}-1}}{1-\sum_{k=2}^{\infty} \mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda] \mathrm{C}(\alpha, k) \mathrm{a}_{\mathrm{k}} \mathrm{z}^{\mathrm{k}-1}}\right)\right| \\
& \quad \leq(1-\beta)
\end{aligned}
$$

Hence, by using the maximum modulus principle, $f(z) \in S C(\gamma, \lambda, \beta)$. Conversely, assume that the function $\mathrm{f}(\mathrm{z})$ defined by (1) is in the class $S C(\gamma, \lambda, \beta)$. Then we will have

$$
\begin{gathered}
\operatorname{Re}\left\{1+\frac{1}{\gamma}\left(\frac{z\left[\lambda z\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)+(1-\lambda)\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)\right]}{\lambda z\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)+(1-\lambda)\left(D^{n} f * S_{\alpha}\right)(z)}-1\right)\right\}>\beta \\
\operatorname{Re}\left[1+\frac{1}{\gamma}\left\{\frac{\sum_{k=2}^{\infty} \mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda](1-k) \mathrm{C}(\alpha, k) \mathrm{a}_{\mathrm{k}} \mathrm{z}^{\mathrm{k}}}{z-\sum_{k=2}^{\infty} \mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda] \mathrm{C}(\alpha, k) \mathrm{a}_{\mathrm{k}} \mathrm{z}^{\mathrm{k}}}\right\}\right]>\beta
\end{gathered}
$$

$$
\operatorname{Re}\left[1+\frac{1}{\gamma}\left\{\frac{\sum_{k=2}^{\infty} \mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda](1-k) \mathrm{C}(\alpha, k) \mathrm{a}_{\mathrm{k}} \mathrm{z}^{\mathrm{k}-1}}{1-\sum_{k=2}^{\infty} \mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda] \mathrm{C}(\alpha, k) \mathrm{a}_{\mathrm{k}} \mathrm{z}^{\mathrm{k}-1}}\right\}\right]>\beta
$$

and now when $z \rightarrow 1^{-}$, we obtain

$$
\frac{\sum_{k=2}^{\infty} \mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda](1-k) \mathrm{C}(\alpha, k) \mathrm{a}_{\mathrm{k}}}{1-\sum_{k=2}^{\infty} \mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda] \mathrm{C}(\alpha, k) \mathrm{a}_{\mathrm{k}}} \geq \gamma(\beta-1)
$$

and finally,

$$
\sum_{k=2}^{\infty} \mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k) \mathrm{a}_{\mathrm{k}} \leq \gamma(1-\beta)
$$

Corollary 1 Let the function $f(z)$ defined by (1) be in the class $S C(\gamma, \lambda, \beta)$.
Then

$$
\begin{equation*}
a_{k} \leq \frac{\gamma(1-\beta)}{\mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k)}, \quad(\mathrm{k} \geq 2) \tag{14}
\end{equation*}
$$

and the equality is attained for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=\mathrm{z}-\frac{\gamma(1-\beta)}{\mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k)} \mathrm{z}^{\mathrm{k}} \tag{15}
\end{equation*}
$$

3 Distortion Theorem.

Theorem 2 Let the function $f(z)$ be in class $S C(\gamma, \lambda, \beta)$ then for $0 \leq|z|=r$

$$
\begin{equation*}
\mathrm{r}-\frac{\gamma(1-\beta)}{\mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k)} \mathrm{r}^{\mathrm{k}} \leq|\mathrm{f}(\mathrm{z})| \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\leq \mathrm{r}+\frac{\gamma(1-\beta)}{\mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k)} \mathrm{r}^{\mathrm{k}} \tag{17}
\end{equation*}
$$

Proof. From equation (15), easy to find that

$$
\begin{aligned}
& |\mathrm{z}|-\frac{\gamma(1-\beta)}{\mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k)}|\mathrm{z}|^{\mathrm{k}} \leq|\mathrm{f}(\mathrm{z})| \\
& \quad \leq|\mathrm{z}|+\frac{\gamma(1-\beta)}{\mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k)}|\mathrm{z}|^{\mathrm{k}}
\end{aligned}
$$

Now using the fact that $|z|=r<1$, we obtain the desired result.
Corollary 2 If the function $f(z)$ is in the class $S C(\gamma, \lambda, \beta)$ then $f(z)$ is included in a disc with centre at the origin and radius r, where

$$
\begin{equation*}
\mathrm{r}=1+\frac{\gamma(1-\beta)}{\mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k)} \tag{18}
\end{equation*}
$$

Theorem 3 Let the function $f(z)$ be in the class $S C(\gamma, \lambda, \beta)$, then

$$
\begin{aligned}
1- & \frac{\gamma(1-\beta)}{\mathrm{k}^{\mathrm{n}-1}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k)} \mathrm{r}^{\mathrm{k}-1} \leq|\mathrm{f}(\mathrm{z})| \\
& \leq 1+\frac{\gamma(1-\beta)}{\mathrm{k}^{\mathrm{n}-1}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k)} \mathrm{r}^{\mathrm{k}-1}
\end{aligned}
$$

Where equality holds for the function $f(z)$ given by (15).

$$
\begin{aligned}
1- & \frac{k \gamma(1-\beta)}{\mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k)}|\mathrm{z}|^{\mathrm{k}-1} \leq|\mathrm{f}(\mathrm{z})| \\
& \leq 1+\frac{k \gamma(1-\beta)}{\mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k)}|\mathrm{z}|^{\mathrm{k}-1}
\end{aligned}
$$

Again using the fact that $|z|=r$, we obtain the desired result.

4 Integral Operators

Theorem 4 Let the function $f(z)$ defined by (1) be in the class $S C(\gamma, \lambda, \beta)$ and let c be a real number such that $c>-1$. Then $F(z)$, defined by

$$
\begin{equation*}
\mathrm{F}(\mathrm{z})=\frac{\mathrm{c}+1}{\mathrm{z}^{\mathrm{c}}} \int_{0}^{z} t^{c-1} f(t) d t \tag{19}
\end{equation*}
$$

also belongs to the class $S C(\gamma, \lambda, \beta)$.

Proof. From the representation of $\mathrm{F}(\mathrm{z})$, it is obtained that

$$
\begin{equation*}
\mathrm{F}(\mathrm{z})=z-\sum_{k=2}^{\infty} b_{k} z^{k}, \tag{20}
\end{equation*}
$$

where $b_{k}=\left(\frac{c+1}{k+c}\right) a^{k}$
Therefore

$$
\begin{gathered}
\sum_{k=2}^{\infty} \mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k) \mathrm{b}_{\mathrm{k}} \\
=\sum_{k=2}^{\infty} \mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k)\left(\frac{c+1}{k+c}\right) \mathrm{a}_{\mathrm{k}} \\
\leq \sum_{k=2}^{\infty} \mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k) \mathrm{a}_{\mathrm{k}} \\
\leq \gamma(\beta-1)
\end{gathered}
$$

since $\mathrm{f}(\mathrm{z})$ belongs to $S C(\gamma, \lambda, \beta)$ so by virtue of Theorem $1, \mathrm{~F}(\mathrm{z})$ is also element of $S C(\gamma, \lambda, \beta)$.

Theorem 5 Let the function

$$
F(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}, \mathrm{a}_{\mathrm{k}} \geq 0
$$

be in the class $S C(\gamma, \lambda, \beta)$ and is defined by equation (19). Now if $c>-1$, then $F(z)$ is univalent in $|z|<R^{*}$, where

$$
\begin{equation*}
R^{*}=\inf \left\{\frac{\mathrm{k}^{\mathrm{n}-1}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k)(\mathrm{c}+1)}{(c+\mathrm{k}) \gamma(1-\beta)}\right\}^{\frac{1}{\mathrm{k}-\mathrm{1}}}, \mathrm{k} \geq 2 \tag{21}
\end{equation*}
$$

The result is sharp.
Proof. From (19) we have

$$
f(z)=\frac{z^{1-c}\left(z^{c} F(z)\right)^{\prime}}{c+1}=z-\sum_{k=2}^{\infty}\left(\frac{c+k}{c+1}\right) a_{k} z^{k} .
$$

In order to obtain the required result, it is sufficient to prove that

$$
\left|f^{\prime}(z)-1\right|<1 \text { for }|z|<R^{*}
$$

Now since

But from Theorem 1, we know that

$$
\begin{equation*}
\sum_{\mathrm{k}=2}^{\infty} \frac{\mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k) \mathrm{a}_{\mathrm{k}}}{\gamma(1-\beta)}<1 \tag{23}
\end{equation*}
$$

From equation (22) and (23) we have

$$
\mathrm{k}\left(\frac{c+k}{c+1}\right)|z|^{k-1} \leq \frac{\mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k)}{\gamma(1-\beta)}
$$

or

$$
\begin{equation*}
|z| \leq\left\{\frac{\mathrm{k}^{\mathrm{n}-1}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k)(\mathrm{c}+1)}{(c+k) \gamma(1-\beta)}\right\}^{\frac{1}{\mathrm{k}-1}},(\mathrm{k} \geq 2) \tag{24}
\end{equation*}
$$

we obtain the desired result. The result is sharp for the function

$$
\mathrm{f}(\mathrm{z})=z-\frac{(c+k) \gamma(1-\beta)}{\mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)](c+k) \mathrm{C}(\alpha, k)} \mathrm{z}^{\mathrm{k}},(\mathrm{k} \geq 2)
$$

5 Radius of Convexity

Theorem 6 If $f(z)$ given by (1) is in class $S C(\gamma, \lambda, \beta)$ then $f(z)$ is convex in $|z|<R p$, where

$$
\begin{equation*}
\mathrm{R}_{\mathrm{p}}=\inf \left\{\frac{\mathrm{k}^{\mathrm{n}-2}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k) a_{\mathrm{k}}}{\gamma(1-\beta)}\right\}^{\frac{1}{(\mathrm{k}-1)}} \tag{25}
\end{equation*}
$$

The result is sharp.

Proof. In order to establish the required result it is sufficient to show that

$$
\left|\frac{z f^{\prime}(z)}{f^{\prime}(z)}\right|<1, \quad|z|<R_{p}
$$

in view of (1), we have

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq \frac{\sum_{k=2}^{\infty} k(k-1) a_{k}|\mathrm{z}|^{k-1}}{1-\sum_{k=2}^{\infty} k a_{k}|\mathrm{z}|^{k-1}}
$$

Hence, we obtain

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{2} a_{k}|z|^{k-1} \leq 1 \tag{26}
\end{equation*}
$$

but from Theorem 1, we know that

$$
\begin{equation*}
\sum_{\mathrm{k}=2}^{\infty} \frac{\mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k) \mathrm{a}_{\mathrm{k}}}{\gamma(1-\beta)}<1 \tag{27}
\end{equation*}
$$

and thus from (26) and (27) we have

$$
k^{2}|\mathrm{z}|^{k-1} \leq \frac{\mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k)}{\gamma(1-\beta)}
$$

or

$$
|\mathrm{z}| \leq\left\{\frac{\mathrm{k}^{\mathrm{n}-2}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k)}{\gamma(1-\beta)}\right\}^{\frac{1}{(k-1)}}
$$

Hence, $\mathrm{f}(\mathrm{z})$ is convex in $|z|<R_{p}$. The result is sharp and is given by (25).

6 Closure Theorem

Theorem 7 Let the function $f_{j}(z),(j=1,2,, m)$ be defined by

$$
\begin{equation*}
f_{j}(z)=z-\sum_{k=2}^{\infty} \mathrm{a}_{\mathrm{kj}} \mathrm{z}^{\mathrm{k}} \quad\left(a_{k j}>0\right) \tag{28}
\end{equation*}
$$

for $z \in U$, be in the class $S C(\gamma, \lambda, \beta)$ then the function $h(z)$ defined by

$$
h(z)=z-\sum_{k=2}^{\infty} \mathrm{b}_{\mathrm{k}} \mathrm{z}^{\mathrm{k}}
$$

also belongs to the class $S C(\gamma, \lambda, \beta)$, where

$$
b_{k}=\frac{1}{m} \sum_{j=1}^{m} \mathrm{a}_{\mathrm{kj}}
$$

Proof. Since $f_{j}(z) S C(\gamma, \lambda, \beta)$, it follows from Theorem 1, that

$$
\sum_{k=2}^{\infty} \mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k) \mathrm{a}_{\mathrm{kj}}<\gamma(1-\beta), \quad(j=1,2,, m)
$$

Therefore,

$$
\begin{aligned}
& \sum_{k=2}^{\infty} \mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k) \mathrm{b}_{\mathrm{k}} \\
& =\sum_{k=2}^{\infty} \mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k)\left(\frac{1}{m} \sum_{j=1}^{m} \mathrm{a}_{\mathrm{kj}}\right) \\
& =\frac{1}{m} \sum_{j=1}^{m}\left(\sum_{k=2}^{\infty} \mathrm{k}^{\mathrm{n}}[\lambda k+1-\lambda][\mathrm{k}-1-\gamma(\beta-1)] \mathrm{C}(\alpha, k) \mathrm{a}_{\mathrm{kj}}\right) \\
& <\gamma(1-\beta)
\end{aligned}
$$

Hence by Theorem $1, h(z) \in S C(\gamma, \lambda, \beta)$ also.

Theorem 8 The class $S C(\gamma, \lambda, \beta)$ is closed under linear combination.
Proof. Employing same techniques used by Silverman [14] with the aid of Theorem 8, it can be easily proved.

References

[1] M.K. Aouf and N.E. Cho, On a certain subclass of analytic functions with negative coefficients, Turkish. J. Math., 22(1), 1988, 33-42.
[2] M.K. Aouf, H.M. Hossen and A.Y. Lashn, A class of univalent functions defined by using Hadamard product, Math. Vesnik, 55, 2003, 83-96.
[3] M.K. Aouf, HM Hossen and A.Y. Lashin, On certain families of analytic functions with negative coefficients, Indian J. Pure. App. Math., 31, 2000, 999-1015.
[4] O. Altintas, H. Irmak, S. Owa, H.M. Srivastava, Coefficient bounds for some families of starlike and convex functions of complex order, Applied Mathematics Letters, 2007.
[5] S. Owa, On the distortion theorems I, Kyungpook Math. J., 18, 1978, 53-59.
[6] S. Owa, M.K. Aouf, On subclasses of univalent function with negative coefficient II, Pure. App. Math. Sci., 29, 1989, 131-139.
[7] S. Ruscheweyh, New criteria of univalent functions, Proc. Amer. Math. Soc., 49, 1975, 109-115.
[8] G.S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. (Springer Verlag), 1013, 1983, 362-372.
[9] H.M. Srivastava, S. Owa, An application of fractional derivative, Math. Japan, 29, 1984, 384-389.
[10] H.M. Srivastava, S. Owa (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Co., Singapore, New Jersey, London and Hongkong, 1992.
[11] H.M. Srivastava, M. Saigo, S. Owa, A class of distortion theorem involving certain operators of fractional calculus, J. Math. Anal. Appl., 131, 1988, 412-420.
[12] H. Silverman, Univalent functions with negative coefficient, Proc. Amer. Math. Soc., 51, 1975, 109-116.

V.B.L. Chaurasia

University of Rajasthan
Department of Mathematics
Jaipur-302055, India.

Anil Sharma

Suresh Gyanvihar University
Department of Mathematics
Jaipur-302011, India.

[^0]: ${ }^{1}$ Received 26 November, 2008
 Accepted for publication (in revised form) 9 February, 2009

