
General Mathematics Vol. 18, No. 2 (2010), 185–199

On the degree of approximation by new Durrmeyer

type operators 1

Naokant Deo, Suresh P. Singh

Abstract

In this paper, we define a new kind of positive linear operators and

study basic properties as well as Voronovskaya type results. In the last

section of this paper we establish the error estimation for simultaneous

approximation in terms of higher order modulus of continuity by using

the technique of linear approximating method viz Steklov mean.
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1 Introduction

In the year 1957, Baskakov [1] introduced the following operators

(1) Bn(f, x) =
∞∑

k=0

bn,k(x)f
(

k

n

)
,
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where

bn,k(x) =
(

n + k − 1
k

)
xk

(1 + x)n+k
, x ∈ [0,∞).

Important modifications had been studied by Sahai & Prasad [14] and

Heilmann [9] on Baskakov operators after these milestone modifications, var-

ious researchers have given different type modification of Baskakov operators

and studied several good results. Now we are giving another modification of

Baskakov operators:

(2) Vn (f, x) =
∞∑

k=0

pn,k(x)f
(

k

n + 1

)
,

where

pn,k(x) =
(

n

n + 1

)n+1

 n + k

k


 xk

(
1− 1

n+1 + x
)n+k+1

and Durrmeyer variants of these operators are:

(3) Dn (f, x) = (n + 1)
∞∑

k=0

pn,k(x)
∫ ∞

0
pn,k(t)f(t)dt.

Let Cγ [0,∞) = {f ∈ C [0,∞) : |f(x)| ≤ Mtγ , for some γ > 0} we define

the norm ‖.‖ on Cγ [0,∞) by

‖f‖γ = sup
0≤t<∞

|f(t)| t−γ

We note that the order of approximation by these operators (3) is at best

O
(
n−1

)
, howsoever smooth the function may be. Thus to improve the or-

der of approximation, we consider May [13] type linear combination of the

operators (3) as described below:

For d0, d1, d2, ..., dk arbitrary but fixed distinct positive integers, the lin-

ear combination Dn

(
f,

(
d0, d1, d2, ..., dk

)
, x

)
of Ddjn(f, x), j = 0, 1, 2, ..., k are

defined as:

Dn (f, (d0, d1, d2, ..., dk) , x) =
k∑

j=0

C(j, k)Ddjn(f, x),
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where

C(j, k) =
k∏

i=0
i 6=j

dj

dj − di
for k 6= 0 and C(0, 0) = 1.

Very recently Deo et al. [4] have studied new Bernstein type operators

and established a Voronovskaya type asymptotic formula and an estimate of

error in terms of modulus of continuity in simultaneous approximation for the

linear combinations. In [5], Deo and Singh have given some theorems on the

approximation of the r-th derivative of a function f by the same operators.

Deo [3] has studied Voronovskaya type result for Lupaş type operators and

he [2] has also given iterative combinations of Baskakov operator.

In the present paper, we study some ordinary approximation results in-

cluding Voronovskaya type results. At the end of this paper we obtain an

estimate of error in terms of higher order modulus of continuity in simultane-

ous approximation for the linear combination of the operators (3).

2 Properties and Basic Results

In this section we write some basic results to prove our theorem.

Lemma 1 For n ≥ 1 one obtains,

Vn (1, x) = 1

Vn (t, x) =
(

1 +
1
n

)
x

Vn

(
t2, x

)
=

(
1 +

3
n

+
2
n2

)
x2 +

x

n

Lemma 2 For m ∈ N0 (the set of non-negative integers), the m-th order

moment of the operator is defined as

Un,m(x) =
∞∑

k=0

pn,k(x)
(

k

n + 1
− x

)m

.
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Consequently, Un,0(x) = 1 and Un,1(x) = x/n. There holds the recurrence

relation

nUn,m+1(x) = x

(
1− 1

n + 1
+ x

) [
U
′
n,m(x) + mUn,m−1(x)

]
+ xUn,m(x)

Proof. It is easily observed that

(4) x

(
1− 1

n + 1
+ x

)
p′n,k(x) =

[
nk

n + 1
− (n + 1)x

]
pn,k(x).

Hence the result. Thus

(i) Un,m(x) is a polynomial in x of degree ≤ m;

(ii) For every x ∈ [0,∞) , Un,m(x) = O
(
n−[m+1

2 ]
)

, where bαc denotes the

integral part of α.

Lemma 3 Let the m-th order moment be defined by

Tn,m(x) = (n + 1)
∞∑

k=0

pn,k(x)
∫ ∞

0
pn,k(t)(t− x)mdt

then

(5) Tn,0(x) = 1, Tn,1(x) =
n(1 + 2x) + 2x

n2 − 1
, n > 1,

(6) Tn,2(x) =
2

(
n2 + 4x2 + 4nx + 3n2x + 7nx2 + 2n2x2 − n3x− n3x2

)

(n + 1)(n2 − 1)(n− 2)

and

(n−m− 1)Tn,m+1(x) = (m + 1)
(

1− 1
n + 1

+ 2x

)
Tn,m(x)

(7)

+ x

(
1− 1

n + 1
+ x

) [
T ′n,m(x) + 2mTn,m−1(x)

]
.

Further, for all x ∈ [0,∞)

(8) Tn,m(x) = O

(
n
−
h

(m+1)
2

i)
.
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Proof. We can easily obtain (5) and (6) by using the definition of Tn,m(x).

For the proof of (7), we proceed as follows. First

x

(
1− 1

n + 1
+ x

)
T ′n,m(x)

= x

(
1− 1

n + 1
+ x

)
(n + 1)

∞∑

k=0

p′n,k(x)
∫ ∞

0
pn,k(t)(t− x)mdt

−mx

(
1− 1

n + 1
+ x

)
Tn,m−1(x).

Now, using inequality (4) two times, then we get

x

(
1− 1

n + 1
+ x

) [
T ′n,m(x) + mTn,m−1(x)

]

= (n + 1)
∞∑

k=0

[
nk

n + 1
− (n + 1)x

]
pn,k(x)

∫ ∞

0
pn,k(t)(t− x)mdt

=(n+1)
∞∑

k=0

pn,k(x)
∫ ∞

0

[
nk

n+1
−(n+1)t

]
pn,k(t)(t−x)mdt+(n+1)Tn,m+1(x)

=(n+1)
∞∑

k=0

pn,k(x)
∫ ∞

0
t

(
1− 1

n+1
+t

)
p′n,k(t)(t−x)mdt+(n+1)Tn,m+1(x)

=(n+1)
∞∑

k=0

pn,k(x)
∫ ∞

0

[(
1− 1

n+1
+2x

)
(t−x)+(t−x)2+x

(
1− 1

n+1
+x

)]

.p′n,k(t)(t− x)mdt + (n + 1)Tn,m+1(x)

= −(m + 1)
(

1− 1
n + 1

+ 2x

)
Tn,m(x) + (n−m− 1)Tn,m+1(x)

−mx

(
1− 1

n + 1
+ x

)
Tn,m−1(x).

This leads to (7). The proof of (8) easily follow from (5) and (7).

Lemma 4 There exists the polynomials qi,j,r(x) independent of n and k such

that

xr

(
1− 1

n + 1
+ x

)r dr

dxr
pn,k(x) =

∑
2i+j≤r
i,j≥0

(n+1)i{k − (n + 1)x}jφi,j,r(x)pn,k(x).
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The proof of this lemma proceeds exactly on the lines of that of a results by

Lorentz [12, p. 26].

Lemma 5 Let f be r times differentiable on [0,∞) such that f (r−1) = O (tα),

for some α > 0 as t →∞ then for r = 1, 2, 3, ... and n > α + r, we have

(9) D(r)
n (f, x) =

(n + 1)(n− r)!(n + r)!
(n!)2

∞∑

k=0

pn+r,k(x)
∫ ∞

0
pn−r,k+r(t)f(t)dt

Proof. We have by Leibnitz theorem

D(r)
n (f, x)

=(n+1)
(

n

n+1

)n+1 r∑

i=0

∞∑

k=i


 r

i


 (−1)r−i (n+k+r−i)

n!(k−i)!
xk−i

(
1− 1

n+1 +x
)n+k+r+1−i

.

∫ ∞

0
pn,k(t)f(t)dt

=
(n+1)(n+r)!

n!

(
n+1

n

)r ∞∑

k=0

r∑

i=0


 r

i


 (−1)r−ipn+r,k(x)

∫ ∞

0
pn,k+i(t)f(t)dt

=
(n + 1)(n + r)!

n!

(
n + 1

n

)r ∞∑

k=0

pn+r,k(x)
∫ ∞

0

r∑

i=0

(−1)r−i


 r

i


 pn,k+i(t)f(t)dt

Again applying Leibnitz theorem

p
(r)
n−r,k+r(t) =

r∑

i=0

(
n + 1

n

)r n!
(n− r)!

(−1)i


 r

i


 pn,k+i(t)

D(r)
n (f, x) =

(n + 1)(n− r)!(n + r)!
(n!)2

∞∑

k=0

pn+r,k(x)
∫ ∞

0
(−1)rp

(r)
n−r,k+r(t)f(t)dt.

Further integrating by parts r times, we get the required result.
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Lemma 6 Let f ∈ Cγ [0,∞) , if f (2k+r+2) exists at a point x ∈ Cγ [0,∞),

then

lim
n→∞nk+1

[
D(r)

n

(
f
(
d0, d1, d2, ..., dk

)
, x

)− f (r)(x)
]

=
2k+r+2∑

i=r

Q(i, k, r, x)f (i)(x),

where Q(i, k, r, x) are certain polynomials in x.

The proof of the above Lemma follows easily along the lines of [8, 11].

3 Voronovskaya Type Results

Theorem 1 If a function f is such that its first and second order derivatives

are bounded in [0,∞), then

(10) lim
n→∞(n + 1) {Dn(f, x)− f(x)} = f ′(x)(1 + 2x)− x(1 + x)f ′′(x)

Proof. Using Taylor’s theorem we write that

(11) f(t)− f(x) = (t− x)f ′(x) +
(t− x)2

2!
f ′′(x) +

(t− x)2

2!
η(t, x),

where η(t, x) is a bounded function ∀t, x and lim
t→x

η(t, x) = 0. Now applying (3)

and (11), we get

Dn(f, x)− f(x) = f ′(x)Dn(t− x, x) +
f ′′(x)

2
Dn

(
(t− x)2, x

)
+ I1

where

I1 =
1
2
Dn

(
(t− x)2η(t, x), x

)
.

Using (5) and (6), we get

Dn(f, x)− f(x) = f ′(x)Tn,1(x) +
f ′′(x)

2
Tn,2(x) + I1

= f ′(x)
{

n(1 + 2x) + 2x
n2 − 1

}

+ f ′′(x)
{

n2 + 4x2 + 4nx + 3n2x + 7nx2 + 2n2x2 − n3x− n3x2

(n + 1)(n2 − 1)(n− 2)

}
+ I1,
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therefore

(n + 1) {Dn(f, x)− f(x)} = f ′(x)
{

n(1 + 2x) + 2x

n− 1

}

+ f ′′(x)

{(
4x2 + nx(4 + 7x) + n2(1 + 3x + 2x2)− n3x(1 + x)

)

(n2 − 1)(n− 2)

}
+ (n + 1)I1.

Now, we have to show that as n →∞, the value of (n + 1)I1 → 0. Let ε > 0

be given since η(t, x) → 0 as t → 0, then there exists δ > 0 such that when

|t− x| < δ we have |η(t, x)| < ε and when |t− x| ≥ δ, we write

|η(t, x)| ≤ M < M
(t− x)2

δ2
.

Thus, for all t, x ∈ [0,∞)

|η(t, x)| ≤ ε + M
(t− x)2

δ2

(n + 1)I1 ≤ (n + 1)Dn

(
(t− x)2

(
ε +

M(t− x)2

δ2

)
, x

)

≤ ε(n + 1)Dn

(
(t− x)2, x

)
+

M

δ2
(n + 1)Dn

(
(t− x)4, x

)

Using (6) and (8), we see that,

(n + 1)I1 → 0 as n →∞.

This leads to (10).

Corollary 1 We can also get the following result:

(12) lim
n→∞(n− 1) {Dn(f, x)− f(x)} = f ′(x)(1 + 2x)− x(1 + x)f ′′(x)

Theorem 2 If g ∈ C2
B [0,∞) then we have

(13) |Dn(g, x)− g(x)| ≤ λn(x) ‖g‖C2
B

where

λn(x) =
n(1 + 2x) + 2x

n2 − 1
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Proof. We write that

(14) g(t)g(x) = (t− x)g′(x) +
1
2
(t− x)2g′′(ξ)

where t ≤ ξ ≤ x. Now applying (3) on (13)

|Dn(g, x)− g(x)|

≤ ∥∥g′
∥∥ |Dn((t− x), x)|+ 1

2

∣∣g′′∣∣ ∣∣Dn((t− x)2, x)
∣∣

≤ n(1 + 2x) + 2x

n2 − 1

∥∥g′
∥∥

+
{

n2 + 4x2 + 4nx + 3n2x + 7nx2 + 2n2x2 − n3x− n3x2

(n + 1)(n2 − 1)(n− 2)

}∥∥g′′
∥∥

≤ λn(x)
{∥∥g′

∥∥ +
∥∥g′′

∥∥} ≤ λn(x) ‖g‖C2
B

Theorem 3 For f ∈ CB [0,∞), we obtain

(15) |Dn(f, x)− f(x)| ≤ A

{
ω2

(
f,

√
λn(x)
2

)
+ min

(
1,

λn(x)
2

)
‖f‖CB

}
,

where constant A depends on f and λn(x).

Proof. for f ∈ CB [0,∞) and g ∈ C2
B [0,∞) we write

Dn(f, x)− f(x) = Dn(f, x)−Dn(g, x) + Dn(g, x)− g(x) + g(x)− f(x)

by using (13) and Peetre K−functions, we get

|Dn(f, x)− f(x)| = |Dn(f, x)−Dn(g, x)|+ |Dn(g, x)− g(x)|+ |g(x)− f(x)|

≤ ‖Dnf‖ ‖f − g‖+ λn(x) ‖g‖C2
B

+ ‖f − g‖

≤ 2 ‖f − g‖+ λn(x) ‖g‖C2
B

≤ 2
{
‖f − g‖+

1
2
λn(x) ‖g‖C2

B

}
≤ 2K

{
f ;

1
2
λn(x)

}

≤ 2A

{
ω2

(
f,

1
2

√
λn(x)

)
+ min

(
1,

1
2
λn(x)

)
‖f‖CB

}
.

This complete the proof.
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4 Rate of Convergence

Definition 1 Let us suppose that 0 < a < a1 < b3 < b1 < b < ∞, for suffi-

ciently small δ > 0, the (2k+2)-th order Steklov mean f2k+2,δ(t) corresponding

to f(t) ∈ Cγ [0,∞) is defined by

(16) f2k+2,δ(t) = δ−(2k+2)

∫ δ/2

−δ/2

∫ δ/2

−δ/2
...

∫ δ/2

−δ/2

{
f(x)−∆2k+2

η f(t)
} 2k+2∏

i=1

dti,

where

η =
1

2k + 2

2k+2∑

i=1

ti and t ∈ [a, b] .

It is easily checked (see e.g. [6, 10]) that

(i) f2k+2,δ has continuous derivatives up to order (2k + 2) on [a, b];

(ii)
∥∥f

(r)
2k+2,δ

∥∥
C[a1,b1]

≤ M1δ
−rωr(f, δ, a, b), r = 1, 2, ..., (2k + 2);

(iii)
∥∥f − f2k+2,δ

∥∥
C[a1,b1]

≤ M2ω2k+2(f, δ, a, b);

(iv)
∥∥f2k+2,δ

∥∥
C[a1,b1]

≤ M3

∥∥f
∥∥

γ
,

where M
′
is, i = 1, 2, 3, are certain unrelated constants independent of f and δ.

Theorem 4 For f (r) ∈ Cγ [0,∞) and 0 < a < a1 < b1 < b < ∞. Then for n

sufficiently large

∥∥∥D(r)
n (f, (d0, d1, d2, ..., dk), .)− f (r)

∥∥∥
C[a1,b1]

≤ max
{

C1ω2k+2

(
f (r), n−1/2, a, b

)
, C2n

−(k+1) ‖f‖γ

}
,

where constant C1 = C1(k, r) and C2 = C2(k, r, f).
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Proof. By linearity property
∥∥∥D(r)

n (f, ((d0, d1, d2, ..., dk)) , .)
∥∥∥

C[a1,b1]

≤
∥∥∥D(r)

n ((f − f2k+2,δ) , (d0, d1, d2, ..., dk) , .)
∥∥∥

C[a1,b1]

+
∥∥∥D(r)

n (f2k+2,δ, (d0, d1, d2, ..., dk) , .)− f
(r)
2k+2,δ

∥∥∥
C[a1,b1]

+
∥∥∥f (r) − f

(r)
2k+2,δ

∥∥∥
C[a1,b1]

= E1 + E2 + E3, say.

Since, f
(r)
2k+2,δ(t) =

(
f (r)

)
2k+2,δ

(t), by property (iii) of Steklov mean, we have

E3 ≤ C1ω2k+2

(
f

(r)
, δ, a, b

)

Next by Lemma 6, we get

E2 ≤ C2n
−(k+1)

2k+r+2∑

j=r

∥∥∥f
(j)
2k+2,δ

∥∥∥
C[a,b]

.

By applying the interpolation property due to Goldberg and Meir [7] for each

j = r, r + 1, ..., 2k + r + 2, we have
∥∥∥f

(j)
2k+2,δ

∥∥∥
C[a,b]

≤ C3

{
‖f2k+2,δ‖C[a,b] +

∥∥∥f
(2k+r+2)
2k+2,δ

∥∥∥
C[a,b]

}
.

Therefore, by applying properties (ii) and (iv) of Steklov mean, we get

E2 ≤ C4n
−(k+1)

{
‖f‖γ + δ−(2k+2)ω2k+2

(
f (r), δ

)}
.

Finally, we shall estimate E1, choosing a∗, b∗ satisfying the condition 0 < a <

a∗ < a1 < b1 < b∗ < b < ∞. Also let ψ(t) denotes the characteristic function

of the interval [a∗, b∗], then

E1 ≤
∥∥∥D(r)

n (ψ(t) (f(t)− f2k+2,δ(t)) (d0, d1, d2, ..., dk) , .)
∥∥∥

C[a1,b1]

+
∥∥∥D(r)

n ((1− ψ(t)) (f(t)− f2k+2,δ(t)) (d0, d1, d2, ..., dk) , .)
∥∥∥

C[a1,b1]

= E4 + E5, say.



196 N. Deo, S. P. Singh

We may note here that to estimate E4 and E5, it is enough to consider their

expressions without the linear combinations. By Lemma 5, we have

D(r)
n (ψ(t) (f(t)− f2k+2,δ(t)) , x) =

(n + 1)(n− r)!(n + r)!
(n!)2

∞∑

k=0

pn+r,k(x)

.

∫ ∞

0
pn−r,k+r(t)ψ(t)

(
f (r)(t)− f

(r)
2k+2,δ(t)

)
dt.

Hence

∥∥∥D(r)
n (ψ(t) (f(t)− f2k+2,δ(t)) , k, .)

∥∥∥
[a1,b1]

≤ C5

∥∥∥f (r) − f
(r)
2k+2,δ

∥∥∥
[a∗,b∗]

Now for x ∈ [a1, b1] and t ∈ [0,∞)/[a∗, b∗], we can choose a δ1 > 0 satisfying

|t− x| ≥ δ1. Therefore, by Lemma 4 and Schwarz inequality, we have

I ≡
∣∣∣D(r)

n ((1− ψ(t)) (f(t)− f2k+2,δ(t)) , x)
∣∣∣

≤ (n + 1)
∑

2i+j≤r
i,j≥0

ni |φi,j,r(x)|
xr

(
1− 1

n+1 + x
)r

∞∑

k=0

pn,k(x)|k − (n + 1)x|j

.

∫ ∞

0
pn,k(t) (1− ψ(t)) |f(t)− f2k+2,δ(t)|dt

≤ C6‖f‖γ(n + 1)
∑

2i+j≤r
i,j≥0

ni
∞∑

k=0

pn,k(x)|k − (n + 1)x|j
∫

|t−x|≥δ1

pn,k(t)dt

≤ C6δ
−2s
1 ‖f‖γ(n + 1)

∑
2i+j≤r
i,j≥0

ni
∞∑

k=0

pn,k(x)|k − (n + 1)x|j

.

(∫ ∞

0
pn,k(t)dt

)1/2 (∫ ∞

0
pn,k(t)(t− x)4sdt

)1/2

≤ C6δ
−2s
1 ‖f‖γ

∑
2i+j≤r
i,j≥0

ni

{ ∞∑

k=0

pn,k(x) {k − (n + 1)x}2j

}1/2

.

{
(n + 1)

∞∑

k=0

pn,k(x)
∫ ∞

0
pn,k(t)(t− x)4sdt

}1/2
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Hence by Lemma 2 and Lemma 3, we have

I ≤ C7 ‖f‖γ

∑
2i+j≤r
i,j≥0

δ−2m
1 O

(
n(i+ j

2
−s)

)
≤ C7n

−q ‖f‖γ

where q = (s− r/2). Now choose s > 0 such that q ≥ k + 1. Now we obtain

I ≤ C7n
−(k+1) ‖f‖γ .

Therefore by property (iii) of Steklov mean, we get

E1 ≤ C8

∥∥∥f (r) − f
(r)
2k+2,δ

∥∥∥
C[a∗,b∗]

+ C7n
−(k+1) ‖f‖γ

≤ C9ω2k+2

(
f (r), δ, a, b

)
+ C7n

−(k+1) ‖f‖γ .

Choosing δ = n−1/2, the theorem follows.
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