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Certain Aspects of Some Arithmetic Functions in
Number Theory 1

Nicuşor Minculete, Petrică Dicu

Abstract

The purpose of this paper is to present several inequalities about
the arithmetic functions σ(e), τ (e), σ(e)∗, τ (e)∗ and other well-known
arithmetic functions. Among these, we have the following:
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1 Introduction

Let n be a positive integer, n ≥ 1. We note with σk(n) the sum of the kth

powers of divisors of n, so, σk(n) =
∑

d|n
dk, whence we obtain the following

equalities: σ1(n) = σ(n) and σ0(n) = τ(n)- the number of divisors of n (see

[6]). If d is a unitary divisor of n, then we have
(

d,
n

d

)

= 1. Let σ∗
k
(n) denote

the sum of the kth powers of the unitary divisors of n. We note d||n.
Next we have to mention that the notion of ”exponential divisor” was intro-
duced M. V. Subbarao in [9].
Let n > 1 be an integer of canonical from n = pa1
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r
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p
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r
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p
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i
> 1, if bi|ai for every i = 1, r. We note d|(e)n. Let σ(e)(n) denote the

sum of the exponential divisors of n and τ (e)(n) denote the number of the
exponential divisors of n. In [11] L. Tóth and N. Minculete introduced the
notion of ” exponential unitary divisors” or ”e-unitary divisors”. The integer
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(
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= 1, for every i = 1, r. Let σ(e)∗(n) denote the

sum of e-unitary divisor of n, and τ (e)∗(n) denote the number of the e-unitary
divisors of n. We note d|(e)∗. By convention, 1 is an e-unitary divisor of
n > 1, the smallest e-unitary divisor of n = pa1

1 pa2
2 ...par

r > 1 is p1p2...pr, where
p1p2...pr = γ(n) is called the ”core” of n.
Other aspects of these arithmetic function can be found in the papers [7] and
[10].
In [6], J. Sándor shows that
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2 Main results

An inequality which is due to J.B. Diaz and F.T. Matcalf is proved in [2],
namely:

Lemma 1 Let n be a positive integer, n ≥ 2. For every a1, a2, ..., an ∈ R and
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The arithmetical mean is greater than the geometrical mean or they are
equal, so for every n, k, l ∈ N with n ≥ 2, we have
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Consequently, from the relations (12) and (13) and taking into account that
the relation ”≤” is transitive, we deduce the inequality
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Remark 1 For k = l in inequality (11), we obtain the relation of J. Sándor

and L. Tóth, namely
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which is equivalent to
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Remark 4 From inequality (19), we deduce another simple inequality, namely
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which is equivalent to
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Theorem 4 For every n, k, l ∈ N with n ≥ 1, there are the following relations:
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Proof. We make the same proof as in Theorem 3, by repacing the exponential
divisors with the e-unitary divisors.
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[1] V. Băndilă, M. Lascu and L. Panaitopol, Inegalităţi, Editura GIL, Zalău,
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[9] M. V. Subbarao, On some arithmetic convolutions in The Theory

of Arithmetic Functions, Lecture Notes in Mathematics, New York,
Springer-Verlag, 1972.
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