Differential subordination and superordination theorems for certain analytic functions ${ }^{1}$

Sukhwinder Singh, Sushma Gupta, Sukhjit Singh

Abstract

Let α, β, γ and δ be complex numbers such that $\alpha \neq 0$. Define Φ on $\mathbb{D}=\mathbb{C} \backslash\{0\}$ as $$
\Phi\left(w, z w^{\prime} ; z\right)=w^{\delta}\left(\beta w+\alpha \frac{z w^{\prime}}{w}+\gamma\right), z \in \mathbb{E}
$$ where $\mathbb{E}=\{z:|z|<1\}$. We find the sufficient conditions for analytic function $p, p(z) \neq 0$ and analytic univalent functions $q_{1}, q_{1}(z) \neq 0$ and $q_{2}, q_{2}(z) \neq 0$ in \mathbb{E} such that $$
\Phi\left(q_{1}(z), z q_{1}^{\prime}(z) ; z\right) \prec \Phi\left(p(z), z p^{\prime}(z) ; z\right) \prec \Phi\left(q_{2}(z), z q_{2}^{\prime}(z) ; z\right),
$$ implies $$
q_{1}(z) \prec p(z) \prec q_{2}(z),
$$ where q_{1} and q_{2} are, respectively, best subordinant and best dominant. We give applications of these results to univalent, ϕ-like and \mathcal{P}-valent functions and show that our results generalize and unify a number of known results.

[^0]2000 Mathematics Subject Classification: 30C80, 30C45.
Key words and phrases: Convex function, Starlike function, ϕ-like function, Differential subordination, Differential superordination.

1 Introduction

Let \mathcal{H} be the class of functions analytic in the open unit disk $\mathbb{E}=\{z:|z|<1\}$ and for $a \in \mathbb{C}$ (complex plane) and $n \in \mathbb{N}$ (set of natural numbers), let $\mathcal{H}[a, n]$ be the subclass of \mathcal{H} consisting of functions of the form $f(z)=a+a_{n} z^{n}+$ $a_{n+1} z^{n+1}+\cdots$.

Let \mathcal{A} be the class of functions f, analytic in \mathbb{E} and normalized by the conditions $f(0)=f^{\prime}(0)-1=0$.

Denote by $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$, the classes of starlike functions of order α and convex functions of order α respectively, which are analytically defined as follows:

$$
\mathcal{S}^{*}(\alpha)=\left\{f \in \mathcal{A}: \Re \frac{z f^{\prime}(z)}{f(z)}>\alpha, z \in \mathbb{E}\right\}
$$

and

$$
\mathcal{K}(\alpha)=\left\{f \in \mathcal{A}: \Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, z \in \mathbb{E}\right\},
$$

where α is a real number such that $0 \leq \alpha<1$. We shall use \mathcal{S}^{*} and \mathcal{K} to denote $\mathcal{S}^{*}(0)$ and $\mathcal{K}(0)$, respectively, which are the classes of univalent starlike (w.r.t. the origin) and univalent convex functions.

For two analytic functions f and g in the open unit disk \mathbb{E}, we say that f is subordinate to g in \mathbb{E} and write $f \prec g$ if there exists a Schwarz function w analytic in \mathbb{E} with $w(0)=0$ and $|w(z)|<1, z \in \mathbb{E}$ such that $f(z)=$ $g(w(z)), z \in \mathbb{E}$.

In case the function g is univalent, the above subordination is equivalent to $f(0)=g(0)$ and $f(\mathbb{E}) \subset g(\mathbb{E})$.

Let $\psi: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ be an analytic function, p be an analytic function in \mathbb{E}, with $\left(p(z), z p^{\prime}(z)\right) \in \mathbb{C} \times \mathbb{C}$ for all $z \in \mathbb{E}$ and h be univalent in \mathbb{E}, then the function p is said to satisfy first order differential subordination if

$$
\begin{equation*}
\psi\left(p(z), z p^{\prime}(z)\right) \prec h(z), \psi(p(0), 0)=h(0) . \tag{1}
\end{equation*}
$$

A univalent function q is called a dominant of the differential subordination (1) if $p(0)=q(0)$ and $p \prec q$ for all p satisfying (1). A dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants q of (1), is said to be the best dominant of (1). The best dominant is unique upto a rotation of \mathbb{E}.

Let $\pi: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ be analytic and univalent in a domain $\mathbb{C} \times \mathbb{C}, p$ be analytic and univalent in \mathbb{E}, with $\left(p(z), z p^{\prime}(z)\right) \in \mathbb{C} \times \mathbb{C}$ for all $z \in \mathbb{E}$. Then p is called a solution of the first order differential superordination if

$$
\begin{equation*}
h(z) \prec \pi\left(p(z), z p^{\prime}(z)\right), h(0)=\pi(p(0), 0) . \tag{2}
\end{equation*}
$$

An analytic function q is called a subordinant of the differential superordination (2), if $q \prec p$ for all p satisfying (2). A univalent subordinant \tilde{q} that satisfies $q \prec \tilde{q}$ for all subordinants q of (2), is said to be the best subordinant of (2). The best subordinant is unique up to a rotation of \mathbb{E}.

For any two analytic functions $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=1}^{\infty} b_{n} z^{n}$, the convolution of f and g, written as $f * g$, is defined by

$$
(f * g)(z)=\sum_{n=1}^{\infty} a_{n} b_{n} z^{n}
$$

Let ϕ be analytic in a domain containing $f(\mathbb{E}), \phi(0)=0$ and $\Re \phi^{\prime}(0)>0$. Then, the function $f \in \mathcal{A}$ is said to be ϕ-like in \mathbb{E} if

$$
\Re \frac{z f^{\prime}(z)}{\phi(f(z))}>0
$$

for all $z \in \mathbb{E}$. ϕ-like functions were introduced by Brickman [1]. He proved that an analytic function $f \in \mathcal{A}$ is univalent if and only if f is ϕ-like for some ϕ.

Later, Ruscheweyh [18] investigated the following general class of ϕ-like functions.

Let ϕ be analytic in a domain containing $f(\mathbb{E}), \phi(0)=0, \phi^{\prime}(0)=1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \backslash\{0\}$. The function $f \in \mathcal{A}$ is called ϕ-like with respect to a univalent function $q, q(0)=1$, if

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec q(z) .
$$

In what follows, all the powers taken, are the principle ones.
In the present paper, we find the sufficient conditions for analytic function $p, p(z) \neq 0$ and analytic univalent functions q_{1}, q_{2} with $q_{1}(z) \neq 0, q_{2}(z) \neq 0$ in \mathbb{E} such that

$$
\begin{equation*}
\Phi\left(q_{1}(z), z q_{1}^{\prime}(z) ; z\right) \prec \Phi\left(p(z), z p^{\prime}(z) ; z\right) \prec \Phi\left(q_{2}(z), z q_{2}^{\prime}(z) ; z\right), \tag{3}
\end{equation*}
$$

implies

$$
q_{1}(z) \prec p(z) \prec q_{2}(z) .
$$

Moreover q_{1} and q_{2} are, respectively, the best subordinant and the best dominant for (3) where

$$
\begin{equation*}
\Phi\left(w, z w^{\prime} ; z\right)=w^{\delta}\left(\beta w+\alpha \frac{z w^{\prime}}{w}+\gamma\right), w \in \mathbb{D}=\mathbb{C} \backslash\{0\}, z \in \mathbb{E} \tag{4}
\end{equation*}
$$

and α, β, γ and δ be complex numbers such that $\alpha \neq 0$. We give applications of our results to univalent, ϕ-like and \mathcal{P}-valent functions.

Our work is inspired by various differential operators in literature, used as criteria for starlikeness, (see ref. [3], [4], [5], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29]).

In our present work these differential operators are unified and existing results are generalized.

2 Preliminaries

We shall use the following definition and lemmas to prove our main results.

Definition 1 ([6], p.21, Definition 2.2b) We denote by Q the set of functions p that are analytic and injective on $\overline{\mathbb{E}} \backslash \mathbb{B}(p)$, where

$$
\mathbb{B}(p)=\left\{\zeta \in \partial \mathbb{E}: \lim _{\mathrm{z} \rightarrow \zeta} p(z)=\infty\right\}
$$

and are such that $p^{\prime}(\zeta) \neq 0$ for $\zeta \in \partial \mathbb{E} \backslash \mathbb{B}(p)$.

Lemma 1 ([6], p.132, Theorem 3.4 h) Let q be univalent in \mathbb{E} and let θ and ϕ be analytic in a domain \mathbb{D} containing $q(\mathbb{E})$, with $\phi(w) \neq 0$, when $w \in q(\mathbb{E})$. Set $Q_{1}(z)=z q^{\prime}(z) \phi[q(z)], h(z)=\theta[q(z)]+Q_{1}(z)$ and suppose that either
(i) h is convex, or
(ii) Q_{1} is starlike.

In addition, assume that
(iii) $\Re \frac{z h^{\prime}(z)}{Q_{1}(z)}>0, z \in \mathbb{E}$.

If p is analytic in \mathbb{E}, with $p(0)=q(0), p(\mathbb{E}) \subset \mathbb{D}$ and

$$
\theta[p(z)]+z p^{\prime}(z) \phi[p(z)] \prec \theta[q(z)]+z q^{\prime}(z) \phi[q(z)]
$$

then $p \prec q$ and q is the best dominant.

Lemma 2 ([2]) Let q be univalent in \mathbb{E} and let θ and ϕ be analytic in a domain \mathbb{D} containing $q(\mathbb{E})$. Set $Q_{1}(z)=z q^{\prime}(z) \phi[q(z)], h(z)=\theta[q(z)]+Q_{1}(z)$ and suppose that
(i) Q_{1} is starlike in \mathbb{E} and
(ii) $\Re \frac{\theta^{\prime}(q(z))}{\phi(q(z))}>0, z \in \mathbb{E}$.

If $p \in \mathcal{H}[q(0), 1] \cap Q$, with $p(\mathbb{E}) \subset \mathbb{D}$ and $\theta[p(z)]+z p^{\prime}(z) \phi[p(z)]$ is univalent in \mathbb{E} and

$$
\theta[q(z)]+z q^{\prime}(z) \phi[q(z)] \prec \theta[p(z)]+z p^{\prime}(z) \phi[p(z)],
$$

then $q \prec p$ and q is the best subordinant.

3 Main Theorems

Theorem 1 Let $q, q(z) \neq 0$, be a univalent function in \mathbb{E} such that
(i) $\Re\left[1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+\frac{(\delta-1) z q^{\prime}(z)}{q(z)}\right]>0$ and
(ii) $\Re\left[1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+\frac{(\delta-1) z q^{\prime}(z)}{q(z)}+\frac{\beta(\delta+1) q(z)}{\alpha}+\frac{\gamma \delta}{\alpha}\right]>0$.

If the analytic function $p, p(z) \neq 0, z \in \mathbb{E}$, satisfies the differential subordination

$$
\begin{equation*}
\Phi\left(p(z), z p^{\prime}(z) ; z\right) \prec \Phi\left(q(z), z q^{\prime}(z) ; z\right), \tag{5}
\end{equation*}
$$

where α, β, γ and δ are complex numbers with $\alpha \neq 0$ and Φ is given by (4), then $p(z) \prec q(z)$ and q is the best dominant.

Proof. Let us define the functions θ and ϕ as follows:

$$
\theta(w)=(\beta w+\gamma) w^{\delta},
$$

and

$$
\phi(w)=\alpha w^{\delta-1} .
$$

Obviously, the functions θ and ϕ are analytic in domain $\mathbb{D}=\mathbb{C} \backslash\{0\}$ and $\phi(w) \neq 0, w \in \mathbb{D}$.

Define the functions Q_{1} and h as follows:

$$
Q_{1}(z)=z q^{\prime}(z) \phi(q(z))=\alpha z q^{\prime}(z)(q(z))^{\delta-1}
$$

and

$$
h(z)=\theta(q(z))+Q_{1}(z)=\Phi\left(q(z), z q^{\prime}(z) ; z\right)
$$

A little calculation yields

$$
\frac{z Q_{1}^{\prime}(z)}{Q_{1}(z)}=1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+\frac{(\delta-1) z q^{\prime}(z)}{q(z)}
$$

and

$$
\frac{z h^{\prime}(z)}{Q_{1}(z)}=1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+\frac{(\delta-1) z q^{\prime}(z)}{q(z)}+\frac{\beta(\delta+1) q(z)}{\alpha}+\frac{\gamma \delta}{\alpha}
$$

In view of conditions (i) and (ii), we get
(1) Q_{1} is starlike in \mathbb{E} and
(2) $\Re \frac{z h^{\prime}(z)}{Q_{1}(z)}>0, z \in \mathbb{E}$.

Thus conditions (ii) and (iii) of Lemma 1, are satisfied.
In view of (5), we have

$$
\theta[p(z)]+z p^{\prime}(z) \phi[p(z)] \prec \theta[q(z)]+z q^{\prime}(z) \phi[q(z)] .
$$

Therefore, the proof, now, follows from Lemma 1.

Theorem 2 Let $q, q(z) \neq 0$, be a univalent function in \mathbb{E} such that
(i) $\Re\left[1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+\frac{(\delta-1) z q^{\prime}(z)}{q(z)}\right]>0$ and
(ii) $\Re\left[\frac{\beta(\delta+1) q(z)}{\alpha}+\frac{\gamma \delta}{\alpha}\right]>0$.

If $p \in \mathcal{H}[q(0), 1] \cap Q$, with $p(z) \neq 0, z \in \mathbb{E}$, satisfies the differential superordination

$$
\begin{equation*}
\Phi\left(q(z), z q^{\prime}(z) ; z\right) \prec \Phi\left(p(z), z p^{\prime}(z) ; z\right) \tag{6}
\end{equation*}
$$

where α, β, γ and δ are complex numbers with $\alpha \neq 0, \Phi\left(p(z), z p^{\prime}(z) ; z\right)$ is univalent in \mathbb{E} and Φ is given by (4), then $q(z) \prec p(z)$ and q is the best subordinant.

Proof. Let us define the functions θ and ϕ as follows:

$$
\theta(w)=(\beta w+\gamma) w^{\delta}
$$

and

$$
\phi(w)=\alpha w^{\delta-1}
$$

Obviously, the functions θ and ϕ are analytic in domain $\mathbb{D}=\mathbb{C} \backslash\{0\}$ and $\phi(w) \neq 0, w \in \mathbb{D}$.

Let us define the functions Q_{1} and h as follows:

$$
Q_{1}(z)=z q^{\prime}(z) \phi(q(z))=\alpha z q^{\prime}(z)(q(z))^{\delta-1}
$$

and

$$
h(z)=\theta(q(z))+Q_{1}(z)=\Phi\left(q(z), z q^{\prime}(z) ; z\right)
$$

A little calculation yields

$$
\frac{z Q_{1}^{\prime}(z)}{Q_{1}(z)}=1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+\frac{(\delta-1) z q^{\prime}(z)}{q(z)}
$$

and

$$
\frac{\theta^{\prime}(q(z))}{\phi(q(z))}=\frac{\beta(\delta+1) q(z)}{\alpha}+\frac{\gamma \delta}{\alpha} .
$$

In view of conditions (i) and (ii), we have
(1) Q_{1} is starlike in \mathbb{E} and
(2) $\Re \frac{\theta^{\prime}(q(z))}{\phi(q(z))}>0, z \in \mathbb{E}$.

Thus by (6), we obtain

$$
\theta[q(z)]+z q^{\prime}(z) \phi[q(z)] \prec \theta[p(z)]+z p^{\prime}(z) \phi[p(z)] .
$$

Therefore, the proof, now, follows from Lemma 2.

4 Applications to Univalent Functions

On writing $p(z)=\frac{(f * \phi)(z)}{(f * \psi)(z)}$, in Theorem 1, we have the following result.

Theorem 3 Let $q, q(z) \neq 0$, be a univalent function in \mathbb{E} which satisfy the conditions (i) and (ii) of Theorem 1. If $f \in \mathcal{A}$ and analytic functions ϕ, ψ with $\frac{(f * \phi)(z)}{(f * \psi)(z)} \neq 0, z \in \mathbb{E}$, satisfy the differential subordination

$$
\Phi\left[\frac{(f * \phi)(z)}{(f * \psi)(z)}, z\left(\frac{(f * \phi)(z)}{(f * \psi)(z)}\right)^{\prime} ; z\right] \prec \Phi\left(q(z), z q^{\prime}(z) ; z\right)
$$

where α, β, γ and δ are complex numbers with $\alpha \neq 0$ and Φ is given by (4), then

$$
\frac{(f * \phi)(z)}{(f * \psi)(z)} \prec q(z)
$$

and q is the best dominant.
On writing $p(z)=\frac{(f * \phi)(z)}{(f * \psi)(z)}$, in Theorem 2, we have the following result.
Theorem 4 Let $q, q(z) \neq 0$, be a univalent function in \mathbb{E} which satisfy the conditions (i) and (ii) of Theorem 2. If $f \in \mathcal{A}$ and analytic functions ϕ, ψ such that $\frac{(f * \phi)(z)}{(f * \psi)(z)} \in \mathcal{H}[q(0), 1] \cap Q$, with $\frac{(f * \phi)(z)}{(f * \psi)(z)} \neq 0, z \in \mathbb{E}$, satisfy the differential superordination

$$
\Phi\left(q(z), z q^{\prime}(z) ; z\right) \prec \Phi\left[\frac{(f * \phi)(z)}{(f * \psi)(z)}, z\left(\frac{(f * \phi)(z)}{(f * \psi)(z)}\right)^{\prime} ; z\right]=h(z)
$$

where α, β, γ and δ are complex numbers with $\alpha \neq 0, h$ is univalent in \mathbb{E} and Φ is given by (4), then

$$
q(z) \prec \frac{(f * \phi)(z)}{(f * \psi)(z)},
$$

and q is the best subordinant.

Remark 1 On selecting the particular values of α, β, γ and δ in Theorem 1 and Theorem 3 and by considering the particular cases of functions ϕ and ψ
in case of Theorem 3, we can obtain a number of known results and some of them are given below.
(i) On writing $\gamma=1-\beta, \delta=1$ in Theorem 1, we obtain, Lemma 1 of [12].
(ii) On replacing $\gamma=1$ and $\beta=0$ in Theorem 1, we obtain, Corollary 3.2 of [21].
(iii) By taking $\alpha=\delta=1$ and $\gamma=0$ in Theorem 1, we obtain, Corollary 3.4 of [22].
(iv) By taking $\alpha=\delta=2, \beta=0$ and $\gamma=1$ in Theorem 1, we obtain, Corollary 3.3 of [21] (see also [6], page 77).
(v) By taking $\beta=0$ and $\gamma=\delta=1$ in Theorem 1, we obtain, Corollary 3.4 of [21].
(vi) By taking $\alpha=1, \beta=\gamma=0$ and $\delta=-1$ in Theorem 1, we have the result of Ravichandran and Darus [15].
(vii) By taking $\alpha=\gamma=1, \beta=0$ and $\delta=\frac{1}{\lambda}$ in Theorem 1, we obtain, Lemma 1 of [13].
(viii) By taking $\phi(z)=\sum_{n=1}^{\infty} n z^{n}, \psi(z)=\sum_{n=1}^{\infty} z^{n}, \beta=\alpha, \gamma=1-\alpha$ and $\delta=1$ in Theorem 3, we obtain the Theorem 3 of [12].
(ix) By taking $\phi(z)=\sum_{n=1}^{\infty} n z^{n}, \psi(z)=\sum_{n=1}^{\infty} z^{n}, \beta=1$ and $\gamma=\delta=0$ in Theorem 3, we obtain, Theorem 4.3 of [22].
(x) By taking $\phi(z)=\sum_{n=1}^{\infty} n z^{n}, \psi(z)=\sum_{n=1}^{\infty} z^{n}, \alpha=\beta=1, \gamma=0$ and $\delta=-1$ in Theorem 3, we obtain, Theorem 4.5 of [22].

Remark 2 By making the selections same as in Remark 1, in Theorem 2 and Theorem 4, we can obtain the corresponding results for superordination. e.g.
(i) For $\delta=1$ in Theorem 2, we obtain Lemma 2.1 of [17].
(ii) On writing $\gamma=\delta=0$ in Theorem 2, we obtain Lemma 2.4 of [17]
(iii) By taking $\phi(z)=\sum_{n=1}^{\infty} n z^{n}, \psi(z)=\sum_{n=1}^{\infty} z^{n}, \alpha=\beta, \gamma=1-\beta$ and $\delta=1$ in Theorem 4, we obtain, Theorem 2.2 of [17].
(iv) By taking $\phi(z)=\sum_{n=1}^{\infty} n z^{n}, \psi(z)=\sum_{n=1}^{\infty} z^{n}, \beta=1$ and $\gamma=\delta=0$ in Theorem 4, we obtain, Theorem 2.5 of [17].

5 Applications to Multivalent Functions

Let $\mathcal{A}(\mathcal{P})$ denote the class of functions of the form $f(z)=z^{\mathcal{P}}+\sum_{k=1}^{\infty} a_{\mathcal{P}+k} z^{\mathcal{P}+k}$, $(\mathcal{P} \in \mathbb{N}=\{1,2,3, \cdots\})$, which are analytic and \mathcal{P}-valent in \mathbb{E}.
On writing $p(z)=\frac{1}{\mathcal{P}} \frac{z f^{\prime}(z)}{f(z)}$, in Theorem 1 , we have the following result.
Theorem 5 Let $q, q(z) \neq 0$, be a univalent function in \mathbb{E}, which satisfy the conditions (i) and (ii) of Theorem 1. If $f \in \mathcal{A}(\mathcal{P})$, with $\frac{1}{\mathcal{P}} \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies the differential subordination

$$
\Phi\left[\frac{1}{\mathcal{P}} \frac{z f^{\prime}(z)}{f(z)}, z\left(\frac{1}{\mathcal{P}} \frac{z f^{\prime}(z)}{f(z)}\right)^{\prime} ; z\right] \prec \Phi\left(q(z), z q^{\prime}(z) ; z\right),
$$

where α, β, γ and δ are complex numbers with that $\alpha \neq 0$ and Φ is given by (4), then $\frac{1}{\mathcal{P}} \frac{z f^{\prime}(z)}{f(z)} \prec q(z)$ and q is the best dominant.

On writing $p(z)=\frac{1}{\mathcal{P}} \frac{z f^{\prime}(z)}{f(z)}$, in Theorem 2, we have the following result.
Theorem 6 Let $q, q(z) \neq 0$, be a univalent function in \mathbb{E}, which satisfy the conditions (i) and (ii) of Theorem 2. If $f \in \mathcal{A}(\mathcal{P}), \frac{1}{\mathcal{P}} \frac{z f^{\prime}(z)}{f(z)} \in \mathcal{H}[q(0), 1] \cap Q$, with $\frac{1}{\mathcal{P}} \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies the differential superordination

$$
\Phi\left(q(z), z q^{\prime}(z) ; z\right) \prec \Phi\left[\frac{1}{\mathcal{P}} \frac{z f^{\prime}(z)}{f(z)}, z\left(\frac{1}{\mathcal{P}} \frac{z f^{\prime}(z)}{f(z)}\right)^{\prime} ; z\right]=h(z),
$$

where α, β, γ and δ are complex numbers with $\alpha \neq 0, h$ is univalent in \mathbb{E} and Φ is given by (4), then $q(z) \prec p(z)$ and q is the best subordinant.

Remark 3 We can obtain interesting results for \mathcal{P}-valent functions by selecting the particular values α, β, γ and δ in Theorem 5.
e.g. For $\beta=\mathcal{P}, \gamma=0$ and $\delta=0$ in Theorem 5 , we obtain Theorem 1 of [25].

Also note that for the same selection in Theorem 6, we can obtain the corresponding result for superordination.

6 Applications to ϕ-like Functions

On writing $p(z)=\frac{z(f * g)^{\prime}(z)}{\phi((f * g)(z))}$, in Theorem 1, we obtain the following result.

Theorem 7 Let $q, q(z) \neq 0$, be a univalent function in \mathbb{E} which satisfy the conditions (i) and (ii) of Theorem 1. If f, $g \in \mathcal{A}$ such that $\frac{z(f * g)^{\prime}(z)}{\phi((f * g)(z))} \neq 0, z \in$ \mathbb{E}, satisfy the differential subordination

$$
\Phi\left[\frac{z(f * g)^{\prime}(z)}{\phi((f * g)(z))}, z\left(\frac{z(f * g)^{\prime}(z)}{\phi((f * g)(z))}\right)^{\prime} ; z\right] \prec \Phi\left(q(z), z q^{\prime}(z) ; z\right)
$$

where α, β, γ and δ are complex numbers with $\alpha \neq 0, \phi$ is an analytic function in domain containing $(f * g)(\mathbb{E}), \phi(0)=0, \phi^{\prime}(0)=1$ and $\phi(w) \neq 0$ for $w \in$ $(f * g)(\mathbb{E}) \backslash\{0\}$ and Φ is given by (4), then

$$
\frac{z(f * g)^{\prime}(z)}{\phi((f * g)(z))} \prec q(z)
$$

and q is the best dominant.

On writing $p(z)=\frac{z(f * g)^{\prime}(z)}{\phi((f * g)(z))}$, in Theorem 2, we have the following result.

Theorem 8 Let $q, q(z) \neq 0$, be a univalent function in \mathbb{E} which satisfy the conditions (i) and (ii) of Theorem 2. If $f, g \in \mathcal{A}$ such that $\frac{z(f * g)^{\prime}(z)}{\phi((f * g)(z))} \in$
$\mathcal{H}[q(0), 1] \cap Q$, with $\frac{z(f * g)^{\prime}(z)}{\phi((f * g)(z))} \neq 0, z \in \mathbb{E}$, satisfy the differential superordination

$$
\Phi\left(q(z), z q^{\prime}(z) ; z\right) \prec \Phi\left[\frac{z(f * g)^{\prime}(z)}{\phi((f * g)(z))}, z\left(\frac{z(f * g)^{\prime}(z)}{\phi((f * g)(z))}\right)^{\prime} ; z\right]=h(z)
$$

where α, β, γ and δ are complex numbers with $\alpha \neq 0, h$ is univalent in \mathbb{E}, ϕ is an analytic function in domain containing $(f * g)(\mathbb{E}), \phi(0)=0, \phi^{\prime}(0)=1$ and $\phi(w) \neq 0$ for $w \in(f * g)(\mathbb{E}) \backslash\{0\}$ and Φ is given by (4), then

$$
q(z) \prec \frac{z(f * g)^{\prime}(z)}{\phi((f * g)(z))},
$$

and q is the best subordinant.

Remark 4 On putting $\gamma=0$ and $\delta=0$ in Theorem 7, we obtain Theorem 2.1 of [19] and by the same selection in Theorem 8, we obtain Theorem 2.5 of [19].

Remark 5 If we select $g(z)=\sum_{n=1}^{\infty} z^{n}$ in Theorem 7 and Theorem 8, then for $f \in \mathcal{A}$, we have

$$
\frac{z(f * g)^{\prime}(z)}{\phi(f * g)(z)}=\frac{z f^{\prime}(z)}{\phi(f(z))}
$$

Now the applications of Theorem 7 and Theorem 8, can be seen by giving different values to α, β, γ and δ. By doing so, we obtain the results of ([4],[13],[24]). e.g.
(i) On writing $g(z)=\sum_{n=1}^{\infty} z^{n}, \alpha=\beta, \gamma=1-\beta$ and $\delta=1$ in Theorem 7, we obtain, Theorem 3 of [13].
(ii) On writing $g(z)=\sum_{n=1}^{\infty} z^{n}, \alpha=\gamma=1, \beta=0$ and $\delta=\frac{1}{\lambda}$ in Theorem 7, we obtain, Theorem 4 of [13].

References

[1] L. Brickman, ϕ-like analytic functions. I, Bull. Amer. Math. Soc., 79, 1973, 555-558.
[2] T. Bulboaca, Classes of First-Order Differential Superordinations, Demonstratio Math., 35(2), 2002, 287-292.
[3] T. Bulboaca, T.Tuneski, New Criteria for Starlikeness and Strongly Starlikeness, Mathematica (Cluj), 43(66), 2001, 1, 11-22.
[4] N. E. Cho, J. Kim, On a Sufficient Condition and an Angular Estimation for ϕ-like Functions, Taiwan. J. Math., 2(4), 1998, 397-403.
[5] J. L. Li, S. Owa, Sufficient conditions for starlikeness, Indian J. pure appl. Math., 33(3), 2002, 313-318.
[6] S. S. Miller, P.T. Mocanu, Differential Suordinations : Theory and Applications, Series on monographs and textbooks in pure and applied mathematics (No. 225), Marcel Dekker, New York and Basel, 2000.
[7] S. S. Miller, P. T. Mocanu, Differential subordination and Univalent functions, Michigan Math. J. 28, 1981, 157-171.
[8] M. Obradovic, N. Tuneski, On the Starlike Criteria Defined by Silverman, Zeszyty Nauk. Politech. Rzeszowskiej. Mat., 181(24), 2000, 59-64.
[9] M. Obradovic, S. B. Joshi, I. Jovanovic, On Certain sufficient Conditions for Starlikeness and Convexity, Indian J. pure appl. Math., 29(3), 1998, 271-275.
[10] K. S. Padmanabhan, On Sufficient conditions for starlikeness, Indian J. pure appl. Math., 32(4), 2001, 543-550.
[11] Ch. Pommerenke, Univalent Functions, Vanderhoeck and Ruprecht, Götingen, 1975.
[12] V. Ravichandran, Certain applications of first order differential subordination, Far East J. Math. Sci., 12(1), 2004, 41-51.
[13] V. Ravichandran, N. Magesh, R. Rajalakshmi, On Certain Applications of Differential Subordinations for ϕ-like Functions, Tamkang J. Math., 36(2), 2005, 137-142.
[14] V. Ravichandran, C. Selvaraj, R. Rajalaksmi, Sufficient Conditions for Starlike Functions of Order α, J. Inequal. Pure and Appl. Math. 3(5), 2002, 81, 1-6.
[15] V. Ravichandran, M. Darus, On a criteria for starlikeness, International Math. J., 4(2), 2003, 119-125.
[16] M. S. Robertson, Certain classes of starlike functions, Michigan Math.J., 32, 1985, 135-140.
[17] M. Ali Rosihan , V. Ravichandran, M. Hussain Khan, K. G. Subramanian, Differential Sandwich Theorems for Certain Analytic Functions, Far East J. Math. Sci. 15(1), 2004, 87-94.
[18] St. Ruscheweyh, A subordination theorem for ϕ-like functions, J. London Math. Soc., 2(13), 1976, 275-280.
[19] T. N. Shanmugam, S. Sivasubramanian, M. Darus, Subordination and Superordination Results for ϕ-like Functions, J. Inequal. Pure and Appl. Math., 8, 2007, 1, 1-6.
[20] H. Silverman, Convex and starlike criteria, Internat. J. Math. Sci. \& Math. Sci., 22(1), 1999, 75-79.
[21] S. Singh, S. Gupta, On Certain Differential Subordination and its Dominants, Bull. Belg. Math. Soc. 12, 2005, 259-274.
[22] S. Singh, S. Gupta, Some Applications of a First Order Differential Subordination, J. Inequal. Pure and Appl. Math. 5(3), 2004, 78, 1-15.
[23] V. Singh, N. Tuneski, On a Criteria for Starlikeness and Convexity of Analytic Functions, Acta Mathematica Scientia, 24, 2004, 597-602.
[24] V. Singh, On some criteria for univalence and starlikeness, Indian J. Pure. Appl. Math. 34(4), 2003, 569-577.
[25] H. M. Srivastava, A. A. Attiya, Some applications of differential subordination, Appl. Math. Letters, 20, 2007, 1142-1147.
[26] N. Tuneski, On the quotient of the representations of convexity and starlikeness, Math. Nachr., 248-249(1), 2003, 200-203.
[27] N. Tuneski, On a criteria for starlikeness of analytic functions, Integral Transforms and Special Functions, 14(3), 2003, 263-270.
[28] N. Tuneski, On certain sufficient conditions for starlikeness, Internat. J. Math. \& Math. Sci., 23(8), 2000, 521-527.
[29] N. Tuneski, On Some Simple Sufficient Conditions for Univalence, Mathematica Bohemica, 126(1), 2001, 229-236.

Sukhwinder Singh

Deaprtment of Applied Sciences
Baba Banda Singh Bahadur Engineering College
Fatehgarh Sahib-140 407 (Punjab) India
e-mail: ss_billing@yahoo.co.in

Sushma Gupta and Sukhjit Singh

Department of Mathematics
Sant Longowal Institute of Engineering \& Technology
Longowal-148 106 (Punjab) India
e-mail: sushmagupta1@yahoo.com, sukhjit_d@yahoo.com

[^0]: ${ }^{1}$ Received 04 December, 2008
 Accepted for publication (in revised form) 04 February, 2009

