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Meromorphic functions concerning their differential
polynomials sharing the fixed-points with finite
weight !

Hong-Yan Xu, Ting-Bin Cao and Tang-Sen Zhan

Abstract

This paper deals with some uniqueness problems of meromorphic
functions concerning their differential polynomials sharing the fixed-points
or a small function with finite weight. These results in this paper greatly
improve the recent results given by X.-Y. Zhang& J.-F. Chen and W.C.
Lin[X.-Y. Zhang, J.-F. Chen, W.C. Lin , Entire or meromorphic functions
sharing one value, Comput. Math. Appl. 56(2008), 1876-1883.].
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1 Introduction and Main Results

Let f be a non-constant meromorphic function in the whole complex plane.
We shall use following standard notations of the value distribution theory:

T(Ta f),m(r, f),N(’I“, f),N(T, f), -

(see Hayman [6],Yang [17] and Yi and Yang[14]). We denote by S(r, f) any
quantity satisfying S(r, f) = o(T'(r, f)), as r — +00, possibly outside of a set
with finite measure. A meromorphic function « is called a small function with
respect to f if T'(r, ) = S(r, f). Let S(f) be the set of meromorphic functions
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in the complex plane C which are small functions with respect to f.For some

Let f and g be two nonconstant meromorphic functions defined in the open
complex plane C.If for some a € S(f) N S(g) the roots of f —«a and g — «
coincide in locations and multiplicities we say that f and g share the value «
CM (counting multiplicities) and if coincide in locations only we say that f
and g share a IM (ignoring multiplicities).

For a € CU oo and k a positive integer. We denote by N(r,a; f| = 1)
the counting function of simple a-points of f, denote by N(r,a;f| < k)
(N(r,a; f| > k)) the counting functions of those a-points of f whose multi-
plicities are not greater (less) than k& where each a-point is counted according
to its multiplicity(see [6]). N(r,a; f| < k)(N(r,a; f| > k)) are defined sim-
ilarly, where in counting the a-points of f we ignore the multiplicities. Set
Ni(r,a; f) = N(r,a; f) + N(r,a; f| > 2) + -+ N(r,a; f > k).

In 1997, Yang and Hua [13] proved the following result.

Theorem A[13] Let f and g be two nonconstant meromorphic functions,
n > 11 an integer, and a € C — {0}. If f"f" and g"g" share the value a
CM, then either f = dg for some (n + 1)th root of unity d or g = c1e®* and

f = cae™ where ¢, c1, and co are constants satisfying (cic2)" e = —a®.

W.C.Lin and H.X.Yi [10] obtained some unicity theorems corresponding
to Theorem A.

Theorem B[10] Let f and g be two nonconstant meromorphic functions sat-
isfying ©(c0, ) > =27, n > 12. I [f*(f = D]’ and [¢"(9—1)g’ share 1 CM,
then f = g.

W.C.Lin and H.X.Yi [11] extended Theorem B by replacing the value 1
with the function z and obtained the following result.

Theorem C[11] Let f and g be two transcendental meromorphic functions,

n > 12 an integer. If f"(f —1)f" and g"(g — 1)g’ share z CM, then either
_pntl h(1—hpnt1 .

f=gorg= % and f = %, where h is a nonconstant

meromorphic function.

Recently, Xiao-Yu Zhang, Jun-Fan Chen and Wei-Chuan Lin[18] extended
Theorem F and G and obtained the following result.

Theorem D[18]|Let f and g be two nonconstant meromorphic functions, and
let n and m be two positive integers with n > max{m + 10,3m + 3}, and let
P(2) = amz™ 4+ am_12" " 4 - +ar1z+ag, where ag # 0,a1, ..., am_1,0m # 0
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are complex constants. If f*P(f)f" and g"P(g)g" share 1 CM, then either
f = tg for a constant t such that t* =1, where d = (n+m+1,....,n+m +
1—d4,....n+1),am—; # 0 for some i = 0,1,...,m, or f and g satisfy the
algebraic equation R(f,g) = 0, whlere R(wi,ws) = w?(:fnfj_l + amnﬁ; - +
o ) — W (i R ).

Recent years, 1. Lahiri[7,8] and A.Banerjee[1,2] employ the idea of weighted
sharing of values which measures how close a shared value is to being shared
IM or to being shared CM. Many interesting results[3,4,7,8,12,14,15] were
obtained by many mathematicians such as H.X. Yi, I. Lahiri, A.Banerjee,
W.C. Lin, X.M.Li and so on.

In 2008, A.Banerjee [2] employed the idea of weighted sharing of values
and obtained the following result which improved Theorem A.

Theorem E[2] Let f and g be two nonconstant meromorphic functions and
n > 22 — [50(oco; ) + 5O(o0; g) + min{@(oo f),0(c0;9)}], is an integer. If
for any a € C -0, E2 (a; [ ') = Eogy(a; g™g") the conclusion of Theorem A
holds.

Regarding Theorem C,D and E, it is natural to ask the following questions.

Question 1.1 Is it possible that the value 1 can be replaced by a function z
or a small function in Theorems D and E?

Question 1.2 s it possible to relax the nature of sharing z or a small function
in Theorem C and D and if possible, how far?

In this paper we shall investigate the possible solutions of the above ques-
tions. We now state the following theorems which are the main results of the

paper.

Theorem 1.1 Let f and g be two transcendental meromorphic functions, and
let n and m be two positive integers with n > max{m + 10 — (20(oc; f) +
20(00; 9)),3m+ 1}, and let P(z) = a;n2™ + apm_12™ 1+ - -4+ a12 + ag, where
ap # 0,a1,...,am-1,am # 0 are complex constants. If f"P(f)f" and g"P(g)g’
share z CM, then either f = tg for a constant t such that t* = 1, where
d=mn+m+1,....n4+m+1—i,...,n+1),am—; # 0 for somei=0,1,...,m,
or f and g satisfy the algebraic equation R(f,g) = 0, where R(wl,wg)

m—1 -1
ny amwl® A —1W7 o ag \ _, n( amwi Am—1ws' )
Wy (n+m+1 + n+m + + n+1) ) (n+m+1 + n+m +- n+1)

Theorem 1.2 Let f and g be two transcendental meromorphic functions, and
let n,1 and m be three positive integers with n > max{3m + 2 — 2(0(c0; g) +
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©(00; f)—3 min{O©(00; g), O( 00, 1)}, 3m1}. I Ey (2, f"P(f)f') = Eiy(2,9"P
(9)g") and El (z, ["P(f)f') = Evy(2,9"P(9)g"), where [ > 3, then the conclu-
sion of Theorem 1.1 holds.

Theorem 1.3 Let f and g be two transcendental meromorphic functions, and
let n,1 and m be three positive integers with n > max{m + 10 — (20(c0; f) +
26(003 9)),3m+1}. If By (= f"P(f)f) = Eyy(z,g"P(g)g') and Bz, {"P(f)
f') = Ey(2,9"P(g)g'), where l > 4, then the conclusion of Theorem 1.1 holds.

Remark 1.1 From Theorem 1.1 and 1.3, we can get the same conclusion
under the condition of F1,G1 sharing z CM or Ey(z, F1) = FEy)(2,G1) and
Ey) (2, 1) = Ey)(2,G1), where F1 = f"P(f)f',G1 = g"P(g)d’

Though the standard definitions and notations of the value distribution
theory are available in[6], we explain some definitions and notations which are
used in the paper.

Definition 1.1 [2] Let k and r be two positive integers such that 1 <r < k-1
and for a € C, Ey(a; f) = Eyy(a;g), Ey(a; f) = Eyy(a;g). Let 29 be a zero
of f — a of multiplicity p and a zero of g — a of multiplicity q. We denote

by Ni(r,a; f)(NL(r,a;g)) the reduced counting function of those a-points of
f and g for whichp >q>r+1(¢g>p>r+1), by Ng“(r, a; f) the reduced
counting function of those a-points of f and g for which p = q > r+ 1, by

Nysp1(r,a; flg # a)(Ng>k+1(r,a; g|f # a)) the reduced counting functions of
those a-points of f and g for whichp > k+1 andq=0(q>k+1 andp=0).

Definition 1.2 [2] If r = 0 in definition 1.1 then we use the same notations
as in definition 1.5 except by NB (r,a; f) we mean the common simple a-points

of f and g and by Ng(r, a; ) we mean the reduced counting functions of those
a-points of f and g for which p =q > 2.

Definition 1.3 [8] Let a,b € C U {o0}, We denote by N(r,a; flg = b) the
counting function of those a—points of f, counted according to multiplicity,
which are b-points of g; by N(r,a; flg # b) the counting function of those a-
points of f, counted according to multiplicity, which are not the b-points of

g.

2 Some Lemmas

For the proof of our results we need the following lemmas.
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Lemma 2.1 [16] Let f be a nonconstant meromorphic function and P(f) =
ag+arfH+asfi+---+anf", where ag,ay,as,- - ,a, are constants and a, # 0.
Then

T(r, P(f)) = nT(r, f) + S(r, [).

Lemma 2.2 [9] If N(r,0; f®)|f # 0) denotes the counting function of those
zeros of ) which are not the zeros of f, where a zero of f%*) is counted
according to its multiplicity then

N(r,0; f®)|f £ 0) < kN (r,00; f) + N(r,0; f| < k) +kN(r,0; f| > k) +S(r, f).

Lemma 2.3 [5] Let F' and G be two meromorphic functions. If F and G
share 1 C'M, one of the following three cases holds:

(i) T(r, F') < Na(r,00, F')+Na(r, 00, G)+Na(r,0, F)+Na(r,0, G)+S(r, F)+
S(r,G), the same inequality holding for T(r,G);

(ii)) F = G;

(iii) F -G = 1.

Lemma 2.4 [2] Let F, G be two nonconstant meromorphic functions such that

Ey(1;F) = Byy(1; F) and H # 0. Then

N (r,1; F) < N(r,00; H) + S(r, F) + S(r, G),

where H = (FT/,I — 1?“}:/1) — (%,/ — szll)
Lemma 2.5 [2] Let Ejy(L; F) = Ey(1;G), Ey(L; F) = Ey(1;G) and H # 0,
where | > 3. Then

N(r,o0; H)

< N(r,0;F| >2)+ N(r,0;G| > 2) + N(r,00; F| > 2) + N(r,00; G| > 2)
+NL(T7 1; F) +NL(T7 1; G) + NFZ[.H(T, 1; F|G 7é 1)
—f—NGZH_l(’F, 1; G’F 75 1) + No(r, 0; F/) -I-ND(T, 0; G,),

where No(r,0; F') is the reduced counting function of those zeros of F'" which
are not the zeros of F(F — 1) and No(r,0; G") is similarly defined.

Lemma 2.6 [2] Let Eq)(1; F) = Eq)(1;G) and H # 0. Then

N(r,00; H)

< N(r,0;F| >2)+ N(r,0;G| > 2) + N(r,00; F| > 2) + N(r,00; G| > 2)
+NL(r, 1, F) + Nr(r,1;G) + Np>3(r, 1, FIG # 1)
+Ng>3(r, 1;G|F # 1) + No(r,0; F') + No(r,0; G').
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Lemma 2.7 [2] Let E})(1; F) = Ey(1;G) and Eyy(1; F) = Eyy(1;G) and H #
0, where l > 3. Then

ONL(r,1;F) + 2N (r,1;G) + No(r, 1; F)

+HING141(r, L; GIF # 1) = Npso(r, 1;G)

N(r,1;G) — N(r, 1;G).

IN

Lemma 2.8 Let Ey(1;F) = E(1;G), By (1; F) = Ey(1;G), where | > 3.
Then

N_F>2(r, 1;G) +_2NF21+1(7'7 LF|G#1)
ZN(r,0; F) + 2N(r,00; F)) — 2No(r,0; F') + S(r, F).

IN

Proof: We note that any 1-point of F' with multiplicity > 3 is counted at
most twice. Hence by using Lemma 2.2 we see that

Npso(r,1;G) + 2N pia(r, L FIG # 1)
N(r,1;F| > 3;G| =2)+2N(r, 1, F|G # 1)
ZN(r,0; F'|F = 1)

r,0; F'|F # 0) = $No(r,0; )

N( N F
N(r,0; F) + %N(r, o0; F) — §N0(r,0; F'Y+ S(r, F),

VAVANNVANRVAN

LoINLOI N

where by N(r,1; F| > 3; G| = 2) we mean the reduced counting function of 1
points of F' with multiplicity not less than 3 which are the 1-points of G with
multiplicity 2. This completes the proof of the lemma.

Lemma 2.9 Let E)(1;F) = Ey(1;G), By (1;F) = Ey(1;G) and H # 0,
where | > 3. Then

T(r,F)
< Na(r,0; F) + No(r, 005 F) + Na(r, 0; G) + Na(r, 00; G)
FEN(r,0:F) + §N(r, 00, F) + 5(r, F) + (1, G).
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Proof: Using Lemmas 2.4, 2.5 and 2.7 , we get
N(r,1;F)+ N(r,1;G)

< N LF|=1)+Ni(rnL,F)+Np(r,,G) + No(r,1; F)
i F>l+1(7°, 17F|G #* 1) +N(T’, 1; )_

< N(r,0;F| >2)+ N(r,00; F| > 2) + N(r,0;G| > 2)
+N(r,00;G| >2)+ Np(r,1; F) + N(r, 1; G)
+Npsi41(r, 1, FIG # 1) + Nasia(r, L G|F # 1)
+N(r,1;F) + Ni(r,1;G) —i—Ng(T,l,F)
—f—WFZl_H(r, LFEIG#1)+T(r,G)—m(r,1;QG)
+O1) — 2N (r, 1, F) — 2N1(r, 1;G) — N (r, 1; F)
—@GZZ_H(T, 1;G|F # 1)+ Npsa(r,1;G) + No(r, 0; F')
+No(r,0;G") + S(r,F) + S(r,G)

< N(r,0;F| >2)+ N(r,00; F| >2) + N(r,0;G| > 2)

+N(r,00;G| >2) +T(r,G) — m(r,1;G)
F2Np>141(r, L F|G # 1) + Npso(r, 1;G)
~(l = 1)Ng>141(r, 1;G|F # 1) + No(r,0; F')
+No(r,0;G") + S(r, F) + S(r,G).

From Lemma 2.8, we can get

N(r,1;F) + N(r,1;G)
< N(r,0;F| >2) 4 N(r,00; F| > 2) + N(r,0;
(1) +N(r,00;G| > 2) + T(r,G) — (r,1,G)+§
+3N(r, 00, F) — (I = )Ng141(r, LG|F # 1)
+No(r,0; F') + No(r,0;G") + S(r, F) + S(r,G

G| >2)
(r,0; F)

).
By the second fundamental theorem, we have

(2) T(r,F) < N(r,00; F)+ N(r,0; F) + N(r,1; F) — No(r,0; F') + S(r, F),

(3) T(r,G) < N(r,00;G) + N(r,0;G) + N(r,1;G) — No(r,0;G") + S(r, G).
Adding (2) and (3) and from (1), we get
T(r,F)+T(r,G)

< N(r,o00; F)+ N(r,0; F) + N(r,00; G) + N(r,0; G)
+N(r,1;F) + N(r,1;G) — No(r,0; F') — No(r,0; G)
(4) +S(r, F) + 5(r, G)
Ni(r,0; F) + Na(r,00; F) + Na(r,0; G) + Na(r, 00; G)
+T(r,G) —m(r,1;G) + %N(r,O; F)+ %N(r, oo; F)
—(l=1)Ngs141(r, ;G|F # 1) + S(r, F) + S(r,G).

IN
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Thus, we can get

T(r,F)

< Ny(r,0; F') + No(r,00; F') + Na(r,0; G) + Na(r,00; G)

F3N (0 F) + 5N (r, 00 F) + 8(r, F) + 5(r, G).

Therefore, we complete the proof of Lemma 2.9.

Lemma 2.10 Let Ey(1;F) = E)(1;G), By (1; F) = Ey(1;G) and H # 0,
where | > 4. Then

T(r,F)+T(r,G) < 2Ny(r,o0; F)+ 2Ny(r,00; G) + 2Na(r, 0; F')

+2Ny(r,0;G) + S(r, F) + S(r,G).

Proof: By Lemma 2.6, we can get

and

Since

IN

IN

IN

T(r,F)+T(r,G)

N(r,00; F) + N(r,OF)—i—W(rooG)—i—N(rOG)
N —N(rOF’)

S(r,G)

,0 N(r,00;G) + N(r,0; G)
+N(r,1;Fy:1)+N( 1;F| > 2)+ N(r, 1;G)
—No(r,0; F') — No(r,0;G') + S(r, F) + S(r,G)
Ng(rooF)—i—NQ(rOF)—i-NQ(rooG)—i—Ng(rOG)
+NL(T,1,F)+NL(T,17G)—|-NF>Z+1 T, F‘G# 1)
+N(r,1;G) + Ng>141(r, 1;G|F #1) + N(r, 1, F| > 2)
+S(r, F) + S(r,G).

N(r1L;F|=1Gl=1—-1)+--- +N(r,;F|=1;G| =3)

N(r,1;G|=LF|=1-1)+--- +N(r,1;G|=LF|=3)
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we see that

NL(Tvl;F)+NL(T71;G) N

2+(T,1,F|G§é1)

NG (r LGIF #1) + W(11W>2M+N0JJG)

< N(rLF|=LG|=1-1)+ —I—N(r,17F|—lG|—3)
+N(r 1L, F|>14+2)+ N 1L,G =LF|=1-1)+
+N(r, ;G =LF|=3)+ N(r,1;G| > 1 +2)
+N(r, ;G| >14+2)+ N(r,; F| > 1+1)
+N(r, ;G| > 14+ 1)+ N(r,; F|=2)+---

(6) +N(r, L, F|=0)+N(r1L;F|>1+1)+ N 1;,G| =1)

4+ + NG =)+ NG| >1+1)

< IN(r,1;F|=1)+N(r,1;F|=2)+---+2N(r,1; F| =)
+2N(r LF|>1+ 1)+ N(r,; F| > 1+2)+ sN(r,1;G| =1)
+N(r, ;G| =2) + - +2N(T,1;G|:l)+2N(T,1;G|Zl+1)
+N(r,1;G| > 1+2)

< LN@1L;F)+N(r1LG)

< LT(r,F)+T(r,G).

From (5) and (6), we can get

T(r,F)+T(r,G) < 2Ny(r,00; F)+ 2Na(r,00; G) + 2Na(r,0; F')
+2Ns(r,0;G) + S(r, F) + S(r, G).

Thus, we complete the proof of Lemma 2.10.
Lemma 2.11 Let f and g be two transcendental meromorphic functions, and
let n and m be three positive integers with n > 7, and let P(z) = amz™ +

12"V 4+ - 4+ a1z + ag, where ag # 0,a1,...,Gm-1,0m # 0 are complex
constants. If f*P(f)f" and g"P(g)g’ share z IM, then S(r, f) = S(r,g).

Proof Let Fy = f"P(f)f" and G1 = ¢"P(g)g’, by Lemma 2.1, we have

(n +m)T(r, f) = T(r, ?}) L O(1) < T(r, Fy) + T(r, f') + S(r. f).
Hence,
(7) m+m—=2)T(r,f)+ S(r, f) <T(r, F1).
Since
(8) T(r,fn) <T(r,f"P(f))+T(r. f)+ S, f)
<(n+m+2)T(r, f) +S(r, f)
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From (7) and (8), we have S(r, F1) = S(r, f). From the condition of Lemma
2.11 and the second fundamental theory, we have

T(r,F1) < E(r, oo; F1) +_N(r, 0; F1) —I—N(rﬁ; i)+ S(r, Fy)
§N(r,oo;f)+N(r,0;f”P(f))+N(r,0;f’)+N(r,z;G1)+S(r,f)
<(m+4)T(r,f)+T(r,G1)+ S(r, f)
<(m+)T(r, f)+(n+m+2)T(r,g)+ S(r, f) + S(r,g).

Thus, we have
(n—=6)T(r,f) < (n+m+2)T(r,g)+S(r,g) +S(r, f).
Since n > 7, we can get the conclusion of Lemma 2.11.
Lemma 2.12 Let f and g be two transcendental meromorphic functions. Then
f"P(N)f'9"Plg)g # 22,
where n > 3m + 1 is a positive integer.

Proof: Let

(9) frP(f)f'g"Plg)g = 2.

Now we rewrite P(2) = am2™ + apm_12"" 1+ -+ a1z + ap as
P(z) = am(z = B1)" - (2= B)" - (2 = Bs) ",

where 1 + -+ v+ -+ s =m, 1 < s <m,p # B0 # j,1 < 4,5 <
and f4q,...,0;,...,0s are nonzero constants and ~i,...,7;,...,7s are positive
integers.

Let zp(# 0,00) be a zero of f of order p(> 1) and it be a pole of g.Suppose
that zg is an order ¢(> 1). Thennp+p—1= (n+m)q+q+ 1 ie,mq=
n+1)(p—q) —2>n—1lie,g>"21 Sop>ntm=l

Let z1(# 0,00) be a zero of P(f) of order p; and be a zero of f— 3; of order
q; fori =1,2,...,s. Then p; = v;¢; for i = 1,2,...,s. Suppose that z; is a
pole of g of order ¢q. Again by (9) we can obtain ¢;v; +¢; —1 = ng+mq+q+1,
i.e., q; > ”;Tj?’ fori=1,2,...,s.

Let z9(# 0,00) be a zero of f' of order py that is not a zero of fP(f).
Similarly, we get po > n+m + 2.

Therefore we can get that a pole of f is either a zero of gP(g) or a zero of
g, we get

N(r,00;f) < N(r,0;9) + N(r,f1;9) + -+ N(r,Bi59) + -+
+N(r,Bs:9) + No(r,0; ¢') -
< #T(Ta g) + Mm—%T(Tv g) + N()('f', 1/9/)7
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where Ng(r,0;¢’) is the reduced counting function of those zeros of g’ which
are not the zeros of gP(g).
By the second fundamental theorem we obtain

sT(r,f) < N(r 00; f) + N(r,0; )+ N(r,B1; f) + -+ N(r,8i; )
(10) +- +N@Bu)fEMﬁjU+anﬂ
< Gt b)) T g) + Gy + et T f)

+No(r,059') — No(r,0; f') + 2logr + S(r, f).

Similarly we get

(11) ST(T, g) S (n+m+1 + TL—T;)L,_—T-:i) (T7 f) <n+T1+1 + RTT—fti3)T(r’ g)
+No(r,0; f') — No(r,0;¢") + 2logr + S(r, g).

Adding (10) and (11) we get

2m 2m + 2s
n+m—1 n+m+3

(s =

HT(r f) +T(r,9)} < 4logr + S(r, f) + 5(r, 9).

From 1 < s <m and n > 3m + 2, we can get a contradiction.
Thus, we can get the conclusion of this lemma.

Lemma 2.13 Let f and g be two transcendental meromorphic functions, and
let n and m be three positive integers with n > m + 3, F = - Péf)f/ and
G= %(g)gl, where n(> 4) is a positive integer. If F = G, then either f = tg
for a constant t such that t® = 1, where d = (n+m+1,...,n+m+1—i,...,n+
1), am—i # 0 for somei=0,1,...,m, or f and g satisfy the algebraic equation
R(f,g) =0, where R(w1,w2) is the definition of Theorem 1.4.

Proof: Let
[ amfn+m+1 amilfn-i-m o (lofn+l
n+m+1 n+m n+1"
and +m+1 + +1
n-r+m n-+—m n
G — amg + am-149 4ot aog )
n+m-+1 n—+m n—+1

From F = G, we can get
(12) F*=G"+C,

where C is a constant. Then we have T'(r, f) =T(r,g) + S(r, f).
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Suppose that C' # 0, by the second fundamental theorem, we have

(n+m+ V)T(r, f) = T(r, F*) < N(r,0; F*) + N(r, o0; F*)

(3) LN, P+ S(r, f) < (2m + 3)T(r, 9) + S(r, g).

By n > m + 3, we can get a contradiction. Thus, we can get F* = G*, i.e.,

n+1 amfm am—lfm71 .. ag
f (n+m+1 + n+m T + n+1)
n+1l(_amg™ am-19™" . ag
Y (n+m+1 + n+m + + n+1°

(14)

Let h = 5. If h is a constant, substituting f = gh into (14) we get

n+m+1 hn+m+1 -1 _ n+m hn+m -1 n+1 hn+1 -1
amg" ) a1 ), aof )y
n+m-+1 n+m n+1

which implies h* = 1, where y = (n+m+1,....,.n4+m+1—1i,...,n+1),
am—; # 0 for some ¢ = 0,1,...,m. Thus f = tg for a constant ¢ such that
th =1, where y=(n+m+1,....n+m+1—1i,....,n+1),a,—; # 0 for some
1=0,1,...,m.

If h is not a constant, then we can get that f and g satislfy the algebraic

. amw™ Am—1w]" ™
equation R(f,g) = 0,where R(w1,ws) = Wi (mig + g — -+ oig) —
m—1
n( Amws® Am—1Wy o ag
Wy (n+m+1 + n+m + + n+1 )

Thus, we complete the proof of Lemma 2.13.

Lemma 2.14 [15] Let f and g be two nonconstant meromorphic functions.

If h =0 where h = (’}—/,/ - ]?—f/l)—(‘;—, —;%/1), then f, g share 1 CM.

3 The Proofs of Theorems

Let F,G,F* and G* be the definition of Lemma 2.13, and Fij,G; be the
definition of Lemma 2.11.

The Proof of Theorem 1.1: From the condition of Theorem 1.1, we
have F, G share 1 CM.

By Lemma 2.1, we have

T(r,F*)=(n+m+1)T(r, f)+ S(r, f),

(15) T(r,G*) = (n+m+1)T(r,g9) +S(r,9).

Since (F*)" = Fz, we deduce

m(r, %) < m(r, %) +S(r, f) <mf(r, %) +logr + S(r, f),
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and by the first fundamental theorem

T(r,F*) < T(r,F)+ N(r,0;F*) — N(r,0; F) + logr + S(r, f)
(16) < T(r F)+ N(r,0; f) + N(r,bi; f) + -+ N(7,bms f)
—N(r,c1; f) == N(r,em3 f) = N(r,0; f)
+logr+ S(r, f),
where by, b, ..., by are roots of the algebraic equation n‘jgg::l + am;fg_l +
-+ n‘fﬁl =0, and ¢q,co,...,cy, are roots of the algebraic equation a,,z" +

12" 4+ +az+ag=0.
By the definition of F, G, we have

Ni(r,0; F) + Na(r, 00; F)
(17 < ON(r,00; f) + 2N (r,0; f) + N(r,c1; f)
+- -+ N(r,em; f) + N(r, 05 f') + 2log 7.

Similarly, we obtain

Na(r,0; G) + Na(r, 00; G)
(18) < 2N (r,00;g) + 2N(r,0; g) + N(r,c15 9)
-+ N(r,ems; 9) + N(r,0;¢') + 2logr.

If Lemma 2.3(i) holds, from (17),(18), we have for e(> 0)
(19)
T(r, F*) < (m+3)I(r, f)+ (m+4)T(r,g) +2N(r,o0; f)
+2N(r,00;9) + 5logr + S(r, f) + S(r, 9)
< (m+3)T(r, )+ (m+4)T(r,g) + (2 —20(c0; f) +)T(r, f)
+(2 —20(00;9) +e)T(r,g) + 5logr + S(r, f) + S(r, 9)
< [2m+ 11 — (20(o0; f) 4+ 20(00; g) + 2¢)|T(r) + 5logr + S(r),

where T'(r) = max{T'(r, f),T(r,g)} and S(r) = max{S(r, ), S(r,g9)}.
Similarly, we obtain

(20) T(r,G*) < 2m+11—(20(o0; f) 4+ 20(00; g) +2¢)|T (1) + 5log r + S(r).
By (15),(19) and (20), we have
(21)  [n—m —10+ (20(o0; f) 4+ 20(o0; g) + 2¢)]T(r) < 5logr + S(r).

Since f, g are two transcendental meromorphic functions and n > m+10—
(20(o0; f) +20(00; g)), we can obtain a contradiction.

If Lemma 2.3(ii) holds, then F' = G. By Lemma 2.13, we can get the
conclusion of Theorem 1.1.
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If Lemma 2.2(iii) holds, then F'-G = 1. By Lemma 2.12 and n > max{m+
10 — (20(o0; f) + 20(00; g)), 3m + 1}, we can get a contradiction.

Therefore, we complete the proof of Theorem 1.1.

The Proof of Theorem 1.2: From the condition of Theorem 1.2 and the
definition of F, G, we have Ej(1,F) = Ejy(1,G), Eyy(1,F) = Ey)(1,G) where
[ >3 and

N(r,oc;F) < N(r,o0; )+ logr,
(22) N(T707F) < N(T,O,f)+N(T,Cl,f)++N(T,Cm,f)
+N(r,0; f') + logr,
where c1, 2, ..., ¢y, are the definition of Subsection 3.1.

Suppose that H # 0. From (16)-(18),(22) and Lemma 2.9, we have

(28) - 2m— 2+ (30(00; 1) +20(00sg)]T(r) < = logr + S(r).
(24) [n — gm - 33—8 + (g@(oo;g) +20(oc0; /)]T(r) < 13—9 logr 4+ S(r).

From n > 2m+ 22 — 2(0(o0; g) + O(o0; f) — 2 min{O(c0; g), O(c0; f) and f, g
are two transcendental meromorphic functions, we can get a contradiction.

Therefore, we can get H = 0. From Lemma 2.14, we have that F, G share 1
CM. By n > max{2m+ 32 —2(6(c0; g)+O(o0; f) — 2 min{O(c0; ), O(c0; f)},
3m + 1} and Theorem 1.1, we can obtain the conclusion of Theorem 1.2.

Therefore, we complete the proof of Theorem 1.2

The Proof of Theorem 1.3: From the condition of Theorem 1.2 and the
definition of F, G, we have El)(l,F) = El)(l,G), and Ey) (1, F) = Ey(1,G)
where [ > 4.

Suppose that H # 0. From (16)-(18) and Lemma 2.10, we have

(25) [n—m — 10+ (20(o0; f) + 20(00; g) + 2¢)|T(r) < 5logr + S(r).

Since f, g are two transcendental meromorphic functions and n > m + 10 —
(20(o0; f) +20(00; g)), we can get a contradiction.

Therefore, we can get H = 0. From Lemma 2.14, we have that F, G share 1
CM. From Theorem 1.1 and n > max{m+ 10— (20(o0; f) +20(c0; g)), 3m +
1}, we can obtain the conclusion of Theorem 1.3.

Therefore, we complete the proof of Theorem 1.3
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4 Remarks

It follows from the proof of Theorem 1.1 that if the condition f™P(f)f’ and
g"P(g)g’ share z CM is replaced by the condition f™P(f)f" and ¢"P(g)¢
share a(z) CM , where (%) is a meromorphic function such that a(z) # 0, co
and a(z) € S(f)(S(g), the conclusion of Theorem 1.1 still holds.

Similarly, we can get the following results.

Theorem 4.1 Let f and g be two transcendental meromorphic functions, and
let n,1 and m be three positive integers with n > max{3m + 3 — 2(0(oc0; g) +
O(oc: f)—2 min{O(c0: 9), ©(0c; )}, 3m+1}. I Ey(alz), f*P(f)f') = Byy(al2).
9"P(9)g') and Eyy(a(z), ["P(f)[') = Evy(a(2), 9" P(9)g'), where l > 3, then
the conclusion of Theorem 1.1 holds.

Theorem 4.2 Let f and g be two transcendental meromorphic functions, and

let n,l and m be three positive integers with n > max{m + 10 — (20(c0; f) +

20(003 9)), 3m-+1}. If By (al2), f*P(f)f) = Ep(a(z), 6" Plg)g') and Ey(a(2),
fPP(f)f) = Ey(a(2),9"P(g)g’), where | > 4 , then the conclusion of Theo-

rem 1.1 holds.
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