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Meromorphic functions concerning their differential
polynomials sharing the fixed-points with finite

weight 1

Hong-Yan Xu, Ting-Bin Cao and Tang-Sen Zhan

Abstract

This paper deals with some uniqueness problems of meromorphic
functions concerning their differential polynomials sharing the fixed-points
or a small function with finite weight. These results in this paper greatly
improve the recent results given by X.-Y. Zhang& J.-F. Chen and W.C.
Lin[X.-Y. Zhang, J.-F. Chen, W.C. Lin , Entire or meromorphic functions
sharing one value, Comput. Math. Appl. 56(2008), 1876-1883.].
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1 Introduction and Main Results

Let f be a non-constant meromorphic function in the whole complex plane.
We shall use following standard notations of the value distribution theory:

T (r, f), m(r, f), N(r, f), N(r, f), . . .

(see Hayman [6],Yang [17] and Yi and Yang[14]). We denote by S(r, f) any
quantity satisfying S(r, f) = o(T (r, f)), as r → +∞, possibly outside of a set
with finite measure. A meromorphic function α is called a small function with
respect to f if T (r, α) = S(r, f). Let S(f) be the set of meromorphic functions
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in the complex plane C which are small functions with respect to f .For some

complex number a ∈ C ∪∞, we define Θ(a, f) = 1 − limr→∞
N(r,a;f)
T (r,f) .

Let f and g be two nonconstant meromorphic functions defined in the open
complex plane C.If for some α ∈ S(f) ∩ S(g) the roots of f − α and g − α
coincide in locations and multiplicities we say that f and g share the value α
CM (counting multiplicities) and if coincide in locations only we say that f
and g share α IM (ignoring multiplicities).

For a ∈ C ∪ ∞ and k a positive integer. We denote by N(r, a; f | = 1)
the counting function of simple a-points of f , denote by N(r, a; f | ≤ k)
(N(r, a; f | ≥ k)) the counting functions of those a-points of f whose multi-
plicities are not greater (less) than k where each a-point is counted according
to its multiplicity(see [6]). N(r, a; f | ≤ k)(N(r, a; f | ≥ k)) are defined sim-
ilarly, where in counting the a-points of f we ignore the multiplicities. Set
Nk(r, a; f) = N(r, a; f) + N(r, a; f | ≥ 2) + · · · + N(r, a; f ≥ k).

In 1997, Yang and Hua [13] proved the following result.

Theorem A[13] Let f and g be two nonconstant meromorphic functions,
n ≥ 11 an integer, and a ∈ C − {0}. If fnf ′ and gng′ share the value a
CM , then either f = dg for some (n + 1)th root of unity d or g = c1e

cz and
f = c2e

−cz where c, c1, and c2 are constants satisfying (c1c2)
n+1c2 = −a2.

W.C.Lin and H.X.Yi [10] obtained some unicity theorems corresponding
to Theorem A.

Theorem B[10] Let f and g be two nonconstant meromorphic functions sat-
isfying Θ(∞, f) > 2

n+1 , n ≥ 12. If [fn(f −1)]f ′ and [gn(g−1)]g′ share 1 CM ,
then f ≡ g.

W.C.Lin and H.X.Yi [11] extended Theorem B by replacing the value 1
with the function z and obtained the following result.

Theorem C[11] Let f and g be two transcendental meromorphic functions,
n ≥ 12 an integer. If fn(f − 1)f ′ and gn(g − 1)g′ share z CM , then either

f ≡ g or g = (n+2)(1−hn+1)
(n+1)(1−hn+2)

and f = (n+2)h(1−hn+1)
(n+1)(1−hn+2)

, where h is a nonconstant

meromorphic function.

Recently, Xiao-Yu Zhang, Jun-Fan Chen and Wei-Chuan Lin[18] extended
Theorem F and G and obtained the following result.

Theorem D[18]Let f and g be two nonconstant meromorphic functions, and
let n and m be two positive integers with n > max{m + 10, 3m + 3}, and let
P (z) = amzm +am−1z

m−1 + · · ·+a1z +a0, where a0 6= 0, a1, . . . , am−1, am 6= 0
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are complex constants. If fnP (f)f ′ and gnP (g)g′ share 1 CM , then either
f ≡ tg for a constant t such that td = 1, where d = (n + m + 1, . . . , n + m +
1 − i, . . . , n + 1), am−i 6= 0 for some i = 0, 1, . . . , m, or f and g satisfy the

algebraic equation R(f, g) ≡ 0, where R(ω1, ω2) = ωn
1 (

amωm

1

n+m+1 +
am−1ωm−1

1

n+m
+

· · · + a0

n+1) − ωn
2 (

amωm

2

n+m+1 +
am−1ωm−1

2

n+m
+ · · · + a0

n+1).

Recent years, I. Lahiri[7,8] and A.Banerjee[1,2] employ the idea of weighted
sharing of values which measures how close a shared value is to being shared
IM or to being shared CM. Many interesting results[3,4,7,8,12,14,15] were
obtained by many mathematicians such as H.X. Yi, I. Lahiri, A.Banerjee,
W.C. Lin, X.M.Li and so on.

In 2008, A.Banerjee [2] employed the idea of weighted sharing of values
and obtained the following result which improved Theorem A.

Theorem E[2] Let f and g be two nonconstant meromorphic functions and
n > 22 − [5Θ(∞; f) + 5Θ(∞; g) + min{Θ(∞; f), Θ(∞; g)}], is an integer. If
for any a ∈ C − 0, E2)(a; fnf ′) = E2)(a; gng′) the conclusion of Theorem A
holds.

Regarding Theorem C,D and E, it is natural to ask the following questions.

Question 1.1 Is it possible that the value 1 can be replaced by a function z
or a small function in Theorems D and E?

Question 1.2 Is it possible to relax the nature of sharing z or a small function
in Theorem C and D and if possible, how far?

In this paper we shall investigate the possible solutions of the above ques-
tions. We now state the following theorems which are the main results of the
paper.

Theorem 1.1 Let f and g be two transcendental meromorphic functions, and
let n and m be two positive integers with n > max{m + 10 − (2Θ(∞; f) +
2Θ(∞; g)), 3m+1}, and let P (z) = amzm + am−1z

m−1 + · · ·+ a1z + a0, where
a0 6= 0, a1, . . . , am−1, am 6= 0 are complex constants. If fnP (f)f ′ and gnP (g)g′

share z CM , then either f ≡ tg for a constant t such that td = 1, where
d = (n+m+1, . . . , n+m+1− i, . . . , n+1), am−i 6= 0 for some i = 0, 1, . . . , m,
or f and g satisfy the algebraic equation R(f, g) ≡ 0, where R(ω1, ω2) =

ωn
1 (

amωm

1

n+m+1 +
am−1ωm−1

1

n+m
+ · · · + a0

n+1) − ωn
2 (

amωm

2

n+m+1 +
am−1ωm−1

2

n+m
+ · · · + a0

n+1).

Theorem 1.2 Let f and g be two transcendental meromorphic functions, and
let n, l and m be three positive integers with n > max{ 5

3m + 38
3 − 2(Θ(∞; g) +
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Θ(∞; f)− 2
3 min{Θ(∞; g), Θ(∞; f)}, 3m+1}. If E l)(z, fnP (f)f ′) = El)(z, gnP

(g)g′) and E1)(z, fnP (f)f ′) = E1)(z, gnP (g)g′), where l ≥ 3, then the conclu-
sion of Theorem 1.1 holds.

Theorem 1.3 Let f and g be two transcendental meromorphic functions, and
let n, l and m be three positive integers with n > max{m + 10 − (2Θ(∞; f) +
2Θ(∞; g)), 3m+1}. If E l)(z, fnP (f)f ′) = El)(z, gnP (g)g′) and E2)(z, fnP (f)
f ′) = E2)(z, gnP (g)g′), where l ≥ 4, then the conclusion of Theorem 1.1 holds.

Remark 1.1 From Theorem 1.1 and 1.3, we can get the same conclusion
under the condition of F1, G1 sharing z CM or E4)(z, F1) = E4)(z, G1) and
E2)(z, F1) = E2)(z, G1), where F1 = fnP (f)f ′, G1 = gnP (g)g′.

Though the standard definitions and notations of the value distribution
theory are available in[6], we explain some definitions and notations which are
used in the paper.

Definition 1.1 [2] Let k and r be two positive integers such that 1 ≤ r < k−1
and for a ∈ C, Ek)(a; f) = Ek)(a; g), Er)(a; f) = Er)(a; g). Let z0 be a zero
of f − a of multiplicity p and a zero of g − a of multiplicity q. We denote
by NL(r, a; f)(NL(r, a; g)) the reduced counting function of those a-points of

f and g for which p > q ≥ r + 1(q > p ≥ r + 1), by N
(r+1
E (r, a; f) the reduced

counting function of those a-points of f and g for which p = q ≥ r + 1, by
Nf≥k+1(r, a; f |g 6= a)(N g≥k+1(r, a; g|f 6= a)) the reduced counting functions of
those a-points of f and g for which p ≥ k +1 and q = 0(q ≥ k +1 and p = 0).

Definition 1.2 [2] If r = 0 in definition 1.1 then we use the same notations

as in definition 1.5 except by N
1)
E (r, a; f) we mean the common simple a-points

of f and g and by N
(2
E (r, a; f) we mean the reduced counting functions of those

a-points of f and g for which p = q ≥ 2.

Definition 1.3 [8] Let a, b ∈ C ∪ {∞}, We denote by N(r, a; f |g = b) the
counting function of those a−points of f , counted according to multiplicity,
which are b-points of g; by N(r, a; f |g 6= b) the counting function of those a-
points of f , counted according to multiplicity, which are not the b-points of
g.

2 Some Lemmas

For the proof of our results we need the following lemmas.
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Lemma 2.1 [16] Let f be a nonconstant meromorphic function and P (f) =
a0 +a1f +a2f

2 + · · ·+anfn, where a0, a1, a2, · · · , an are constants and an 6= 0.
Then

T (r, P (f)) = nT (r, f) + S(r, f).

Lemma 2.2 [9] If N(r, 0; f (k)|f 6= 0) denotes the counting function of those
zeros of f (k) which are not the zeros of f , where a zero of f (k) is counted
according to its multiplicity then

N(r, 0; f (k)|f 6= 0) ≤ kN(r,∞; f)+N(r, 0; f | < k)+kN(r, 0; f | ≥ k)+S(r, f).

Lemma 2.3 [5] Let F and G be two meromorphic functions. If F and G
share 1 CM , one of the following three cases holds:

(i) T (r, F ) ≤ N2(r,∞, F )+N2(r,∞, G)+N2(r, 0, F )+N2(r, 0, G)+S(r, F )+
S(r, G), the same inequality holding for T (r, G);

(ii) F ≡ G;
(iii) F · G ≡ 1.

Lemma 2.4 [2] Let F, G be two nonconstant meromorphic functions such that
E1)(1; F ) = E1)(1; F ) and H 6≡ 0. Then

N
1)
E (r, 1; F ) ≤ N(r,∞; H) + S(r, F ) + S(r, G),

where H = (F ′′

F ′ −
2F ′

F−1) − (G′′

G′ −
2G′

G−1).

Lemma 2.5 [2] Let El)(1; F ) = El)(1; G), E1)(1; F ) = E1)(1; G) and H 6≡ 0,
where l ≥ 3. Then

N(r,∞; H)

≤ N(r, 0; F | ≥ 2) + N(r, 0; G| ≥ 2) + N(r,∞; F | ≥ 2) + N(r,∞; G| ≥ 2)

+NL(r, 1; F ) + NL(r, 1; G) + NF≥l+1(r, 1; F |G 6= 1)

+NG≥l+1(r, 1; G|F 6= 1) + N0(r, 0; F
′) + N0(r, 0; G

′),

where N0(r, 0; F
′) is the reduced counting function of those zeros of F ′ which

are not the zeros of F (F − 1) and N 0(r, 0; G
′) is similarly defined.

Lemma 2.6 [2] Let E2)(1; F ) = E2)(1; G) and H 6≡ 0. Then

N(r,∞; H)

≤ N(r, 0; F | ≥ 2) + N(r, 0; G| ≥ 2) + N(r,∞; F | ≥ 2) + N(r,∞; G| ≥ 2)

+NL(r, 1; F ) + NL(r, 1; G) + NF≥3(r, 1; F |G 6= 1)

+NG≥3(r, 1; G|F 6= 1) + N0(r, 0; F
′) + N0(r, 0; G

′).
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Lemma 2.7 [2] Let El)(1; F ) = El)(1; G) and E1)(1; F ) = E1)(1; G) and H 6≡
0, where l ≥ 3. Then

2NL(r, 1; F ) + 2NL(r, 1; G) + N
(2
E (r, 1; F )

+lNG≥l+1(r, 1; G|F 6= 1) − NF>2(r, 1; G)

≤ N(r, 1; G) − N(r, 1; G).

Lemma 2.8 Let El)(1; F ) = El)(1; G), E1)(1; F ) = E1)(1; G), where l ≥ 3.
Then

NF>2(r, 1; G) + 2NF≥l+1(r, 1; F |G 6= 1)

≤ 2
3N(r, 0; F ) + 2

3N(r,∞; F ) − 2
3N0(r, 0; F

′) + S(r, F ).

Proof : We note that any 1-point of F with multiplicity ≥ 3 is counted at
most twice. Hence by using Lemma 2.2 we see that

NF>2(r, 1; G) + 2NF≥l+1(r, 1; F |G 6= 1)

≤ N(r, 1; F | ≥ 3; G| = 2) + 2N(r, 1; F |G 6= 1)
≤ 2

3N(r, 0; F ′|F = 1)

≤ 2
3N(r, 0; F ′|F 6= 0) − 2

3N0(r, 0; F
′)

≤ 2
3N(r, 0; F ) + 2

3N(r,∞; F ) − 2
3N0(r, 0; F

′) + S(r, F ),

where by N(r, 1; F | ≥ 3; G| = 2) we mean the reduced counting function of 1
points of F with multiplicity not less than 3 which are the 1-points of G with
multiplicity 2. This completes the proof of the lemma.

Lemma 2.9 Let El)(1; F ) = El)(1; G), E1)(1; F ) = E1)(1; G) and H 6≡ 0,
where l ≥ 3. Then

T (r, F )
≤ N2(r, 0; F ) + N2(r,∞; F ) + N2(r, 0; G) + N2(r,∞; G)

+2
3N(r, 0; F ) + 2

3N(r,∞; F ) + S(r, F ) + S(r, G).
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Proof : Using Lemmas 2.4, 2.5 and 2.7 , we get

N(r, 1; F ) + N(r, 1; G)

≤ N(r, 1; F | = 1) + NL(r, 1; F ) + NL(r, 1; G) + N
(2
E (r, 1; F )

+NF≥l+1(r, 1; F |G 6= 1) + N(r, 1; G)

≤ N(r, 0; F | ≥ 2) + N(r,∞; F | ≥ 2) + N(r, 0; G| ≥ 2)

+N(r,∞; G| ≥ 2) + NL(r, 1; F ) + NL(r, 1; G)

+NF≥l+1(r, 1; F |G 6= 1) + NG≥l+1(r, 1; G|F 6= 1)

+NL(r, 1; F ) + NL(r, 1; G) + N
(2
E (r, 1; F )

+NF≥l+1(r, 1; F |G 6= 1) + T (r, G) − m(r, 1; G)

+O(1) − 2NL(r, 1; F ) − 2NL(r, 1; G) − N
(2
E (r, 1; F )

−lNG≥l+1(r, 1; G|F 6= 1) + NF>2(r, 1; G) + N0(r, 0; F
′)

+N0(r, 0; G
′) + S(r, F ) + S(r, G)

≤ N(r, 0; F | ≥ 2) + N(r,∞; F | ≥ 2) + N(r, 0; G| ≥ 2)

+N(r,∞; G| ≥ 2) + T (r, G) − m(r, 1; G)

+2NF≥l+1(r, 1; F |G 6= 1) + NF>2(r, 1; G)

−(l − 1)NG≥l+1(r, 1; G|F 6= 1) + N0(r, 0; F
′)

+N0(r, 0; G
′) + S(r, F ) + S(r, G).

From Lemma 2.8, we can get

(1)

N(r, 1; F ) + N(r, 1; G)

≤ N(r, 0; F | ≥ 2) + N(r,∞; F | ≥ 2) + N(r, 0; G| ≥ 2)

+N(r,∞; G| ≥ 2) + T (r, G) − m(r, 1; G) + 2
3N(r, 0; F )

+2
3N(r,∞; F ) − (l − 1)NG≥l+1(r, 1; G|F 6= 1)

+N0(r, 0; F
′) + N0(r, 0; G

′) + S(r, F ) + S(r, G).

By the second fundamental theorem, we have

(2) T (r, F ) ≤ N(r,∞; F ) + N(r, 0; F ) + N(r, 1; F ) − N 0(r, 0; F
′) + S(r, F ),

(3) T (r, G) ≤ N(r,∞; G) + N(r, 0; G) + N(r, 1; G) − N 0(r, 0; G
′) + S(r, G).

Adding (2) and (3) and from (1), we get

(4)

T (r, F ) + T (r, G)

≤ N(r,∞; F ) + N(r, 0; F ) + N(r,∞; G) + N(r, 0; G)

+N(r, 1; F ) + N(r, 1; G) − N 0(r, 0; F
′) − N0(r, 0; G

′)
+S(r, F ) + S(r, G)

≤ N2(r, 0; F ) + N2(r,∞; F ) + N2(r, 0; G) + N2(r,∞; G)

+T (r, G) − m(r, 1; G) + 2
3N(r, 0; F ) + 2

3N(r,∞; F )

−(l − 1)NG≥l+1(r, 1; G|F 6= 1) + S(r, F ) + S(r, G).
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Thus, we can get

T (r, F )
≤ N2(r, 0; F ) + N2(r,∞; F ) + N2(r, 0; G) + N2(r,∞; G)

+2
3N(r, 0; F ) + 2

3N(r,∞; F ) + S(r, F ) + S(r, G).

Therefore, we complete the proof of Lemma 2.9.

Lemma 2.10 Let El)(1; F ) = El)(1; G), E2)(1; F ) = E2)(1; G) and H 6≡ 0,
where l ≥ 4. Then

T (r, F ) + T (r, G) ≤ 2N2(r,∞; F ) + 2N2(r,∞; G) + 2N2(r, 0; F )
+2N2(r, 0; G) + S(r, F ) + S(r, G).

Proof : By Lemma 2.6, we can get

(5)

T (r, F ) + T (r, G)

≤ N(r,∞; F ) + N(r, 0; F ) + N(r,∞; G) + N(r, 0; G)

+N(r, 1; F ) + N(r, 1; G) − N 0(r, 0; F
′)

−N0(r, 0; G
′) + S(r, F ) + S(r, G)

≤ N(r,∞; F ) + N(r, 0; F ) + N(r,∞; G) + N(r, 0; G)

+N(r, 1; F | = 1) + N(r, 1; F | ≥ 2) + N(r, 1; G)

−N0(r, 0; F
′) − N0(r, 0; G

′) + S(r, F ) + S(r, G)
≤ N2(r,∞; F ) + N2(r, 0; F ) + N2(r,∞; G) + N2(r, 0; G)

+NL(r, 1; F ) + NL(r, 1; G) + NF≥l+1(r, 1; F |G 6= 1)

+N(r, 1; G) + NG≥l+1(r, 1; G|F 6= 1) + N(r, 1; F | ≥ 2)
+S(r, F ) + S(r, G).

Since

N(r, 1; F | = l; G| = l − 1) + · · · +N(r, 1; F | = l; G| = 3)

≤ N(r, 1; F | = l);

and

N(r, 1; G| = l; F | = l − 1) + · · · +N(r, 1; G| = l; F | = 3)

≤ N(r, 1; G| = l),
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we see that

(6)

NL(r, 1; F ) + NL(r, 1; G) + NF≥l+1(r, 1; F |G 6= 1)

+NG≥l+1(r, 1; G|F 6= 1) + N(r, 1; F | ≥ 2) + N(r, 1; (G)

≤ N(r, 1; F | = l; G| = l − 1) + · · · + N(r, 1; F | = l; G| = 3)

+N(r, 1; F | ≥ l + 2) + N(r, 1; G| = l; F | = l − 1) + · · ·

+N(r, 1; G| = l; F | = 3) + N(r, 1; G| ≥ l + 2)

+N(r, 1; G| ≥ l + 2) + N(r, 1; F | ≥ l + 1)

+N(r, 1; G| ≥ l + 1) + N(r, 1; F | = 2) + · · ·

+N(r, 1; F | = l) + N(r, 1; F | ≥ l + 1) + N(r, 1; G| = 1)

+ · · · + N(r, 1; G| = l) + N(r, 1; G| ≥ l + 1)

≤ 1
2N(r, 1; F | = 1) + N(r, 1; F | = 2) + · · · + 2N(r, 1; F | = l)

+2N(r, 1; F | ≥ l + 1) + N(r, 1; F | ≥ l + 2) + 1
2N(r, 1; G| = 1)

+N(r, 1; G| = 2) + · · · + 2N(r, 1; G| = l) + 2N(r, 1; G| ≥ l + 1)

+N(r, 1; G| ≥ l + 2)
≤ 1

2 [N(r, 1; F ) + N(r, 1; G)]
≤ 1

2 [T (r, F ) + T (r, G)].

From (5) and (6), we can get

T (r, F ) + T (r, G) ≤ 2N2(r,∞; F ) + 2N2(r,∞; G) + 2N2(r, 0; F )
+2N2(r, 0; G) + S(r, F ) + S(r, G).

Thus, we complete the proof of Lemma 2.10.

Lemma 2.11 Let f and g be two transcendental meromorphic functions, and
let n and m be three positive integers with n ≥ 7, and let P (z) = amzm +
am−1z

m−1 + · · · + a1z + a0, where a0 6= 0, a1, . . . , am−1, am 6= 0 are complex
constants. If fnP (f)f ′ and gnP (g)g′ share z IM , then S(r, f) = S(r, g).

Proof Let F1 = fnP (f)f ′ and G1 = gnP (g)g′, by Lemma 2.1, we have

(n + m)T (r, f) = T (r,
F1

f ′
) + O(1) ≤ T (r, F1) + T (r, f ′) + S(r, f).

Hence,

(7) (n + m − 2)T (r, f) + S(r, f) ≤ T (r, F1).

Since

(8)
T (r, F1) ≤ T (r, fnP (f)) + T (r, f ′) + S(r, f)

≤ (n + m + 2)T (r, f) + S(r, f).
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From (7) and (8), we have S(r, F1) = S(r, f). From the condition of Lemma
2.11 and the second fundamental theory, we have

T (r, F1) ≤ N(r,∞; F1) + N(r, 0; F1) + N(r, z; F1) + S(r, F1)

≤ N(r,∞; f) + N(r, 0; fnP (f)) + N(r, 0; f ′) + N(r, z; G1) + S(r, f)
≤ (m + 4)T (r, f) + T (r, G1) + S(r, f)
≤ (m + 4)T (r, f) + (n + m + 2)T (r, g) + S(r, f) + S(r, g).

Thus, we have

(n − 6)T (r, f) ≤ (n + m + 2)T (r, g) + S(r, g) + S(r, f).

Since n ≥ 7, we can get the conclusion of Lemma 2.11.

Lemma 2.12 Let f and g be two transcendental meromorphic functions. Then

fnP (f)f ′gnP (g)g′ 6≡ z2,

where n > 3m + 1 is a positive integer.

Proof : Let

(9) fnP (f)f ′gnP (g)g′ ≡ z2.

Now we rewrite P (z) = amzm + am−1z
m−1 + · · · + a1z + a0 as

P (z) = am(z − β1)
γ1 · · · (z − βi)

γi · · · (z − βs)
γs ,

where γ1 + · · · + γi + · · · + γs = m, 1 ≤ s ≤ m,βi 6= βj , i 6= j, 1 ≤ i, j ≤ s
and β1, . . . , βi, . . . , βs are nonzero constants and γ1, . . . , γi, . . . , γs are positive
integers.

Let z0(6= 0,∞) be a zero of f of order p(≥ 1) and it be a pole of g.Suppose
that z0 is an order q(≥ 1). Then np + p − 1 = (n + m)q + q + 1 i.e.,mq =
(n + 1)(p − q) − 2 ≥ n − 1 i.e.,q ≥ n−1

m
. So p ≥ n+m−1

m
.

Let z1(6= 0,∞) be a zero of P (f) of order p1 and be a zero of f−βi of order
qi for i = 1, 2, . . . , s. Then p1 = γiqi for i = 1, 2, . . . , s. Suppose that z1 is a
pole of g of order q. Again by (9) we can obtain qiγi +qi−1 = nq+mq+q+1,
i.e., qi ≥

n+m+3
γi+1 for i = 1, 2, . . . , s.

Let z2(6= 0,∞) be a zero of f ′ of order p2 that is not a zero of fP (f).
Similarly, we get p2 ≥ n + m + 2.

Therefore we can get that a pole of f is either a zero of gP (g) or a zero of
g′, we get

N(r,∞; f) ≤ N(r, 0; g) + N(r, β1; g) + · · · + N(r, βi; g) + · · ·

+N(r, βs; g) + N0(r, 0; g
′)

≤ m
n+m+1T (r, g) + m+s

n+m+3T (r, g) + N0(r, 1/g
′),
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where N0(r, 0; g
′) is the reduced counting function of those zeros of g′ which

are not the zeros of gP (g).

By the second fundamental theorem we obtain

(10)

sT (r, f) ≤ N(r,∞; f) + N(r, 0; f) + N(r, β1; f) + · · · + N(r, βi; f)

+ · · · + N(r, βi; g) − N0(r, 0; f
′) + S(r, f)

≤ ( m
n+m+1 + m+s

n+m+3)T (r, g) + ( m
n+m+1 + m+s

n+m+3)T (r, f)

+N0(r, 0; g
′) − N0(r, 0; f

′) + 2 log r + S(r, f).

Similarly we get

(11)
sT (r, g) ≤ ( m

n+m+1 + m+s
n+m+3)T (r, f) + ( m

n+m+1 + m+s
n+m+3)T (r, g)

+N0(r, 0; f
′) − N0(r, 0; g

′) + 2 log r + S(r, g).

Adding (10) and (11) we get

(s −
2m

n + m − 1
−

2m + 2s

n + m + 3
){T (r, f) + T (r, g)} ≤ 4 log r + S(r, f) + S(r, g).

From 1 ≤ s ≤ m and n ≥ 3m + 2, we can get a contradiction.

Thus, we can get the conclusion of this lemma.

Lemma 2.13 Let f and g be two transcendental meromorphic functions, and

let n and m be three positive integers with n ≥ m + 3, F = fnP (f)f ′

z
and

G = gnP (g)g′

z
, where n(≥ 4) is a positive integer. If F ≡ G, then either f ≡ tg

for a constant t such that td = 1, where d = (n+m+1, . . . , n+m+1−i, . . . , n+
1), am−i 6= 0 for some i = 0, 1, . . . , m, or f and g satisfy the algebraic equation
R(f, g) ≡ 0, where R(ω1, ω2) is the definition of Theorem 1.4.

Proof : Let

F ∗ =
amfn+m+1

n + m + 1
+

am−1f
n+m

n + m
+ · · · +

a0f
n+1

n + 1
,

and

G∗ =
amgn+m+1

n + m + 1
+

am−1g
n+m

n + m
+ · · · +

a0g
n+1

n + 1
.

From F ≡ G, we can get

(12) F ∗ ≡ G∗ + C,

where C is a constant. Then we have T (r, f) = T (r, g) + S(r, f).
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Suppose that C 6= 0, by the second fundamental theorem, we have

(13)
(n + m + 1)T (r, f) = T (r, F ∗) ≤ N(r, 0; F ∗) + N(r,∞; F ∗)

+N(r, C; F ∗) + S(r, f) ≤ (2m + 3)T (r, g) + S(r, g).

By n ≥ m + 3, we can get a contradiction. Thus, we can get F ∗ ≡ G∗, i.e.,

(14)
fn+1( amfm

n+m+1 + am−1fm−1

n+m
+ · · · + a0

n+1)

≡ gn+1( amgm

n+m+1 + am−1gm−1

n+m
+ · · · + a0

n+1 .

Let h = f
g
. If h is a constant, substituting f = gh into (14) we get

amgn+m+1(hn+m+1 − 1)

n + m + 1
+

am−1f
n+m(hn+m − 1)

n + m
+· · ·+

a0f
n+1(hn+1 − 1)

n + 1
= 0,

which implies hµ = 1, where µ = (n + m + 1, . . . , n + m + 1 − i, . . . , n + 1),
am−i 6= 0 for some i = 0, 1, . . . , m. Thus f ≡ tg for a constant t such that
tµ = 1, where µ = (n + m + 1, . . . , n + m + 1− i, . . . , n + 1),am−i 6= 0 for some
i = 0, 1, . . . , m.

If h is not a constant, then we can get that f and g satisfy the algebraic

equation R(f, g) = 0,where R(ω1, ω2) = ωn
1 (

amωm

1

n+m+1 +
am−1ωm−1

1

n+m
+ · · ·+ a0

n+1)−

ωn
2 (

amωm

2

n+m+1 +
am−1ωm−1

2

n+m
+ · · · + a0

n+1).
Thus, we complete the proof of Lemma 2.13.

Lemma 2.14 [15] Let f and g be two nonconstant meromorphic functions.

If h ≡ 0 where h ≡ ( f ′′

f ′ −
2f ′

f−1) − ( g′′

g′
− 2g′

g−1), then f, g share 1 CM .

3 The Proofs of Theorems

Let F, G, F ∗ and G∗ be the definition of Lemma 2.13, and F1, G1 be the
definition of Lemma 2.11.

The Proof of Theorem 1.1: From the condition of Theorem 1.1, we
have F, G share 1 CM .

By Lemma 2.1, we have

(15)
T (r, F ∗) = (n + m + 1)T (r, f) + S(r, f),
T (r, G∗) = (n + m + 1)T (r, g) + S(r, g).

Since (F ∗)′ = Fz, we deduce

m(r,
1

F ∗
) ≤ m(r,

1

zF
) + S(r, f) ≤ m(r,

1

F
) + log r + S(r, f),
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and by the first fundamental theorem

(16)

T (r, F ∗) ≤ T (r, F ) + N(r, 0; F ∗) − N(r, 0; F ) + log r + S(r, f)
≤ T (r, F ) + N(r, 0; f) + N(r, b1; f) + · · · + N(r, bm; f)

−N(r, c1; f) − · · · − N(r, cm; f) − N(r, 0; f ′)
+ log r + S(r, f),

where b1, b2, . . . , bm are roots of the algebraic equation amzm

n+m+1 + am−1zm−1

n+m
+

· · · + a0

n+1 = 0, and c1, c2, . . . , cm are roots of the algebraic equation amzm +

am−1z
m−1 + · · · + a1z + a0 = 0.

By the definition of F, G, we have

(17)

N2(r, 0; F ) + N2(r,∞; F )

≤ 2N(r,∞; f) + 2N(r, 0; f) + N(r, c1; f)
+ · · · + N(r, cm; f) + N(r, 0; f ′) + 2 log r.

Similarly, we obtain

(18)

N2(r, 0; G) + N2(r,∞; G)

≤ 2N(r,∞; g) + 2N(r, 0; g) + N(r, c1; g)
+ · · · + N(r, cm; g) + N(r, 0; g′) + 2 log r.

If Lemma 2.3(i) holds, from (17),(18), we have for ε(> 0)
(19)
T (r, F ∗) ≤ (m + 3)T (r, f) + (m + 4)T (r, g) + 2N(r,∞; f)

+2N(r,∞; g) + 5 log r + S(r, f) + S(r, g)
≤ (m + 3)T (r, f) + (m + 4)T (r, g) + (2 − 2Θ(∞; f) + ε)T (r, f)

+(2 − 2Θ(∞; g) + ε)T (r, g) + 5 log r + S(r, f) + S(r, g)
≤ [2m + 11 − (2Θ(∞; f) + 2Θ(∞; g) + 2ε)]T (r) + 5 log r + S(r),

where T (r) = max{T (r, f), T (r, g)} and S(r) = max{S(r, f), S(r, g)}.
Similarly, we obtain

(20) T (r, G∗) ≤ [2m+11− (2Θ(∞; f)+2Θ(∞; g)+2ε)]T (r)+5 log r +S(r).

By (15),(19) and (20), we have

(21) [n − m − 10 + (2Θ(∞; f) + 2Θ(∞; g) + 2ε)]T (r) ≤ 5 log r + S(r).

Since f, g are two transcendental meromorphic functions and n > m+10−
(2Θ(∞; f) + 2Θ(∞; g)), we can obtain a contradiction.

If Lemma 2.3(ii) holds, then F ≡ G. By Lemma 2.13, we can get the
conclusion of Theorem 1.1.
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If Lemma 2.2(iii) holds, then F ·G ≡ 1. By Lemma 2.12 and n > max{m+
10 − (2Θ(∞; f) + 2Θ(∞; g)), 3m + 1}, we can get a contradiction.

Therefore, we complete the proof of Theorem 1.1.

The Proof of Theorem 1.2: From the condition of Theorem 1.2 and the
definition of F, G, we have El)(1, F ) = El)(1, G), E1)(1, F ) = E1)(1, G) where
l ≥ 3 and

(22)
N(r,∞; F ) ≤ N(r,∞; f) + log r,

N(r, 0; F ) ≤ N(r, 0; f) + N(r, c1; f) + · · · + N(r, cm; f)
+N(r, 0; f ′) + log r,

where c1, c2, . . . , cm are the definition of Subsection 3.1.

Suppose that H 6≡ 0. From (16)-(18),(22) and Lemma 2.9, we have

(23) [n −
5

3
m −

38

3
+ (

8

3
Θ(∞; f) + 2Θ(∞; g)]T (r) ≤

19

3
log r + S(r).

or

(24) [n −
5

3
m −

38

3
+ (

8

3
Θ(∞; g) + 2Θ(∞; f)]T (r) ≤

19

3
log r + S(r).

From n > 5
3m + 38

3 − 2(Θ(∞; g) + Θ(∞; f)− 2
3 min{Θ(∞; g), Θ(∞; f) and f, g

are two transcendental meromorphic functions, we can get a contradiction.

Therefore, we can get H ≡ 0. From Lemma 2.14, we have that F, G share 1
CM . By n > max{5

3m+ 38
3 −2(Θ(∞; g)+Θ(∞; f)− 2

3 min{Θ(∞; g), Θ(∞; f)},
3m + 1} and Theorem 1.1, we can obtain the conclusion of Theorem 1.2.

Therefore, we complete the proof of Theorem 1.2

The Proof of Theorem 1.3: From the condition of Theorem 1.2 and the
definition of F, G, we have El)(1, F ) = El)(1, G), and E2)(1, F ) = E2)(1, G)
where l ≥ 4.

Suppose that H 6≡ 0. From (16)-(18) and Lemma 2.10, we have

(25) [n − m − 10 + (2Θ(∞; f) + 2Θ(∞; g) + 2ε)]T (r) ≤ 5 log r + S(r).

Since f, g are two transcendental meromorphic functions and n > m + 10 −
(2Θ(∞; f) + 2Θ(∞; g)), we can get a contradiction.

Therefore, we can get H ≡ 0. From Lemma 2.14, we have that F, G share 1
CM . From Theorem 1.1 and n > max{m+10− (2Θ(∞; f)+2Θ(∞; g)), 3m+
1}, we can obtain the conclusion of Theorem 1.3.

Therefore, we complete the proof of Theorem 1.3
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4 Remarks

It follows from the proof of Theorem 1.1 that if the condition fnP (f)f ′ and
gnP (g)g′ share z CM is replaced by the condition fnP (f)f ′ and gnP (g)g′

share α(z) CM , where α(z) is a meromorphic function such that α(z) 6≡ 0,∞
and α(z) ∈ S(f)

⋂
S(g), the conclusion of Theorem 1.1 still holds.

Similarly, we can get the following results.

Theorem 4.1 Let f and g be two transcendental meromorphic functions, and
let n, l and m be three positive integers with n > max{ 5

3m + 38
3 − 2(Θ(∞; g) +

Θ(∞; f)−2
3 min{Θ(∞; g), Θ(∞; f)}, 3m+1}. If E l)(α(z), fnP (f)f ′) = El)(α(z),

gnP (g)g′) and E1)(α(z), fnP (f)f ′) = E1)(α(z), gnP (g)g′), where l ≥ 3 , then
the conclusion of Theorem 1.1 holds.

Theorem 4.2 Let f and g be two transcendental meromorphic functions, and
let n, l and m be three positive integers with n > max{m + 10 − (2Θ(∞; f) +
2Θ(∞; g)), 3m+1}. If E l)(α(z), fnP (f)f ′) = El)(α(z), gnP (g)g′) and E2)(α(z),
fnP (f)f ′) = E2)(α(z), gnP (g)g′), where l ≥ 4 , then the conclusion of Theo-
rem 1.1 holds.
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