Inclusion and neighborhood properties of some analytic p-valent functions ${ }^{1}$

R. M. El-Ashwah, M. K. Aouf

Abstract

By means of a certain extended derivative operator of Salagean type, the authors introduce and investigate two new subclasses of p-valently analytic function of complex ordor. The various results obtained here for each of these function classes include coefficient inqualities and the consequent inclusion relationships involving the neighborhoods of the p -valently analytic functions.

2000 Mathematics Subject Classification: 30C45.
Key words and phrases: Analytic function, p-valent function, Salagean derivative operator, neighborhood of analytic functions.

1 Introduction

Let $T(j, p)$ denote the class of functions of the form :

$$
\begin{equation*}
f(z)=z^{p}-\sum_{k=j+p}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geq 0 ; p, j \in N=\{1,2, \ldots\}\right), \tag{1}
\end{equation*}
$$

[^0]which are analytic and p-valent in the open unit disc $U=\{z:|z|<1\}$. For a function $f(z)$ in $T(j, p)$, we define
\[

$$
\begin{aligned}
D_{\lambda, p}^{0} f(z) & =f(z) \\
D_{\lambda, p}^{1} f(z) & =D_{\lambda, p}\left(D_{\lambda, p}^{0} f(z)\right)=(1-\lambda) f(z)+\frac{\lambda}{p} z f^{\prime}(z) \quad(\lambda \geq 0) \\
& =z^{p}-\sum_{k=j+p}^{\infty}\left[1+\lambda\left(\frac{k-p}{p}\right)\right] a_{k} z^{k} \\
D_{\lambda, p}^{2} f(z) & =D_{\lambda, p}\left(D_{\lambda, p}^{1} f(z)\right) \\
& =z^{p}-\sum_{k=j+p}^{\infty}\left[1+\lambda\left(\frac{k-p}{p}\right)\right]^{2} a_{k} z^{k}
\end{aligned}
$$
\]

and

$$
D_{\lambda, p}^{n} f(z)=D_{\lambda, p}\left(D_{\lambda, p}^{n-1} f(z)\right) \quad(n \in N)
$$

It can be easily seen that

$$
\begin{align*}
& D_{\lambda, p}^{n} f(z)=z^{p}-\sum_{k=j+p}^{\infty}\left[1+\lambda\left(\frac{k-p}{p}\right)\right]^{n} a_{k} z^{k} \tag{2}\\
& \left(p, j \in N ; n \in N_{0}=N \cup\{0\}\right) .
\end{align*}
$$

We note that :
(i) By taking $j=p=\lambda=1$, the differential operator $D_{1,1}^{n}=D^{n}$ was introduced by Salagean[11];
(ii) By taking $j=p=1$, the differential operator $D_{\lambda, 1}^{n}=D_{\lambda}^{n}$ was introduced by Al-Oboudi[1].

Now, making use of the differential operator $D_{\lambda, p}^{n} f(z)$ given by (2), we introduce a new subclass $H_{j}(n, p, \lambda, b, \beta)$ of the p-valent analytic function class $T(j, p)$ which consist of function $f(z) \in T(j, p)$ satisfying the following inequality :

$$
\begin{gather*}
\left|\frac{1}{b}\left(\frac{z\left(D_{\lambda, p}^{n} f(z)\right)^{\prime}}{D_{\lambda, p}^{n} f(z)}-p\right)\right|<\beta \tag{3}\\
\left(z \in U ; p, j \in N ; n \in N_{0} ; \lambda \geq 0 ; b \in C \backslash\{0\} ; 0<\beta \leq 1\right)
\end{gather*}
$$

We note that :
(i) $H_{j}(n, p, 1, b, \beta)=H_{j}(n, p, b, \beta)=\left\{f(z) \in T(j, p):\left|\frac{1}{b}\left(\frac{z\left(D_{p}^{n} f(z)\right)^{\prime}}{D_{p}^{n} f(z)}-p\right)\right|<\beta\right.$

$$
\begin{equation*}
\left.\left(z \in U ; p, j \in N ; n \in N_{0} ; b \in C \backslash\{0\} ; 0<\beta \leq 1\right)\right\} \tag{4}
\end{equation*}
$$

(ii) $H_{j}(0, p, 0, b, \beta)=S_{j}(p, b, \beta)=\left\{f(z) \in T(j, p):\left|\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-p\right)\right|<\beta\right.$

$$
\begin{equation*}
(z \in U ; p, j \in N ; b \in C \backslash\{0\} ; 0<\beta \leq 1)\} \tag{5}
\end{equation*}
$$

(iii) $H_{j}(1, p, \lambda, b, \beta)=C_{j}(p, \lambda, b, \beta)=\left\{f(z) \in T(j, p):\left|\frac{1}{b}\left(\frac{z F_{\lambda, p}^{\prime}(z)}{F_{\lambda, p}(z)}-p\right)\right|<\beta\right.$

$$
\begin{equation*}
\left.\left(z \in U ; p, j \in N ; \lambda \geq 0 ; b \in C \backslash\{0\} ; 0<\beta \leq 1 ; F_{\lambda, p}(z)=(1-\lambda) f(z)+\frac{\lambda}{p} z f^{\prime}(z)\right)\right\} \tag{6}
\end{equation*}
$$

Now following the earlier investigations by Goodman [7], Ruscheweyh [10], and others including Altintas and Owa [3], Altintas et al.([4] and [5]), Murugusundaramoorthy and Srivastava [8], Raina and Srivastava [9], Aouf [6] and Srivastava and Orhan [13] (see also [2], [12] and [14]), we define the (j, δ) - neighborhood of a function $f(z) \in T(j, p)$ by (see, for example, [5, p. 1668])
(7) $N_{j, \delta}(f)=\left\{g: g \in T(j, p), g(z)=z^{p}-\sum_{k=j+p}^{\infty} b_{k} z^{k}\right.$ and $\left.\sum_{k=j+p}^{\infty} k\left|a_{k}-b_{k}\right| \leq \delta\right\}$.

In particular, if

$$
\begin{equation*}
h(z)=z^{p} \quad(p \in N) \tag{8}
\end{equation*}
$$

we immediately have
(9) $\quad N_{j, \delta}(h)=\left\{g: g \in T(j, p), g(z)=z^{p}-\sum_{k=j+p}^{\infty} b_{k} z^{k}\right.$ and $\left.\sum_{k=j+p}^{\infty} k\left|b_{k}\right| \leq \delta\right\}$.

Also, let $L_{j}(n, p, \lambda, b, \beta, \mu)$ denote the subclass of $T(j, p)$ consisting of function $f(z) \in T(j, p)$ which satisfy the inequality :

$$
\left|\frac{1}{b}\left\{\left[(1-\mu) \frac{D_{\lambda, p}^{n} f(z)}{z^{p}}+\mu \frac{D_{\lambda, p}^{n} f^{\prime}(z)}{p z^{p-1}}\right]-1\right\}\right|<\beta
$$

$$
\begin{equation*}
\left(z \in U ; p, j \in N ; n \in N_{0} ; \lambda \geq 0 ; b \in C \backslash\{0\} ; 0<\beta \leq 1 ; \mu \geq 0\right) \tag{10}
\end{equation*}
$$

We note that :
(i) $L_{j}(0, p, 0, b, \beta, \mu)=L_{j}(p, b, \beta, \mu)$

$$
=\left\{f(z) \in T(j, p):\left|\frac{1}{b}\left\{\left[(1-\mu) \frac{f(z)}{z^{p}}+\mu \frac{f^{\prime}(z)}{p z^{p-1}}\right]-1\right\}\right|<\beta\right.
$$

$$
\begin{equation*}
(z \in U ; p, j \in N ; b \in C \backslash\{0\} ; 0<\beta \leq 1 ; \mu \geq 0\} \tag{11}
\end{equation*}
$$

2 Neighborhoods for the classes $H_{j}(n, p, \lambda, b, \beta)$ and

$$
L_{j}(n, p, \lambda, b, \beta, \mu)
$$

In our investigation of the inclution relations involving $N_{j, \delta}(h)$, we shall require Lemmas 1 and 2 below.

Lemma 1 Let the function $f(z) \in T(j, p)$ be defined by (1). Then $f(z) \in$ $H_{j}(n, p, \lambda, b, \beta)$ if and only if

$$
\begin{equation*}
\sum_{k=j+p}^{\infty}\left[1+\lambda\left(\frac{k-p}{p}\right)\right]^{n}(k+\beta|b|-p) a_{k} \leq \beta|b| \tag{12}
\end{equation*}
$$

Proof. Let a function $f(z)$ of the form (1) belong to the class $H_{j}(n, p, \lambda, b, \beta)$. Then, in view of (2) and (3), we obtain the following inequality :

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(D_{\lambda, p}^{n} f(z)\right)^{\prime}}{D_{\lambda, p}^{n} f(z)}-p\right\}>-\beta|b| \quad(z \in U) \tag{13}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{-\sum_{k=j+p}^{\infty}\left[1+\lambda\left(\frac{k-p}{p}\right)\right]^{n}(k-p) a_{k} z^{k-p}}{1-\sum_{k=j+p}^{\infty}\left[1+\lambda\left(\frac{k-p}{p}\right)\right]^{n} a_{k} z^{k-p}}\right\}>-\beta|b| \quad(z \in U) \tag{14}
\end{equation*}
$$

Setting $z=r(0 \leq r<1)$ in (14), we observe that the expression in the denominator of the left-hand side of (14) is positive for $r=0$ and also for all $r(0<r<1)$. Thus, by letting $r \rightarrow 1^{-}$through real values, (14) leads us to the desired assertion (12) of Lemma 1.

Conversaly, by applying the hypothesis (12) and letting $|z|=1$, we find from (3) that

$$
\begin{aligned}
\left|\frac{z\left(D_{\lambda, p}^{n} f(z)\right)^{\prime}}{D_{\lambda, p}^{n} f(z)}-p\right| & =\left|\frac{\sum_{k=j+p}^{\infty}\left[1+\lambda\left(\frac{k-p}{p}\right)\right]^{n}(k-p) a_{k} z^{k-p}}{1-\sum_{k=j+p}^{\infty}\left[1+\lambda\left(\frac{k-p}{p}\right)\right]^{n} a_{k} z^{k-p}}\right| \\
& \leq \frac{\sum_{k=j+p}^{\infty}\left[1+\lambda\left(\frac{k-p}{p}\right)\right]^{n}(k-p) a_{k}}{1-\sum_{k=j+p}^{\infty}\left[1+\lambda\left(\frac{k-p}{p}\right)\right]^{n} a_{k}} \\
& \leq \frac{\beta|b|\left\{1-\sum_{k=j+p}^{\infty}\left[1+\lambda\left(\frac{k-p}{p}\right)\right]^{n} a_{k}\right\}}{1-\sum_{k=j+p}^{\infty}\left[1+\lambda\left(\frac{k-p}{p}\right)\right]^{n} a_{k}}=\beta|b| .
\end{aligned}
$$

Hence, by the maximum modulus theorem, we have $f(z) \in H_{j}(n, p, \lambda, b, \beta)$, which evidently completes the proof of Lemma 1.

Similarly, we can prove the following lemma.
Lemma 2 Let the function $f(z) \in T(j, p)$ be defined by (1). Then $f(z) \in$ $L_{j}(n, p, \lambda, b, \beta, \mu)$ if and only if

$$
\begin{equation*}
\sum_{k=j+p}^{\infty}\left[1+\lambda\left(\frac{k-p}{p}\right)\right]^{n}[p+\mu(k-p)] a_{k} \leq p \beta|b| . \tag{15}
\end{equation*}
$$

Our first inclusion relation involving $N_{j, \delta}(h)$ is given in the following theorem.
Theorem 1 Let

$$
\begin{equation*}
\delta=\frac{(j+p) \beta|b|}{\left(1+\frac{\lambda j}{p}\right)^{n}(j+\beta|b|)} \quad(p>|b|), \tag{16}
\end{equation*}
$$

then

$$
\begin{equation*}
H_{j}(n, p, \lambda, b, \beta) \subset N_{j, \delta}(h) . \tag{17}
\end{equation*}
$$

Proof. Let $f(z) \in H_{j}(n, p, \lambda, b, \beta)$. Then, in view of the assertion (12) of Lemma 1, we have
$(18)\left(1+\frac{\lambda j}{p}\right)^{n}(j+\beta|b|) \sum_{k=j+p}^{\infty} a_{k} \leq \sum_{k=j+p}^{\infty}\left[1+\lambda\left(\frac{k-p}{p}\right)\right]^{n}(k+\beta|b|-p) a_{k} \leq \beta|b|$,
which readily yeilds

$$
\begin{equation*}
\sum_{k=j+p}^{\infty} a_{k} \leq \frac{\beta|b|}{\left(1+\frac{\lambda j}{p}\right)^{n}(j+\beta|b|)} . \tag{19}
\end{equation*}
$$

Making use of (12) again, in conjunction with (19), we get

$$
\begin{aligned}
\left(1+\frac{\lambda j}{p}\right)^{n} \sum_{k=j+p}^{\infty} k a_{k} & \leq \beta|b|+(p-\beta|b|)\left(1+\frac{\lambda j}{p}\right)^{n} \sum_{k=j+p}^{\infty} a_{k} \\
& \leq \beta|b|+\frac{\beta|b|(p-\beta|b|)}{(j+\beta|b|)}=\frac{(j+p) \beta|b|}{(j+\beta|b|)} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\sum_{k=j+p}^{\infty} k a_{k} \leq \frac{(j+p) \beta|b|}{\left(1+\frac{\lambda j}{p}\right)^{n}(j+\beta|b|)}=\delta \quad(p>|b|) \tag{20}
\end{equation*}
$$

which, by means of the definition (9), establishes the inclusion (17) asserted by Theorem 1.

Putting (i) $n=\lambda=0$ and (ii) $n=1$ in Theorem 1, we obtain the following results.

Corollary 1 Let

$$
\begin{equation*}
\delta=\frac{(j+p) \beta|b|}{(j+\beta|b|)} \quad(p>|b|), \tag{21}
\end{equation*}
$$

then

$$
\begin{equation*}
S_{j}(p, b, \beta) \subset N_{j, \delta}(h) . \tag{22}
\end{equation*}
$$

Corollary 2 Let

$$
\begin{equation*}
\delta=\frac{(j+p) p \beta|b|}{(p+\lambda j)(j+\beta|b|)} \quad(p>|b|) \tag{23}
\end{equation*}
$$

then

$$
\begin{equation*}
C_{j}(p, \lambda, b, \beta) \subset N_{j, \delta}(h) . \tag{24}
\end{equation*}
$$

In a similar manner, by applying the assertion (15) of Lemma 2 instead of the assertion (12) of Lemma 1 to functions in the class $L_{j}(n, p, \lambda, b, \beta, \mu)$, we can prove the following inclusion relationship.

Theorem 2 If

$$
\begin{equation*}
\delta=\frac{(j+p) p \beta|b|}{\left(1+\frac{\lambda j}{p}\right)^{n}(p+\mu j)} \quad(\mu>1), \tag{25}
\end{equation*}
$$

then

$$
\begin{equation*}
L_{j}(n, p, \lambda, b, \beta, \mu) \subset N_{j, \delta}(h) . \tag{26}
\end{equation*}
$$

Putting $n=\lambda=0$ in Theorem 2, we obtain the following result.

Corollary 3 If

$$
\begin{equation*}
\delta=\frac{(j+p) p \beta|b|}{(p+\mu j)}, \tag{27}
\end{equation*}
$$

then

$$
\begin{equation*}
L_{j}(p, b, \beta, \mu) \subset N_{j, \delta}(h) . \tag{28}
\end{equation*}
$$

3 Neighborhoods for the classes $H_{j}^{(\alpha)}(n, p, \lambda, b, \beta)$ and

$$
L_{j}^{(\alpha)}(n, p, \lambda, b, \beta, \mu)
$$

In this section, we determine the neighborhood for the each classes $H_{j}^{(\alpha)}(n, p, \lambda, b, \beta)$ and $L_{j}^{(\alpha)}(n, p, \lambda, b, \beta, \mu)$, which we define as follows. A function $f(z) \in T(j, p)$ is said to be in the class $H_{j}^{(\alpha)}(n, p, \lambda, b, \beta)$ if there exists a function $g(z) \in$ $H_{j}(n, p, \lambda, b, \beta)$ such that

$$
\begin{equation*}
\left|\frac{f(z)}{g(z)}-1\right|<p-\alpha \quad(z \in U ; 0 \leq \alpha<p) \tag{29}
\end{equation*}
$$

Analogously, a function $f(z) \in T(j, p)$ is said to be in the class $L_{j}^{(\alpha)}(n, p, \lambda, b, \beta, \mu)$ if there exists a function $g(z) \in L_{j}(n, p, \lambda, b, \beta, \mu)$ such that the inequality (29) holds true.

Theorem 3 If $g(z) \in H_{j}(n, p, \lambda, b, \beta)$ and

$$
\begin{equation*}
\alpha=p-\frac{\delta\left(1+\frac{\lambda j}{p}\right)^{n}(j+\beta|b|)}{(j+p)\left[\left(1+\frac{\lambda j}{p}\right)^{n}(j+\beta|b|)-\beta|b|\right]}, \tag{30}
\end{equation*}
$$

then

$$
\begin{equation*}
N_{j, \delta}(g) \subset H_{j}^{(\alpha)}(n, p, \lambda, b, \beta), \tag{31}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta \leq p(j+p)\left\{1-\beta|b|\left[\left(1+\frac{\lambda j}{p}\right)^{n}(j+\beta|b|)\right]^{-1}\right\} . \tag{32}
\end{equation*}
$$

Proof. Suppose that $f(z) \in N_{j, \delta}(g)$. We find from (7) that

$$
\begin{equation*}
\sum_{k=j+p}^{\infty} k\left|a_{k}-b_{k}\right| \leq \delta, \tag{33}
\end{equation*}
$$

which readily implies that

$$
\begin{equation*}
\sum_{k=j+p}^{\infty}\left|a_{k}-b_{k}\right| \leq \frac{\delta}{j+p} \quad(p, j \in N) \tag{34}
\end{equation*}
$$

Next, since $g(z) \in H_{j}(n, p, \lambda, b, \beta)$, we have [cf. equation (19)]

$$
\begin{equation*}
\sum_{k=j+p}^{\infty} b_{k} \leq \frac{\beta|b|}{\left(1+\frac{\lambda j}{p}\right)^{n}(j+\beta|b|)} \tag{35}
\end{equation*}
$$

so that
(36) $\left|\frac{f(z)}{g(z)}-1\right| \leq \frac{\sum_{k=j+p}^{\infty}\left|a_{k}-b_{k}\right|}{1-\sum_{k=j+p}^{\infty} b_{k}} \leq \frac{\delta}{j+p} \cdot \frac{\left(1+\frac{\lambda j}{p}\right)^{n}(j+\beta|b|)}{\left[\left(1+\frac{\lambda j}{p}\right)^{n}(j+\beta|b|)-\beta|b|\right]}$ $=p-\alpha$,
provided that α is given by (30). Thus, by the above definition, $f(z)$ $\in H_{j}^{(\alpha)}(n, p, \lambda, b, \beta)$ for α given by (30). This evidently proves Theorem 3.

Putting (i) $n=\lambda=0$ and (ii) $n=1$ in Theorem 3, we obtain the following results.

Corollary 4 If $g(z) \in S_{j}(p, b, \beta)$ and

$$
\begin{equation*}
\alpha=p-\frac{\delta(j+\beta|b|)}{(j+p)[(j+\beta|b|)-\beta|b|]}, \tag{37}
\end{equation*}
$$

then

$$
\begin{equation*}
N_{j, \delta}(g) \subset S_{j}^{(\alpha)}(p, b, \beta) \tag{38}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta \leq p(j+p)\left\{1-\beta|b|(j+\beta|b|)^{-1}\right\} \tag{39}
\end{equation*}
$$

Corollary 5 If $g(z) \in C_{j}(p, \lambda, b, \beta)$ and

$$
\begin{equation*}
\alpha=p-\frac{\delta(p+\lambda j)(j+\beta|b|)}{(j+p)[(p+\lambda j)(j+\beta|b|)-p \beta|b|]}, \tag{40}
\end{equation*}
$$

then

$$
N_{j, \delta}(g) \subset C_{j}^{(\alpha)}(p, \lambda, b, \beta),
$$

where

$$
\begin{equation*}
\delta \leq p(j+p)\left\{1-p \beta|b|[(p+\lambda j)(j+\beta|b|)]^{-1}\right\} . \tag{41}
\end{equation*}
$$

The proof of Theorem 4 below is similar to that the proof of Theorem 3 above. We, therefore, skip its proof.

Theorem 4 If $g(z) \in L_{j}(n, p, \lambda, b, \beta, \mu)$ and

$$
\begin{equation*}
\alpha=p-\frac{\delta\left(1+\frac{\lambda j}{p}\right)^{n}(p+\mu j)}{(j+p)\left[\left(1+\frac{\lambda j}{p}\right)^{n}(p+\mu j)-p \beta|b|\right]}, \tag{42}
\end{equation*}
$$

then

$$
\begin{equation*}
N_{j, \delta}(g) \subset L_{j}^{(\alpha)}(n, p, \lambda, b, \beta, \mu), \tag{43}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta \leq p(j+p)\left\{1-p \beta|b|\left[\left(1+\frac{\lambda j}{p}\right)^{n}(p+\mu j)\right]^{-1}\right\} . \tag{44}
\end{equation*}
$$

Putting $n=\lambda=0$ in Theorem 4, we obtain the following result.
Corollary 6 If $g(z) \in L_{j}(p, b, \beta, \mu)$ and

$$
\begin{equation*}
\alpha=p-\frac{\delta(p+\mu j)}{(j+p)[(p+\mu j)-p \beta|b|]}, \tag{45}
\end{equation*}
$$

then

$$
\begin{equation*}
N_{j, \delta}(g) \subset L_{j}^{(\alpha)}(p, b, \beta, \mu), \tag{46}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta \leq p(j+p)\left\{1-p \beta|b|(p+\mu j)^{-1}\right\} . \tag{47}
\end{equation*}
$$

References

[1] F. M. Al-Oboudi, On univalent functions defined by agereralized Salagean operator, Internat. J. Math. Math. Sci. 27, 2004, 1429-1436.
[2] O. P. Ahuja, M. Nunokawa, Neighborhoods of analytic functions defined by Ruscheweyh derivatives, Math. Japon. 51, 2003, 487-492.
[3] O. Altintas, S. Owa, Neighorhoods of certain analytic functions with negative coefficients, Internat. J. Math. Math. Sci. 19, 1996, 797-800.
[4] O. Altintas, O .Ozkan, H .M. Srivastava, Neighborhoods of class of analytic functions with negative coefficients, Appl. Math. Letters 13 (3), 2000, 63-67.
[5] O. Altintas, O. Ozkan, H. M. Srivastava, Neighborhoods of certain family of multivalent functions with negative coefficients, Comput, Math. Appl. 47, 2004, 1667-1673.
[6] M.K. Aouf, Neighborhoods of certain classes of analytic functions with negative coefficients, Internat. J. Math. Math. Sci., Art. ID 38258, 2006, 1-6.
[7] A. W. Goodman, Univalent functions and non-analytic curves, Proc. Amer. Math. Soc. 8, 1957, 598-601.
[8] G. Murugusundaramoorthy, H. M. Srivastava, Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math. 5 (2), 2004, Art. 24, 1-8.
[9] R. K. Raina, H. M. Srivastava, Inclusion and neighborhood properties of some analytic and multivalent functions, J. Inequal. Pure. Appl. Math. 7 (1), 2006, Art. 5, 1-6.
[10] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81, 1981, 521-527.
[11] G. S. Salagean, Subclasses of univalent function, Lecture Notes in Math. (Springer-Verlag) 1013, 1983, 368-372.
[12] H. Silverman, Neighborhoods of classes of analytic function, Far East J. Math. Sci. 3, 1995, 165-169.
[13] H. M. Srivastava, H. Orhan, Coefficient-inqualities and inclusion relation for some families of analytic and multivalent function, Appl. Math. Letters 20, 2007, 686-691.
[14] H. M. Srivastava, S. Owa, Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.

R. M. El-Ashwah

Mansoura University
Department of Mathematic
Mansoura 35516, Egypt
e-mail: elashwah@mans.edu.eg
M. K. Aouf

Mansoura University
Department of Mathematic
Mansoura 35516, Egypt
e-mail: mkaouf127@yahoo.com

[^0]: ${ }^{1}$ Received 14 July, 2008
 Accepted for publication (in revised form) 27 April, 2009

