Cauchy problem for a class of elliptic systems of third order in the plane with Fuchsian differential operator ${ }^{1}$

S. K. Burgumbayeva, A. B. Tungatarov

Abstract

The solutions of a class of complex partial differential equations of third order in the plane with Fuchs type differential operator are constructed in explicit form and the Cauchy problem with prescribed growth at infinity is solved in unbounded angular domains within specified function classes.

2000 Mathematics Subject Classification: 35J70, 30G20

Key words and phrases: Cauchy problem, Partial differential equations of third order, Fuchs type differential operator

1 Introduction

Let $0<\varphi_{1} \leq 2 \pi, G=\left\{z=r e^{i \varphi}: 0 \leq r<\infty, 0 \leq \varphi \leq \varphi_{1}\right\}$. Consider in G the equation

$$
\begin{equation*}
8 f_{1}(\varphi) \bar{z}^{3} \frac{\partial^{3} V}{\partial \bar{z}^{3}}+4 f_{2}(\varphi) \bar{z}^{2} \frac{\partial^{2} V}{\partial \bar{z}^{2}}+2 f_{3}(\varphi) \bar{z} \frac{\partial V}{\partial \bar{z}}+f_{4}(\varphi) \bar{V}=f_{5}(\varphi) r^{\nu} \tag{1}
\end{equation*}
$$

[^0]$\nu>0$ is a real parameter, $f_{l}(\varphi) \in C\left[0, \varphi_{1}\right],(l=\overline{1,5}), f_{1}(\varphi) \neq 0$;
$$
\frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right), \frac{\partial^{k} V}{\partial \bar{z}^{k}}=\frac{\partial}{\partial \bar{z}}\left(\frac{\partial^{k-1} V}{\partial \bar{z}^{k-1}}\right),(k=\overline{2,3}) .
$$

Equation (1) is investigation for $f_{1}(\varphi) \equiv 0, f_{2}(\varphi) \equiv$ const $\neq 0, f_{3}(\varphi) \equiv$ const $\neq 0$ in [1],[2] and for $f_{2}(\varphi) \equiv f_{2}(\varphi) \equiv 0, f_{3}(\varphi) \equiv$ const $\neq 0$ in [3].

2 Solutions of the equation

Using these operators in polar coordinates

$$
\begin{gathered}
\frac{\partial}{\partial \bar{z}}=\frac{e^{i \varphi}}{2}\left(\frac{\partial}{\partial r}+\frac{i}{r} \frac{\partial}{\partial \varphi}\right) \\
\frac{\partial^{2}}{\partial \bar{z}^{2}}=\frac{e^{2 i \varphi}}{4}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2 i}{r} \frac{\partial^{2}}{\partial r \partial \varphi}-\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}-\frac{1}{r} \frac{\partial}{\partial r}-\frac{2 i}{r^{2}} \frac{\partial}{\partial \varphi}\right), \\
\frac{\partial^{3}}{\partial \bar{z}^{3}}=\frac{e^{3 i \varphi}}{8}\left(\frac{\partial^{3}}{\partial r^{3}}+\frac{3 i}{r} \frac{\partial^{3}}{\partial r^{2} \partial \varphi}-\frac{3}{r^{2}} \frac{\partial^{3}}{\partial \varphi^{2} \partial r}-\frac{i}{r^{3}} \frac{\partial^{3}}{\partial \varphi^{3}}-\frac{3}{r} \frac{\partial^{2}}{\partial r^{2}}\right. \\
\left.-\frac{9 i}{r^{2}} \frac{\partial^{2}}{\partial r \partial \varphi}+\frac{6}{r^{3}} \frac{\partial^{2}}{\partial \varphi^{2}}+\frac{3}{r^{2}} \frac{\partial}{\partial r}+\frac{8 i}{r^{3}} \frac{\partial}{\partial \varphi}\right)
\end{gathered}
$$

equation (1) is written in the form

$$
\begin{align*}
& f_{1}(\varphi) r^{3} \frac{\partial^{3} V}{\partial r^{3}}+3 i f_{1}(\varphi) r^{2} \frac{\partial^{3} V}{\partial r^{2} \partial \varphi}-3 f_{1}(\varphi) r \frac{\partial^{3} V}{\partial r \partial \varphi^{2}}-i f_{1}(\varphi) \frac{\partial^{3} V}{\partial \varphi^{3}} \tag{2}\\
& +\left(f_{2}(\varphi)-3 f_{1}(\varphi)\right) r^{2} \frac{\partial^{2} V}{\partial r^{2}}+\left(2 f_{2}(\varphi)-9 f_{1}(\varphi)\right) i r \frac{\partial^{2} V}{\partial r \partial \varphi} \\
& +\left(6 f_{1}(\varphi)-f_{2}(\varphi)\right) \frac{\partial^{2} V}{\partial \varphi^{2}}+\left(3 f_{1}(\varphi)-f_{2}(\varphi)+f_{3}(\varphi)\right) r \frac{\partial V}{\partial r} \\
& +\left(8 f_{1}(\varphi)-2 f_{2}(\varphi)+f_{3}(\varphi)\right) i \frac{\partial V}{\partial \varphi}+f_{4}(\varphi) \bar{V}=f_{5}(\varphi) r^{\nu} .
\end{align*}
$$

The solutions of equation (2) are searched for in the Sobolev class [4]

$$
\begin{equation*}
W_{p}^{3}(G) \tag{3}
\end{equation*}
$$

where $1<p<\frac{2}{3-\nu}$, if $\nu<3$ and $p>1$, if $\nu \geq 3$.

One can see easily, that the function

$$
\begin{equation*}
V(r, \varphi)=r^{\nu} \psi(\varphi) \tag{4}
\end{equation*}
$$

represents a solution of equation (2) from class (3), if $\psi(\varphi) \in C^{3}\left[0, \varphi_{1}\right]$ is satisfying the equation

$$
\begin{equation*}
\psi^{\prime \prime \prime}+a_{1}(\varphi) \psi^{\prime \prime}+a_{2}(\varphi) \psi^{\prime}+a_{3}(\varphi) \psi=a_{4}(\varphi)-a_{5}(\varphi) \bar{\psi}, \tag{5}
\end{equation*}
$$

where

$$
\begin{gathered}
a_{1}(\varphi)=\frac{6 f_{1}(\varphi)-f_{2}(\varphi)-3 \nu f_{1}(\varphi)}{f_{1}(\varphi)} \cdot i, \\
a_{2}(\varphi)=\frac{\nu\left(9 f_{1}(\varphi)-2 f_{2}(\varphi)\right)-3 \nu(\nu-1) f_{1}(\varphi)-8 f_{1}(\varphi)+2 f_{2}(\varphi)-f_{3}(\varphi)}{f_{1}(\varphi)}, \\
a_{3}(\varphi)=\frac{\nu(\nu-1)(\nu-2) f_{1}(\varphi)+\nu(\nu-1)\left(f_{2}(\varphi)-3 f_{1}(\varphi)\right)+3 f_{1}(\varphi)-f_{2}(\varphi)+f_{3}(\varphi)}{f_{1}(\varphi)} \cdot i, \\
a_{4}(\varphi)=\frac{f_{5}(\varphi)}{f_{1}(\varphi)} i, \quad a_{5}(\varphi)=\frac{f_{4}(\varphi)}{f_{1}(\varphi)} i .
\end{gathered}
$$

Let $\theta(\varphi)=\left\{\psi_{1}(\varphi), \psi_{2}(\varphi), \psi_{3}(\varphi)\right\}$ be a fundamental system of solutions of homogeneous equation

$$
\begin{equation*}
\psi^{\prime \prime \prime}+a_{1}(\varphi) \psi^{\prime \prime}+a_{2}(\varphi) \psi^{\prime}+a_{3}(\varphi) \psi=0 . \tag{6}
\end{equation*}
$$

Using the general solution of this equation

$$
\psi(\varphi)=c_{1} \psi_{1}(\varphi)+c_{2} \psi_{2}(\varphi)+c_{3} \psi_{3}(\varphi),
$$

where $c_{l},(l=\overline{1,3})$ are arbitrary constants, in that case by applying the method of variation of constant equation (5) becomes the integral equation

$$
\begin{equation*}
\psi(\varphi)=(B \psi)(\varphi)+c J_{0}(\varphi)+G_{0}(\varphi) \tag{7}
\end{equation*}
$$

where

$$
J_{k}(\varphi)=\left\{J_{1, k}(\varphi), J_{2, k}(\varphi), J_{3, k}(\varphi)\right\}, J_{1,0}(\varphi)=\psi_{1}(\varphi),
$$

$$
\begin{gathered}
J_{2,0}(\varphi)=\psi_{2}(\varphi), J_{3,0}(\varphi)=\psi_{3}(\varphi), c=\left\{c_{1}, c_{2}, c_{3}\right\}, \\
(B \psi)(\varphi)=\int_{0}^{\varphi} b(\varphi, \tau) \overline{\psi(\tau)} d \tau, \quad G_{0}(\varphi)=\int_{0}^{\varphi} g(\varphi, \tau) d \tau, \\
b(\varphi, \tau)=a_{5}(\tau) \cdot \gamma(\varphi, \tau), \quad g(\varphi, \tau)=a_{4}(\tau) \cdot \gamma(\varphi, \tau), \\
\gamma(\varphi, \tau)=\frac{1}{|\triangle(\varphi)|}\left(\left(\psi_{2}(\tau) \psi_{3}^{\prime}(\tau)-\psi_{3}(\tau) \psi_{2}^{\prime}(\tau)\right) J_{1,0}(\varphi)-\left(\psi_{1}(\tau) \psi_{3}^{\prime}(\tau)\right.\right. \\
\left.\left.-\psi_{3}(\tau) \psi_{1}^{\prime}(\tau)\right) J_{2,0}(\varphi)+\left(\psi_{1}(\tau) \psi_{2}^{\prime}(\tau)-\psi_{2}(\tau) \psi_{1}^{\prime}(\tau)\right) J_{3,0}(\varphi)\right), \\
\Delta(\varphi)=\left(\begin{array}{ccc}
\psi_{1} & \psi_{2} & \psi_{3} \\
\psi_{1}^{\prime} & \psi_{2}^{\prime} & \psi_{3}^{\prime} \\
\psi_{1}^{\prime \prime} & \psi_{2}^{\prime \prime} & \psi_{3}^{\prime \prime}
\end{array}\right),|\triangle(\varphi)| \text { is the determinant of the matrix } \triangle(\varphi) .
\end{gathered}
$$

For solving equation (7) the functions and operators

$$
\begin{gathered}
J_{k, j}(\varphi)=\int_{0}^{\varphi} b(\varphi, \tau) \overline{J_{k, j-1}(\tau)} d \tau, \quad G_{k}(\varphi)=\int_{0}^{\varphi} b(\varphi, \tau) \overline{G_{k-1}(\tau)} d \tau, \quad(j=\overline{1, \infty}), \\
\left(B\left(B^{k-1} f\right)(\varphi)\right)(\varphi)=\left(B^{k} f\right)(\varphi), \quad(k=\overline{1, \infty}), \quad\left(B^{0} f\right)(\varphi)=(B f)(\varphi)
\end{gathered}
$$

are used.
Applying the operator B to both sides of equation (7) gives an expression for the function $(B f)(\varphi)$. Inserting it again into (7), we have
(8) $\psi(\varphi)=\left(B_{3} \psi\right)(\varphi)+c\left(J_{0}(\varphi)+J_{2}(\varphi)\right)+\bar{c} J_{1}(\varphi)+G_{0}(\varphi)+G_{1}(\varphi)+G_{2}(\varphi)$

Continuing this process $2 k+1$ times, we get
(9) $\quad \psi(\varphi)=\left(B^{2 k+1} \psi\right)(\varphi)+c \sum_{n=0}^{k} J_{2 n}(\varphi)+\bar{c} \sum_{n=1}^{k} J_{2 n-1}(\varphi)+\sum_{n=0}^{2 k} G_{n}(\varphi)$

As a consequence it is easy to check the inequalities

$$
\begin{equation*}
\left|\left(B^{k} \psi\right)(\varphi)\right| \leq|b(\varphi, \tau)|_{1}^{k} \cdot \frac{\varphi^{k}}{k!}, \quad\left|J_{k, j}(\varphi)\right| \leq|b(\varphi, \tau)|_{1}^{j} \cdot \frac{\varphi^{j}}{j!} \tag{10}
\end{equation*}
$$

where

$$
\varphi|b(\varphi, \tau)|_{1}=\max _{0 \leq \varphi, \tau \leq \varphi_{1}}|b(\varphi, \tau)| .
$$

If pass to the limit as $k \longrightarrow \infty$ in the representations (9), by virtue (10) we receive

$$
\begin{equation*}
\psi(\varphi)=c Q(\varphi)+\bar{c} P(\varphi)+G(\varphi), \tag{11}
\end{equation*}
$$

where

$$
\begin{gathered}
Q(\varphi)=\left(Q_{1}(\varphi), Q_{2}(\varphi), Q_{3}(\varphi)\right), \quad P(\varphi)=\left(P_{1}(\varphi), P_{2}(\varphi), P_{3}(\varphi)\right), \\
Q_{j}(\varphi)=\sum_{n=o}^{\infty} J_{j, 2 n}(\varphi), \quad P_{j}(\varphi)=\sum_{n=1}^{\infty} J_{j, 2 n-1}(\varphi), \\
G(\varphi)=\sum_{n=o}^{\infty} G_{n}(\varphi), \quad(j=\overline{1,3}) .
\end{gathered}
$$

For these functions $Q_{j}(\varphi), P_{j}(\varphi),(j=\overline{1,3})$ and $G(\varphi)$ it is easy to check the relations

$$
\begin{gather*}
Q_{j}(\varphi)=J_{j, 0}(\varphi)+\int_{0}^{\varphi} b(\varphi, \tau) \overline{P_{j}(\tau)} d \tau, \quad P_{j}(\varphi)=\int_{0}^{\varphi} b(\varphi, \tau) \overline{Q_{j}(\tau)} d \tau, \\
G(\varphi)=G_{0}(\varphi)+\int_{0}^{\varphi} b(\varphi, \tau) \overline{G(\tau)} d \tau, \\
Q_{j}^{(k)}(\varphi)=\psi_{j}^{(k)}(\varphi)+\int_{0}^{\varphi} b_{\varphi^{k}}^{(k)}(\varphi, \tau) \overline{P_{j}(\tau)} d \tau, \quad P_{j}^{(k)}(\varphi)=\int_{0}^{\varphi} b_{\varphi^{k}}^{(k)}(\varphi, \tau) \overline{Q_{j}(\tau)} d \tau, \\
(12) \quad G_{j}^{(k)}(\varphi)=\int_{0}^{\varphi} g_{\varphi^{k}}^{(k)}(\varphi, \tau) d \tau+\int_{0}^{\varphi} b_{\varphi^{k}}^{(k)}(\varphi, \tau) \overline{G(\tau)} d \tau, \quad(k=\overline{1,2}), \tag{12}\\
Q_{j}^{\prime \prime \prime}(\varphi)=\psi_{j}^{\prime \prime \prime}(\varphi)-a_{5}(\varphi) \overline{P_{j}(\varphi)}+\int_{0}^{\varphi} b_{\varphi^{3}}^{\prime \prime \prime}(\varphi, \tau) \overline{P_{j}(\tau)} d \tau,
\end{gather*}
$$

$$
\begin{gathered}
P_{j}^{\prime \prime \prime}(\varphi)=-a_{5}(\varphi) \overline{Q_{j}(\varphi)}+\int_{0}^{\varphi} b_{\varphi^{3}}^{\prime \prime \prime}(\varphi, \tau) \overline{Q_{j}(\tau)} d \tau, \quad(j=\overline{1,3}) \\
G_{\varphi^{3}}^{\prime \prime \prime}(\varphi)=a_{4}(\varphi)+\int_{0}^{\varphi} g_{\varphi^{3}}^{\prime \prime \prime}(\varphi, \tau) d \tau-a_{5}(\varphi) \overline{G(\varphi)}+\int_{0}^{\varphi} b_{\varphi^{3}}^{\prime \prime \prime}(\varphi, \tau) \overline{G(\tau)} d \tau .
\end{gathered}
$$

It is also easy to check the equalities

$$
\begin{array}{ll}
b(\varphi, \varphi)=0, & b_{\varphi}^{\prime}(\varphi, \varphi)=0,
\end{array} \quad b_{\varphi^{2}}^{\prime \prime}(\varphi, \varphi)=-b(\varphi), ~ 子=0, \quad g_{\varphi}^{\prime \prime}(\varphi, \varphi)=f_{5}(\varphi) .
$$

By using formula (12) and (13) we receive the equalities

$$
\begin{gathered}
P_{j}^{\prime \prime \prime}(\varphi)+a_{1} P_{j}^{\prime \prime}(\varphi)+a_{2} P_{j}^{\prime}(\varphi)+a_{3} P_{j}(\varphi)=-a_{5}(\varphi) \overline{Q_{j}(\varphi)}, \\
Q_{j}^{\prime \prime \prime}(\varphi)+a_{1} Q_{j}^{\prime \prime}(\varphi)+a_{2} Q_{j}^{\prime}(\varphi)+a_{3} Q_{j}(\varphi)=-a_{a}(\varphi) \overline{P_{j}(\varphi)} \\
G^{\prime \prime \prime}(\varphi)+a_{1} G^{\prime \prime}(\varphi)+a_{2} G^{\prime}(\varphi)+a_{3} G(\varphi)=a_{4}(\varphi)-a_{5}(\varphi) \overline{G(\varphi)}
\end{gathered}
$$

Hence, we receive

$$
\begin{align*}
& \begin{aligned}
& \psi^{\prime}(\varphi)= c \theta_{\varphi}^{\prime} \\
&+c \int_{0}^{\varphi} b_{\varphi}^{\prime}(\varphi, \tau) \overline{P_{j}(\tau)} d \tau+\bar{c} \int_{0}^{\varphi} b_{\varphi}^{\prime}(\varphi, \tau) \overline{Q_{j}(\tau)} d \tau \\
&+\int_{0}^{\varphi} g_{\varphi}^{\prime}(\varphi, \tau) d \tau+\int_{0}^{\varphi} b_{\varphi}^{\prime}(\varphi, \tau) \overline{G(\tau)} d \tau \\
& \psi^{\prime \prime}(\varphi)= c \theta_{\varphi^{2}}^{\prime \prime}
\end{aligned} \quad+c \int_{0}^{\varphi} b_{\varphi^{2}}^{\prime \prime}(\varphi, \tau) \overline{P_{j}(\tau)} d \tau+\bar{c} \int_{0}^{\varphi} b_{\varphi^{2}}^{\prime \prime}(\varphi, \tau) \overline{Q_{j}(\tau)} d \tau \\
& \quad+\int_{0}^{\varphi} g_{\varphi^{2}}^{\prime \prime}(\varphi, \tau) d \tau+\int_{0}^{\varphi} b_{\varphi^{2}}^{\prime \prime}(\varphi, \tau) \overline{G(\tau)} d \tau \\
& \psi^{\prime \prime \prime}(\varphi)= c \theta_{\varphi^{3}}^{\prime \prime \prime}-c a_{5}(\varphi) \overline{P_{j}(\varphi)}+c \int_{0}^{\varphi} b_{\varphi^{3}}^{\prime \prime \prime}(\varphi, \tau) \overline{P_{j}(\tau)} d \tau \\
&- \bar{c} a_{5}(\varphi) \overline{Q_{j}(\varphi)}+\bar{c} \int_{0}^{\varphi} b_{\varphi^{3}}^{\prime \prime \prime}(\varphi, \tau) \overline{Q_{j}(\tau)} d \tau+a_{4}(\varphi) \tag{14}\\
&+ \int_{0}^{\varphi} g_{\varphi^{3}}^{\prime \prime \prime}(\varphi, \tau) d \tau-a_{5}(\varphi) \overline{G(\varphi)}+\int_{0}^{\varphi} b_{\varphi^{3}}^{\prime \prime \prime}(\varphi, \tau) \overline{G(\tau)} d \tau
\end{align*}
$$

Since $J_{j, 0}(\varphi), b(\varphi, \tau), g(\varphi, \tau)$ represent a solution of equation (6), then by virtue of formula (14) we receive, that the function $\psi(\varphi)$, given by formula (11) is satisfying equation (5).

Using inequality (10), it is easy to receive the estimates

$$
\begin{align*}
& \left|Q_{j}(\varphi)\right| \leq\left|\psi_{j}\left(\varphi_{1}\right)\right| \operatorname{ch}\left(|b(\varphi, \tau)|_{1}\right), \\
& \left|P_{j}(\varphi)\right| \leq\left|\psi_{j}\left(\varphi_{1}\right)\right| \operatorname{sh}\left(|b(\varphi, \tau)|_{1}\right) \tag{15}\\
& |G(\varphi)| \leq \varphi_{1}|g(\varphi, \tau)|_{1} \exp \left(|b(\varphi, \tau)|_{1}\right), \quad(j=\overline{1,3}) .
\end{align*}
$$

By estimate (15) we can assure that the function $V(r, \varphi)$, given by formulas (4), (11), is solving equation (1) in the class (3).

Thus, the following result holds

Theorem 1 Equation (1) has a solution in the class (3), which is given by formula (4), (11).

3 Cauchy problem

Consider the Cauchy problem with prescribed growth at infinity for system (1).

Problem C. Find a solution of equation (1) from the class (3), satisfying the conditions

$$
\begin{gather*}
\alpha_{k 1} V(r, 0)+\alpha_{k 2} \frac{\partial V}{\partial \varphi}(r, 0)+\alpha_{k 3} \frac{\partial^{2} V}{\partial \varphi^{2}}(r, 0)=\beta_{k} r^{\nu}, \quad(k=\overline{1,3}), \tag{16}\\
|V(r, \varphi)|=O\left(r^{\nu}\right), \quad r \longrightarrow \infty \tag{17}
\end{gather*}
$$

where $a_{k j}, k=(\overline{1,3}), j=(\overline{1,3})$ are given real numbers.
For solving problem C formulas (4), (11) are used. In that case (17) holds automatically. The constants c_{1}, c_{2}, c_{3} in formula (11) are determined, in order that the solution of equation (1), represented in the form (4) and (11), satisfies condition (16). For that, insert function $V(r, \varphi)$ according to formulas
(4), (11) into (16). Thus we receive a system of linear algebraic equations in c_{1}, c_{2}, c_{3} :

$$
\begin{equation*}
(\alpha \triangle(0)) c^{T}=\beta, \tag{18}
\end{equation*}
$$

where

$$
\alpha=\left(\begin{array}{lll}
\alpha_{11} & \alpha_{12} & \alpha_{13} \\
\alpha_{21} & \alpha_{22} & \alpha_{23} \\
\alpha_{31} & \alpha_{32} & \alpha_{33}
\end{array}\right), \quad \beta=\left(\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right), \quad c^{T}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)
$$

Solving system (18) under $|\alpha \triangle(0)| \neq 0$, we receive

$$
\begin{equation*}
c^{T}=(\alpha \triangle(0))^{-1} \beta \tag{19}
\end{equation*}
$$

Thus, the following result holds

Theorem 2 Let the roots the characteristic equation (6) be different and different from zero. Under $|\alpha \triangle(0)| \neq 0$ the Cauchy problem has a unique solution, which is given by formulas (4), (11) and (19).

If $|\alpha \triangle(0)|=0$ for the solvability of the algebraic systems (18) the conditions:

$$
\begin{equation*}
\left|A_{1}\right|=0, \quad\left|A_{2}\right|=0, \quad\left|A_{3}\right|=0 \tag{20}
\end{equation*}
$$

are necessary and sufficient. Here A_{j} ia a matrix, which is received by replacing the i matrix column of the matrix $\alpha \triangle(0)$ by the column β.

Theorem 3 Let $|\alpha \triangle(0)|=0$, then for the solvability of the Cauchy problem the condition (20) is necessary and sufficiently. In that case the Cauchy problem has an infinity number of solutions. They are given by formulas (4), (11), where c is determined from equation (18) under condition (20).

References

[1] S.A. Abdymanapov, Boundary problem for a class of second order elliptic systems in the quarter plane with polar singularity, Eurasian Mathematical Journal 2, 2006, 3-21 (in Russian).
[2] S.A. Abdymanapov, Initial boundary problem for a class of second order homogeneous elliptic systems in the plane with singular point, Eurasian Mathematical Journal 3, 2006, 3-12 (in Russian).
[3] S.A. Abdymanapov and A.B.Tungatarov, Some class of elliptic systems on the plane with singular coefficients, Almaty, "Gylym", 2005 (in Russian).
[4] I.H. Vekua, Generalized Analytic Functions, Pergamon, Oxford, 1962.

Saule Burgumbayeva

L. N. Gumilyev Eurasian National University

Department of Mathematics and Informatics
Kazakhstan, 010008, Astana, Munaitpasov str. 5
e-mail: saulenai@yandex.ru, saulenai@mail.ru

[^0]: ${ }^{1}$ Received 27 November, 2008
 Accepted for publication (in revised form) 09 February, 2009

