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POTENTIAL METHODS IN CONTINUUM MECHANICS

T. GEGELIA AND L. JENTSCH

Abstract. This is the survey of the applications of the potential
methods to the problems of continuum mechanics. Historical review,
new results, prospects of the development are given.

This survey paper is dedicated to the 90th birthday of Victor Kupradze.
Therefore we shall cover here mainly questions connected with his scientific
interests and dealt with by his pupils and followers. We wish to note spe-
cially that V. Kupradze’s old works on the application of potential methods
to the study of wave propagation, radiation and diffraction problems that
had greatly contributed to the progress in these directions will hardly be
mentioned.

Eight years have passed since our previous survey of the field in question.1

That was the period of great events in our life, change of the outlook,
revaluation of many results, the arising of new difficulties in the development
of science. The potential method keeps on developing and we do have results
obtained in these years which are worthwhile being told about.

1. A Historical Review
1.1. Initiation of Potential Methods. When applied to problems of

continuum mechanics, potential methods were initially based on the concept
of representing solutions of these problems in the form of convolution type
integrals, one of such convoluting functions being a special solution of the
corresponding equation possessing a singularity and called the kernel of the
potential. Later solutions of this kind came to be referred to as fundamental
solutions, while convolution type integrals as potentials.

Potentials were constructed as early as the first half of the last century,
proceeding from physical considerations. Another source for the construc-
tion of potentials was Green’s formula (1828) and especially the representa-
tion of a regular function by means of this formula as the sum of a volume
potential and single- and double-layer potentials. In the subsequent period
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the investigation (Sobolev [1]) involved potential type integrals that were a
combination of potentials of the above-mentioned three types:

K(ϕ)(x) ≡
∫

X

K(x, x− y)ϕ(y)dµ(y). (1)

Here X is some nonempty set from Rm, µ is a complete measure over some
class of subsets X forming the σ-algebra, the kernel K : Y × Rm → C
(Y ⊂ X, C is a set of complex numbers), the density ϕ : X → C. Thus the
theory of a potential is the theory of an integral of type (1) dealing with
the investigation of its boundary, differential and other properties. The
potential method implies the application of a potential type integral to the
study of problems of mathematical physics.

Alongside with methods of series, the potential methods have become a
powerful tool of investigations in physics and mechanics. True, for some
particulare domains methods of series gave both solutions of the problems
and algorithms for the numerical realization of solutions, but for arbitrary
domains the use of these methods was connected with certain difficulties.
In this respect the method of the potential theory is undoubtedly more
promissing. Moreover, algorithms provided by methods of series are not al-
ways convenient for numerical calculations, while potentials with integrals
taken over the boundary of the considered medium, i.e., the so-called bound-
ary integrals are very convenient for constructing numerical solutions. To
this we should add that the prospect to represent solutions of problems of
continuum mechanics by potentials in terms of boundary values and their
derivatives looks very enticing. For a regular harmonic function, for exam-
ple, such a representation formula immediately yields its analyticity, the
character of its behaviour near singular points and other properties which
are rather difficult to establish by the methods of series. Besides, the for-
mula for representation of solutions in the form of potentials initiated the
introduction of the Green function that had played an outstanding role in
the development of the theory of boundary value problems.

1.2. Potentials of the Elasticity Theory. As it was mentioned in the
foregoing subsection, kernels of potentials are constructed by special singular
solutions of differential equations of problems under consideration. The
construction of harmonic potentials is based on the fundamental solution
of the Laplace equation. In other problems of mathematical physics use is
made of fundamental and singular solutions of the corresponding differential
equations. For example, in the elasticity theory potentials are constructed
by means of the fundamental solution of the system of the basic equations of
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this theory. This system is written in terms of displacement components as

A(∂x)u = −F, A(∂x) = ‖Aij(∂x)‖3×3,

Aij(∂x) ≡ δijµ∆ + (λ + µ)
∂2

∂xi∂xj
, i, j = 1, 2, 3,

(2)

where u = (u1, u2, u3) is the displacement vector, F is the volume force, λ
and µ are the Lamé constants, δij is the Kronecker symbol, ∆ is the Laplace
operator. The fundamental solution of this system is the matrix (see, e.g.,
Kupradze, Gegelia, Basheleishvili and Burchuladze [1], which below will be
referred to as Kupradze (1))

Γ(x) = ‖Γij(x)‖3×3, Γij(x) ≡ λ′δik

|x|
+

µ′xixj

|x|3
,

λ′ = (λ + 3µ)(4πµ(λ + 2µ))−1, µ′ = (λ + µ)(4πµ(λ + 2µ))−1.
(3)

whose each column (as well as each row) regarded as a vector satisfies the
system (2) at any point of the space, except the origin, where this vector
has the pole of first order.

This fundamental solution was constructed as far back as 1848 by the
outstanding English physicist Lord Kelvin whose name at the time and till
1892 was Thomson. It was constructed proceeding from the physical argu-
ments: if the entire space is filled up by an isotropic homogeneous elastic
medium with the elastic Lamé constants λ and µ and the unit concentrated
force is applied to the origin, directed along the xj-axis, then the displace-
ment at the point x produced by this force is equal to the j-th column of
the matrix of fundamental solutions.

This result of Kelvin can hardly be overestimated. It had opened a
vista for the potential method in the elasticity theory. Before long this
discovery was followed by the works E. Betti, J. Boussinesq and others,
where potentials of the elasticity theory were constructed and applied to
boundary value problems.

The studies we have mentioned above belong mainly to the second half
of the last century when the Fredholm theory did not exist. Therefore the
potential methods were not applied to prove existence theorems of solutions
of boundary value problems, and if they were, then there was no proper
substantiation. From the results of that time we should draw the reader’s
attention to the solutions of numerous particular problems. Representatives
of the Italian school were especially inclined to a wide use of potential
methods (see the surveys Love [1], Tedone [1], Boussinesq [1], Trefftz [1],
Marcolongo [1] and others).

The works of the scientists of the 19th century reflect an insufficient devel-
opment of the mathematical means of that time. Mathematical arguments
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were largely based on physical considerations and proofs based on these con-
siderations. Mathematicians of that time, including some oustanding ones,
were quite content with the situation. For example, H. Poincaré wrote that
one could not demand the same rigor of mechanics as of pure analysis.
During a rapid development of the potential method suchlike opinions evi-
dently led to the appearance of many statements having no mathematical
substantiation. The theory of harmonic potentials, their boundary and dif-
ferential properties had been developed only by the beginning of our century
(H. Poincaré, O.D. Kellog, A.M. Liapunov, H.M. Günter, etc.), while the
theory of potentials of elasticity in the second half of our century.

The fundamental solution of equations of fluid flow (the Stokes system)
does not differ in any conspicuous way from the fundamental Kelvin ma-
trix and the theory of the corresponding potentials is constructed similarly
to potentials of the elasticity theory (see Lichtenstein [1], Odqvist [1], La-
dyzhenskaya [1], Belonosov and Chernous [1]).

1.3. Invention of the Theory of Fredholm Integral Equations.
The creation of the theory of integral equations by Fredholm gave a new im-
petus to the development of potential methods. In 1900 I. Fredholm proved
his famous theorems for integral equations and the theorem of the existence
of solution of the Dirichlet problem. The latter result made Fredholm world-
wide famous and drew the attention of the mathematical community to the
theory of integral equations. It was not difficult to guess what big prospects
lay before Fredholm’s discoveries – after all many problems of continuum
mechanics are reduced by the potential method to integral equations. This
formed the ground for the revival of potential methods and for a rapid de-
velopment of the theory of integral equations (D. Hilbert, E. Goursat, G.
Giraud, T. Carleman, F. Noether, E. Picard, H. Poincaré, J. Radon, F.
Rellich, F. Riesz, F. Tricomi, E. Schmidt and many others).

Various problems of mathematical physics were reduced to various inte-
gral equations. In these problems the integration set was assumed to be a
segment of the straight line, a finite or infinite domain from Rm, a surface or
a curve and so on. The resulting integral equations contained a continuous
kernel, a kernel with a weak singularity, a symmetrical kernel and so on.
In an attempt to cover general situations completely continuous operators
were introduced and the foundations of functional analysis were laid (D.
Hilbert, F. Riesz, S. Banach).

In investigating the Dirichlet problem, Fredholm sought for a solution
in the form of a harmonic double-layer potential and obtained the integral
equation. From the uniqueness of the solution of the Dirichlet problem he
concluded that the corresponding homogeneous equation had only the triv-
ial solution. In that case an alternative of his theory gave the theorem of
the existence of solutions. However, Fredholm could not apply the same
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technique to the elasticity theory, since the double-layer potential of this
theory leads to singular integral equations whose theory did not exist at
his time. Using a roundabout way, namely, introducing the so-called pseu-
dostress operator, in 1906 Fredholm succeeded in proving, by the potential
method, the existence theorem of solution to the first basic problem of the
elasticity theory.

This dicovery of Fredholm was no less important that the previous one.
True, scientists had long been trying to prove the existence of solutions of
the Dirichlet problems and their efforts had yielded positive results. Almost
at the same time with I. Fredholm, H. Poincaré solved this problem using
a different method (É. Picard, O. Perron). Poincaré’s method is fit only
for the Dirichlet problem for the Laplace equation and cannot be applied
to the elasticity theory. This circumstance further enhanced interest in the
potential method that previously was sometimes referred to as the Fredholm
method but in recent years has come to be known as the method of boundary
integral equations. The latter name reflects well the essence of the method
from the standpoint of constructing numerical solutions, but the essence of
the potential method is by no means confined to numerical analysis.

Though Fredholm’s method was worthy of high praise, still it did not turn
out to be universal. For example, it could not be applied to the investigation
of the second problem of the elasticity theory. Scientists’ efforts in this
direction were vain (K. Korn, T. Boggio, H. Weyl, N. Kinoshita, T. Mura
and others). They obtained singular integral equations for which Fredholm’s
theorems were not valid, while their attempts to introduce pseudostress
analogues led to nothing. Neither were Fredholm’s theorem valid for Wiener
and Hopf’s integral equations.

1.4. Singular Integral Equations. The theory of singular integral
equations was developed only forty years after. In the 40ies this theory was
worked out mainly by the Georgian mathematicians (see also the works by
D. Hilbert, H. Poincaré, F. Noether and T. Carleman) led by N. Muskhe-
lishvili but only for one-dimensional equations. It appeared that, unlike
Fredholm’s equations, the theory of singular equations largely depended on
dimension of the integration set.

One-dimensional singular integral equations were fit for the investigation
of only plane problems of mathematical physics. This initiated the era
of a tempestuous development of plane problems. The situation was also
facilitated by the well-developed theory of complex analysis connected, due
to the efforts of N. Muskhelishvili, with plane problems of mechanics and
one-dimensional singular integral equations (I. Vekua, N. Muskhelishvili, N.
Vekua, D. Kveselava, D. Sherman, G. Mandzhavidze, M. Basheleishvili and
others).
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1.5. Multidimensional Singular Integral Equations. It took an-
other twenty years for the theory of multidimensional singular equations to
acquire an ability to solve three-dimensional problems of mechanics. Three
possible ways were available for constructing the theory of singular integral
equations (SIE): it could be connected with the theory of complex analysis
and boundary value problems of linear conjugation; it could be constructed
by means of I. Vekua’s inversion formulas and, finally, using the general
theory of functional analysis. Only the third way is suitable for multidimen-
sional SIE. But to apply methods of functional analysis one should have a
conjugate equation in the sense of functional analysis, which cannot be done
in Hölder spaces, as it is difficult to construct explicitly the conjugate space
and to write the conjugate operator for these spaces. A formal application
of the conjugate equation gives us nothing because it must be afterwards
connected with the boundary value problem. N. Muskhelishvili managed to
circumvent this difficulty by introducing the adjoint equation and proved
the validity of Noether’s theorems for this pair. In the multidimensional
case SIE had to be investigated in the space L2 (S. Mikhlin), and, after
that, using the embedding theorems (T. Gegelia) in Hölder spaces. The
Hölder space is necessary to obtain the classical solutions of problems of
continuum mechanics.

The theory was elaborated sufficiently well in the 60ies mainly due to
the efforts of S. Mikhlin and V. Kupradze (see also F. Tricomi, G. Gi-
raud, T. Gegelia, A. Calderon, A. Zygmund, Gohberg [1], A.I. Volpert,
Selley [1,2] and others). By that time singular potentials had been studied
completely (A. Calderon, A. Zygmund, Maz’ya [1], T. Gegelia and others)
and the advantageous situation had formed for the application of potential
methods. The results were not long in coming. The existence of solu-
tions of the second basic problem of the elasticity theory (T.Gegelia, V.
Kupradze), also of the third and the fourth problem (M. Basheleishvili, T.
Gegelia) was proved. The dynamical problems of elasticity (V. Kupradze,
T. Burchuladze, L. Magnaradze, T. Gegelia, O. Maisaia, R. Rukhadze, D.
Natroshvili, R. Kapanadze, R. Chichinadze and others) and contact prob-
lems (V. Kupradze, M. Basheleishvili, T. Gegelia, Jentsch [5, 10, 14, 15], D.
Natroshvili, M. Svanadze, R. Katamadze, R. Gachechiladze, M. Kvinikadze
[1, 2], O. Maisaia and others) were studied completely. The improved mod-
els of an elastic medium were investigated, taking into account moment,
heat and other stresses, electromagnetic and other fields (W. Nowacki, V.
Kupradze, Jentsch [4, 8, 13], T. Burchuladze, M. Basheleishvili, D. Na-
troshvili, N. Kakhniashvili, T. Gegelia, T. Buchukuri, M. Agniashvili, Yu.
Bezhuashvili, O. Napetvaridze, R. Gachechiladze, O. Maisaia, R. Chichi-
nadze, R. Kapanadze, G. Javakhishvili, O. Jagmaidze, R. Dikhamindzhia,
K. Svanadze, Zazashvili [1–3], R. Meladze, R. Rukhadze, Y. Adda, J. Philib-
ert, J. Hlavaček, M. Hlavaček, J. Ignaczak, S. Kaliski, W. Nowacki and
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others).
The potential method was used to prove anew the theorems on the ex-

istence and uniqueness of solutions of plane problems and to investigate
various two-dimensional models of the elasticity theory (M. Basheleishvili,
G. Kvinikadze, Zh. Rukhadze, Jentsch [18–25], Jentsch and Maul [1], Za-
zashvili [2–4] and others).

1.6. Applications of Multidimensional SIE in the Elasticity The-
ory. Application of a newly created theory to applied problems usually
demands serious intellectual effort, as well as a considerable amount of im-
provement and modific/ation of the theory itself. This is convincingly evi-
denced by the works starting from T. Carleman and F. Noether (1920–1923)
and ending with N. Muskhelishivi (1945). The theory of one-dimensional
SIE was developed mainly in the mentioned works by T. Carleman and F.
Noether, but applications of the results stated therein began actually only
after the publication of N. Muskhelishvili’s monograph.

As compared with the one-dimensional case, the investigation of SIE in
the multidimensional case was connected with difficulties of various nature.
In the one-dimensional case all SIE are reduced to one and the same type
of SIE with a Cauchy type kernel. However we do not have such a universal
technique of representation for the multidimensional case. Here we deal
with quite a variety of SIE characterized by the so-called SIE characteristic.
Besides, the complicated topology connected with multidimensional SIE is
yet another obstacle. Noether’s theory holds for normal SIE in both the
one-dimensional and the multidimensional case, but to verify the normality
of one-dimensional SIE is not difficult at all, while in the multidimensional
case the normality is established by means of the symbol matrix which is
not always constructed explicitly. The calculation of the index becomes a
much more difficult matter in the multidimensional case.

Naturally, the above-listed difficulties of the theory of multidimensional
SIE complicate its application to problems of continuum mechanics. One
has to seek for special techniques in order to establish the normality of the
obtained SIE and to calculate their indices. Thus the theory of multidi-
mensional SIE was created mainly in the 60ies but its improvement goes on
to this day. The theory of SIE over open surfaces has not yet reached its
perfection.

Let us illustrate what we have said above by the example of the classical
elasticity theory.

1.7. Investigation of the Third Basic Problem of the Elasticity
Theory. We shall consider the third boundary value problem of the classi-
cal elasticity theory. It consists in finding the solution u = (u1, u2, u3) of the
system (2) in the domain Ω occupied by an elastic medium when tangential
components of displacement and normal components of stress are given on
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the boundary ∂Ω. The simplest technique for investigating this problem is
to reduce it to the SIE system by means of the potential

R(ϕ)(x) =
∫

∂Ω

(R(∂y, ν)Γ(y − x))∗ϕ(y)dyS, (4)

where ν is the unit exterior normal vector to the surface ∂Ω at the point y,
Γ is the fundamental matrix (3), and

R(∂y, ν) = ‖Rkj(∂y, ν)‖4×3,

Rkj(∂y, ν) =
(

2µνj
∂
∂ν

+ λ
∂

∂xj

)

δk4 + (δkj − νkνj)(1− δk4).

As a result, for defining the uknown density ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) we obtain
a rather complicated SIE system consisting of four equations for defining
the three-component vector u.

The SIE theory elaborated, for example, in the monograph by S. Mikhlin
cannot be applied directly to the obtained system. Therefore a nonstandard
technique had to be developed in order to study the obtained SIE system
(see Basheleishvili and Gegelia [2], Kupradze (1)). The application of this
method of investigation of problems of the mentioned type to other models
of continuum mechanics turned out to be a difficult matter that has not
been coped with to the end.

2. New Results. Prospects of the Development
2.1. Basic Problems of the Elasticity Theory for an Anisotropic

Medium. If the medium under consideration is an anisotropic one, then
the investigation of boundary value problems becomes rather sophisticated
for many reasons, for example, because in that case we do not have the
corresponding fundamental matrix written explicitly in terms of elementary
functions but for one exception (E. Kröner). It is given in the form

φ(x− y) = ∆(∂x)
∫

B(0,1)

|(x− y) · z|A−1(z)dzS, (5)

where B(0, 1) is the ball in R3 with center at the origin and radius equal to
unity,

A(∂x) = ‖Aik(∂x)‖3×3, Aik(∂x) = aijkl
∂2

∂xj∂xl
, (6)

is the differential operator of the classical elaticity theory, A−1(z) is the
reciprocal matrix to A(z), ∆ is the Laplace operator, aijkl are the elastic
constants. Here and in what follows the summation over repeated indices
is meant.
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The fundamental solution (5) was used as a basis for the elaboration of
the potential theory (T. Gegelia, R. Kapanadze, Burchuladze and Gegelia
[1]) by means of which boundary value problems were reduced to SIE sys-
tems. The main difficulty, however, is connected with the investigation of
the obtained systems. The general SIE theory states that if the determinant
of the symbol matrix of this system is different from zero everywhere, then
the Noether theorems hold for SIE. As distinct from the isotropic case, the
symbol matrix cannot be constructed effectively. R. Kapanadze succeeded
in finding a beautiful way to overcome all obstacles. He connected, in some
sense, the symbol matrices of the obtained SIE with the Cauchy problems
for the definite simple systems of ordinary differential equations and proved
the following theorem.

Theorem 1. The symbol determinants of SIE systems of boundary value
problems are different from zero if and only if the corresponding homoge-
neous Cauchy problems have only trivial solutions.

The Cauchy problems have only trivial solutions under one natural re-
striction, namely under the positive definiteness of the specific energy of
strain. This beautiful discovery of R. Kapanadze was used to investi-
gate all the basic and contact problems of the classical elasticity theory
for anisotropic media (see Kapanadze [1], Burchuladze and Gegelia [1], M.
Basheleishvili, D. Natroshvili). Note that in investigation of the basic and
the contact problems for an anisotropic homogeneous medium, i.e., when
coefficients of the basic equations are constant numbers, the obtained sin-
gular integrals still depend on the pole. This is due to the fact that these
integrals include derivatives of the fundamental matrix. If, however, the
medium is anisotropic and nonhomogeneous, then the dependence of singu-
lar integrals on the pole is also due to the variability of equation coefficients.
The method proposed by R. Kapanadze turns out suitable for this difficult
situation, too. Moreover, R. Kapanadze showed that the above-mentioned
connection of the boundary value problems with the corresponding Cauchy
problems remains valid provided that the system under consideration is the
strongly elliptic one. He thereby extended his method to the investigation
of boundary value problems of couple-stress elasticity, thermoelasticity and
other generalized models of an elastic anisotropic nonhomogeneous medium.

2.2. New Uniqueness Theorems for Problems of Statics. The uni-
queness theorems of problems of the classical elasticity theory are treated
in the fine monograph Knops and Payne [1], also in the book Kupradze
(1) where the uniqueness theorems are also proved for couple-stress elastic-
ity and thermoelasticity. The results of these monographs were afterwards
improved and generalized to other models of an elastic medium (see Burchu-
ladze and Gegelia [1]).
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Let an elastic isotropic homogeneous medium with the Lamé constants λ
and µ occupy the infinite domain Ω− which is a complement to the bounded
domain Ω+ : Ω− ≡ R3\Ω̄+. Then, under the assumptions of the classical
theory, the static state of this medium is described by the system of equa-
tions (2). The following uniqueness theorem is proved (see Buchukuri and
Gegelia [1–4]).

Theorem 2. Any basic problem of the static state of an elastic medium
for the domain Ω− cannot have two regular solutions satisfying the condition

u(x) = o(1) (7)

in a neighbourhood of infinity.
Note that in the classical uniqueness theorems (see Knops and Payne [1],

Kupradze (1)), in addition to the condition (7), it is required that the decay
condition at infinity

∂u(x)
∂xi

= O
( 1
|x|2

)

, i = 1, 2, 3, (8)

be fulfilled.
Theorem 2 was later on proved for anisotropic media (Buchukuri and Ge-

gelia [3]), for problems of thermoelasticity, couple-stress elasticity (Buchu-
kuri and Gegelia [4], a microporous elastic medium (Gegelia and Jentsch [1]).

In the second basic problem boundary stress vector is given on the bound-
ary ∂Ω−. Therefore it is natural to prove the uniqueness theorem under
restrictions imposed on the stress vector. Such a problem posed in the book
Knops and Payne [1] was solved by T. Buchukuri (see Buchukuri [1]).

In Buchukuri and Gegelia [1–4] Theorem 2 is proved by the method of
asymptotic representation of solutions of the external problems in a neigh-
bourhood of infinity. The same theorem is proved in Kondratyev and Olejnik
[1, 2] by a different method based on the Korn’s inequality. The method
of asymptotic representation of solutions turned out suitable also for other
models of the elasticity theory; in particular, for models described by sys-
tems of equations containing both the higher derivatives and the derivatives
of first and zero orders (equations of couple-stress elasticity and equations
of a microporous medium).

2.3. Uniqueness Theorems for Oscillation Problems. If a homoge-
neous isotropic elastic medium is subjected to the action of external forces
periodic in time, then it is natural to assume that displacement, strain and
stress components depend on time in the same manner. Such a state of
an elastic medium is called stationary elastic oscillation. Equations of this
state are written in the form A(∂x)u + ω2u = 0, where ω is the oscillation
frequency, A(∂x) is the differential operator of classical elasticity determined
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by the formula (2). The density of the medium in question is assumed to
be equal to unity without loss of generality.

V. Kupradze proved (see Kupradze (1)) the following theorem.

Theorem 3. Any external basic problem of stationary elastic oscillation
cannot have two regular solutions u satisfying the conditions

lim
|x|→∞

u(p)(x) = 0, lim
|x|→∞

u(s)(x) = 0, (9)

lim
|x|→∞

r
(∂u(p)(x)

∂r
− ik1u(p)(x)

)

= 0,

lim
|x|→∞

r
(∂u(s)(x)

∂r
− ik2u(s)(x)

)

= 0

(10)

where

r = |x|, k2
1 = ω2(λ + 2µ)−1, k2

2 = ω2µ−1, i2 = −1,

u(p) =
1

k2
2 − k2

1
(∆ + k2

2)u, u(s) = − 1
k2
2 − k2

1
(∆ + k2

1)u.

By analogy with the radiation conditions of Sommerfeld (A. Sommerfeld,
V. Kupradze, F. Rellich), the conditions (9), (10) are called the conditions
of elastic radiation (Kupradze (1)).

Theorem 3 is valid for an isotropic medium. Its extension to an anisotropic
medium turned out a difficult problem which was nevertheless solved.

Let A(∂x) be the matrix differential operator of the classical elasticity
theory of anisotropic media (see (6)). We shall consider equations of sta-
tionary oscillation

A(∂x)u(x) + ω2u(x) = 0. (11)

It is assumed that
1) ∇ξφ(ξ, ω) 6= 0 for φ(ξ, ω) = 0, ξ ∈ R3;
2) the total curvature of the manifold φ(ξ, ω) = 0 vanishes nowhere.

Here φ(ξ, ω) ≡ det(Iω2 −A(ξ)) , ξ ∈ R3, I ≡ ‖δkj‖3×3.
With these assumptions the equation φ(ξ, ω) = 0 determines three com-

pact, convex, two-dimensional surfaces S1, S2, S3 which do not intersect.
Moreover, for any point x ∈ R3\{0} there exists on Sj a unique point ξj

such that n(ξj) is directed along the vector x. By n(ξj) we denote the
external normal to the surface Sj at the point ξj (j = 1, 2, 3).

Let Wm(Ω−) denote a set of vectors v = (v1, v2, v3) ∈ C1(Ω−) satisfying
in a neighbourhood of infinity the conditions

vk(x) =
3

∑

j=1

vj
k(x), vj

k(x) = O(|x|−1),
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lim
r→∞

r
(∂vj

k(x)
∂r

+ i(−1)m(x
r

ξj)vj
k(x)

)

= 0, (12)

j = 1, 2, 3; |x| = r; m = 1 or m = 2.

D. Natroshvili proved the following theorem:

Theorem 4. Any external basic problem of stationary elastic oscillation
of anisotropic media cannot have two regular solutions of the class Wm(Ω−).

To prove the theorem D. Natroshvili had constructed a fundamental ma-
trix Γ(x, ω, m) of the operator A(∂x) + Iω2. This matrix belongs to the
class Wm(R3\{0}). It is constructed by means of the limiting absorption
principle from the fundamental matrix Γ(x, τε) of the operator A(∂x)− τ2

ε I
(τε = ε + iω), which vanishes at infinity more rapidly than any negative
power of |x| (cf. Vainberg [1]).

2.4. Asymptotic Representation of Solutions at Infinity. The asy-
mptotic representation of solutions in a neighbourhood of infinity discussed
in Subsection 2.2 is based on the Green and Somigliana formulas which, in
turn, are constructed by means of the fundamental solution.

Let us consider a system of equations

Aik(∂x)uk = 0 (A(∂x)u = 0), (13)

where Aik(∂x) is the differential operator determined by the formula

Aik(∂x) = aijkl
∂2

∂xj∂xl
, (14)

u = (u1, . . . , un) is the unknown vector, x = (x1, . . . , xm) is a point from
Rm, aijkl are the constants satisfying the conditions aijkl = ailkj . In addi-
tion, we require of the system (13) to be elliptic. This is equivalent to the
condition

∀ξ = (ξ1, . . . , ξm) ∈ Rm\{0} : det A(ξ) = det ‖Aik(ξ)‖n×n 6= 0. (15)

If it is assumed that m = n = 3 and aijkl = aklij = ajikl, then the system
(13) turns into the system of the classical elasticity theory for an anisotropic
medium.

Let us consider the conjugate system of equations

A∗ik(∂x)vk = 0 (A∗(∂x)v = 0), (16)

where

A∗ik(∂x) = aklij
∂2

∂xj∂xl
= akjil

∂2

∂xj∂xl
= Aki(∂x). (17)
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In John [1] there is constructed a fundamental matrix φ = ‖φks‖n×n such
that
1) φks ∈ C∞(Rm\{0}), ∀x ∈ Rm\{0} : Aik(∂x)φks(x) = 0;
2) ∀t 6= 0, ∀x ∈ Rm\{0} : ∂αφ(tx) = t−|α|−m+2∂αφ(x), where α =
(α1, . . . , αm) is an arbitrary multiindex;
3) ∀x ∈ Rm:

lim
δ→0

∫

∂B(x,δ)

T ∗ik(∂y, ν)φks(y − x)dyS = δis, (18)

where B(x, δ) is the ball with center at the point x and radius δ, and

T ∗(∂y, ν) = ‖T ∗ik(∂y, ν)‖n×n, (19)

T ∗ik(∂y, ν) = akjilνj
∂

∂yl
= Tki(∂y, ν), T (∂y, ν) = ‖Tki(∂y, ν)‖n×n. (20)

The following theorem is valid (see Buchukuri and Gegelia [1–4]):

Theorem 5. Let Ω be a domain from Rm containing a neighbourhood of
infinity, u be a solution of the system (13) in the domain Ω, belonging to
the class C2(Ω) and satisfying one of the conditions below:

lim
r→∞

1
rm+p+1

∫

B(0,r)\B(0,r/4)

|u(z)|dz = 0,

lim
|z|→∞

|u(z)|
|z|p+1 = 0,

∫

Ω

|u(z)|dz
1 + |z|m+p+1 < +∞,

where p is a nonnegative integer. Then in a neighbourhood of infinity the
following asymptotic representation of u = (u1, . . . , un) holds:

us(x) =
∑

|α|≤p

c(α)
s xα +

∑

|β|≤q

d(β)
k Dβφks(x) + ψs(x), (21)

where c(α)
s = const, d(β)

s = const, α = (α1, ..., αm) and β = (β1, ..., βm) are
multiindices, q is an arbitrary nonnegative integer, and

|Dγψs(x)| ≤ c
|x|m+|γ|+q+1 (22)

c = const, γ = (γ1, . . . , γm) is an arbitrary multiindex.

It should be emphasized that each of the three terms in the right-hand
side of the representation (21) is a solution of the system (13).

Theorem 5 implies the following corollaries:
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Corollary 1. If u ∈ C2(Ω), ∀x ∈ Ω : A(∂x)u(x) = 0 and u(x) = o(1)
(m > 2), u(x) = o(ln |x|) (m = 2) as |x| → ∞, then there exists the limit
lim|x|→∞ u(x) = (c1, . . . , cn).

Corollary 2. If u ∈ C2(Ω), ∀x ∈ Ω : A(∂x)u(x) = 0 and u(x) = o(1)
(m ≥ 2) as |x| → ∞, then for any multiindex α:

Dαu(x) = O(|x|2−m−|α|) (m > 2), Dαu(x) = O(|x|1−|α|) (m = 2).

In particular,

u(x) = O(|x|2−m), T (∂x, ν)u(x) = O(|x|1−m) (m > 2),

u(x) = O(|x|−1), T (∂x, ν)u(x) = O(|x|−2) (m = 2).

2.5. Solutions of Boundary Value Problems with Power Growth
at Infinity. Theorem 5 makes it possible to investigate boundary value
problems in more general formulations than the classical ones.

Let Ω+ be a bounded domain from Rm with the smooth boundary ∂Ω+ ≡
S. Let Ω− ≡ Rm\(Ω+ ∪ S).

Problem (I)−cs. In the domain Ω− find a vector u = (u1, . . . , un) of the
class C2(Ω−) ∩ C1(Ω̄−), satisfying the conditions

∀x ∈ Ω− : A(∂x)u(x) = 0, ∀y ∈ S : (u(y))− = ϕ(y),

u(x) = o(|x|p+1) as |x| → ∞.

Here A(∂x) is the differential operator determined by the formula (13), ϕ
is a given function (ϕ = (ϕ1, . . . , ϕn)) on S, and p is a nonnegative integer.

Let us denote by GI
cs(p,m) the set of all solutions of the corresponding

homogeneous (ϕ = 0) problem.
T. Buchukuri proved (see Buchukuri and Gegelia [3]) the following

Theorem 6. GI
cs(p,m) is a finite-dimensional linear set whose dimen-

sion is calculated by the formula dim GI
cs(p, m) = n

(

Cm−1
p+m−1 + Cm−1

p+m−2

)

;
here Cs

r is the binomial coefficient; Cs
r = 0 if s > r.

Corollary 1. If ϕ ∈ Hα(∂Ω−) (α > 0), then the problem (I)−cs is solv-
able and the solution is represented in the form u = u(0)+u(p), where u(0) is
a solution of the problem (I)−cs, vanishing at infinity, and u(p) is an arbitrary
element of the set GI

cs(p,m).

Similar theorems and corollaries hold for all the basic problems, also for
the main contact problem. However, it is difficult to calculate dimension
of the set of solutions of the homogeneous problems which in the classical
formulations have nontrivial solutions.
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Corollary 2. In the classical theory of elasticity, m = n = 3 and

dim GI
cs(p, 3) = 3(C2

p+2 + C2
p+1). (23)

Therefore we shall have three linear independent solutions of the first basic
problem, satisfying the condition lim|x|→∞

u(x)
|x| = 0.

Note that the investigation of problems of the type (I)−cs is far from
completion. Dimensions of spaces of the type GI

cs(p,m) have not been
calculated for other problems of elasticity. Nothing has been done in this
direction in couple-stress elasticity and thermoelasticity, as well as for other
models.

2.6. Asymptotic Representation in the Couple-Stress Theory
of Elasticity. To prove the validity of a representation of the form (21)
for solutions of a system of the couple-stress theory of elasticity turned out
to be a difficult task. A system of the basic equations of this theory for an
anisotropic medium is written in the form

cijlk
∂2uk

∂xj∂xl
− cjilmεklm

∂ωk

∂xj
= 0,

cjmlkεijm
∂uk

∂xl
+ c′jilk

∂2ωk

∂xj∂xl
− cjmlpεijmεklpωk = 0,

(24)

u = (u1, u2, u3) is a displacement vector, ω = (ω1, ω2, ω3) is a rotation
vector, εijk is the Levy–Civita symbol, cijlk = const, c′ijlk = const.

The system (24) contains both the second order derivatives of the un-
known vectors and the first and zero order derivatives. The latter circum-
stance essentially complicates the character of the fundamental matrix of
the system (24). This matrix does not possess the property 2) from Sub-
section 2.4. Yet, T. Buchukuri managed to obtain the estimates of the
fundamental matrix needed to prove the validity of a representation of the
form (21) (see Buchukuri and Gegelia [4]).

An asymptotic representation of the form (21) has not been obtained for
many models of the elasticity theory in the case of an anisotropic medium.

2.7. Mixed Basic Problem of the Elasticity Theory. Mixed basic
problems of the elasticity theory – when a boundary condition of one type,
say, displacement is given on one part of the boundary and a condition of
another type, say, stress is given on the remaining part of the boundary –
are reduced to SIE on open surfaces. Mixed plane problems are reduced to
SIE on open contours.

The SIE theory on open contours is completely elaborated both in the
classes of smooth functions and in the classes of summable functions (Mus-
khelishvili [2], Muskhelishvili and Kveselava [1], N. Vekua [1] and oth-
ers). These results and their development enabled G. Mandzhavidze, V.
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Kupradze and T. Burchuladze to bring to the end the investigation of mixed
plane problems of elasticity.

The SIE theory on open surfaces in the classes of Hölder functions has
not been developed to a sufficient extent; some results in this direction are
obtained by R. Kapanadze in Kapanadze [2]. For the time being mixed
problems of the elasticity theory have not been investigated with the re-
quired completeness (see Subsection 2.12).

2.8. Properties of Solutions of the Basic Equations of Elasticity
near Singular Points. As said previously, the fundamental solution of the
considered system plays a special role in potential methods. This solution
satisfies the system everywhere except the origin at which it has a singu-
larity. Such a solution is a displacement field produced by the force source
concentrated at the origin. Singular solutions are generated by other force
sources as well. For example, the so-called double force produces a field of
a higher singularity than the fundamental solution. It is natural to try to
find all singular solutions of the system under consideration, or, speaking
more exactly, all solutions of the system which, at given points, possess a
concentrated singularity of any order, say, of the power order. The following
theorem provides the answer to this problem (see Buchukuri and Gegelia
[1–4]).

Theorem 7. Let Ω be a domain from Rm, y ∈ Ω, u = (u1, . . . , un) be a
solution of the system (13) in the domain Ω\{y} and ∀x ∈ Ω\{y} :

|u(x)| ≤ c
|x− y|γ

, (25)

where c = const, γ ≥ 0. Then ∀x ∈ Ω\{y}:

u(x) = u0(x) +
∑

|α|≤[γ]+2−m

(∂α
x φ(x− y))a(α), (26)

where u0 is a regular solution of the system (13) in the domain Ω (u ∈
C2(Ω)), α = (α1, . . . , αm) is a multiindex, [γ] is the integer part of the
number γ, a(α) = (a(α)

1 , . . . , a(α)
m ), a(α)

i = const, φ is the fundamental matrix
of the system (13).

It should be noted that the second term in (26) is absent when [γ] + 2−
m < 0. Moreover, replacing (25) by the condition

u(x) = o
( 1
|x− y|q

)

, (27)

where q is a natural number, we can perform summation in the representa-
tion (26) up to q + 1−m.
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Theorem 7 precisely establishes the properties of solutions of the system
(13) in the neighbourhood of an isolated singular point. The representation
(26) immediately implies the theorem on a removable singularity.

Corollary 1. Let Ω be a domain in Rm, u = (u1, . . . , un) belong to the
class C2(Ω\{y}), y ∈ Ω and ∀y ∈ Ω\{y} : A(∂x)u(x) = 0. Let, besides,

u(x) = o
( 1
|x− y|m−2

)

, m > 2; u(x) = o(ln |x− y|), m = 2.

Then y is a removable singularity for u, i.e., there exists a limit limx→y u(x)
≡ u(y) and if we complete the definition of u at the point y by the value
u(y), then u ∈ C2(Ω).

The representation (26) also implies yet another theorem frequently used
in applications.

Corollary 2. Let the conditions of Theorem 7 be fulfilled and γ > m−2
(m ≥ 2) in the estimate (25). Then for any multiindex α

|Dαu(x)| ≤ c
|x− y|[γ]+|α| . (28)

In particular,

|T (∂x, ν)u(x)| ≤ c
|x− y|[γ]+1 , (29)

where T is the stress operator.
Theorem 7 can be used to investigate the basic problems for the system

(13) in more general formulations than their classical counterparts.
Let Ω be a bounded domain from Rm with the smooth boundary S ≡ ∂Ω

and y(1), . . . , y(r) be a set of ponts lying in this domain.
Problem (I)cs. Find a vector u = (u1, . . . , um) of the class

C2(Ω\{y(1), . . . , y(r)}) ∩ C1(S ∪ Ω\{y(1), . . . , y(r)}), satisfying the condi-
tions

∀x ∈ Ω\{y(1), . . . , y(r)} : A(∂x)u(x) = F (x), (30)F

∀y ∈ S : lim
Ω3x→y∈S

u(x) = ϕ(y), (31)ϕ

∀x ∈ Ω\{y(1), . . . , y(r)} : |u(x)| ≤
r

∑

i=1

c
|x− y(i)|pi

. (32)

Here F and ϕ are given vector-functions, c = const, and pi are given
nonnegative numbers.

This problem will also be referred to as problem (30)F , (31)ϕ, (32).
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Theorem 8. The homogeneous problem (I)cs, i.e., the problem (30)0,
(31)0, (32) has exactly

n
r

∑

i=1

(Cm−1
pi+1 + Cm−1

pi
) (33)

linearly independent solutions.
If ϕ ∈ Hα(S) (α > 0), the nonhomogeneous problem (I)cs, or more

exactly the problem (30)0, (31)ϕ, (32) has a solution u which is represented
in the form u = u(ϕ) + u(0), where u(ϕ) is a solution of the problem (30)0,
(31)ϕ, regular in the domain Ω, and u(0) is an arbitrary element of the set
G((I)cs). Here G((I)cs) denotes the set of all solutions of the homogeneous
problem (30)0, (31)0, (32).

The investigation of the second basic problem demands some effort to
overcome certain difficulties. For the sake of simplicity let us consider a
system of the classical elasticity theory m = n = 3.

Problem (II)cs. Let Ω be a bounded domain from R3, containing the
origin. It is required to find a vector u = (u1, u2, u3) in the domain Ω1 =
Ω\{0} by the conditions u ∈ C2(Ω1) ∩ C1(S ∪ Ω1),

∀x ∈ Ω1 : A(∂x)u(x) = 0, (34)

∀y ∈ S : lim
Ω3x→y∈S

T (∂x, ν)u(x) = 0, (35)

∀x ∈ Ω1 : |u(x)| ≤ c
|x|p

. (36)

Let u be a solution of the problem (34)–(36). Then, by virtue of Theo-
rem 7, it is represented in the form

uk(x) = u(0)
k (x) +

∑

|α|≤p−1

cαjDαΓkj(x), (37)

where u(0) is a regular solution of (13) in the domain Ω.
Here Γ is the matrix of fundamental solutions of the classical elasticity

theory.
Taking into account (35) and the easily verifiable equalities

∫

S

Tik(∂y, ν(y))uk(y)dyS = 0,

∫

S

εijkyjTkl(∂y, ν(y))ul(y)dyS = 0,
(38)
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we find from (37) that

uk = u(0)
k + c11

∂Γk1

∂x1
+ c22

∂Γk2

∂x2
+ c33

∂Γk3

∂x3
+ c12

(∂Γk2

∂x1
− ∂Γk1

∂x2

)

+

+c13

(∂Γk3

∂x1
− ∂Γk1

∂x3

)

+ c23

(∂Γk3

∂x2
− ∂Γk2

∂x3

)

+
∑

2≤α≤p−1

cαjDαΓkj . (39)

Thus any solution of the problem (34)–(36) can be represented as the
sum of a solution u(0) regular in Ω and a linear combination of vectors
ψ(r) = (ψ(r)

1 , ψ(r)
2 , ψ(r)

3 ) with

ψ(1)
k =

∂Γk1

∂x1
, ψ(2)

k =
∂Γk2

∂x2
, ψ(3)

k =
∂Γk3

∂x3
, ψ(4)

k =
∂Γk2

∂x1
− ∂Γk1

∂x2
,

ψ(5)
k =

∂Γk3

∂x1
− ∂Γk1

∂x3
, ψ(6)

k =
∂Γk3

∂x2
− ∂Γk2

∂x3
(40)

and (DαΓ1j , DαΓ2j , DαΓ3j)2≤α≤p−1 (j = 1, 2, 3).
The above reasoning leads to

Theorem 9. dim G((II)cs) = np + 6, where np = 0 for p ≤ 1 and
np = 3p2 − 6 for p ≥ 2.

This theorem belongs to T. Buchukuri (see Buchukuri and Gegelia [3]).
As one may conclude from this survey, the investigation of problems

with concentrated singularities has not been completed even in the classical
elasticity theory. They have not been studied at all in thermoelasticity,
couple-stress elasticity, elasticity with independent dilatation and so on.

We would like to note that solutions of problems with concentrated sin-
gularities contain arbitrary constants. These constants can be used to con-
struct solutions possessing some additional properties, for example, a prop-
erty to minimize a functional or a property to take given values at given
points.

2.9. Dynamic Problems. The investigation of dynamic problems or,
as they are frequently called, initial-boundary problems in the elasticity
theory is fraught with some difficulties. In these problems it is required
to define a dynamic state of the medium, i.e., it is required to find in the
cylinder C ≡ Ω× [0,∞] a solution of the system

A(∂x)u(x, t)− ρ2 ∂2u(x, t)
∂t2

= ρF (x, t), (41)

which satisfies the initial condition

lim
t→0

u(x, t) = ϕ(x), lim
t→0

∂u(x, t)
∂t

= ψ(x) (42)
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at each point x in the domain Ω and one of the boundary conditions of the
basic problems.

Dynamic problems were initially investigated by Hilbert space methods
(G. Fichera, O. Maisaia and others) and afterwards by potential methods
(V. Kupradze, T. Burchuladze, L. Magnaradze, T. Gegelia, R. Rukhadze,
R. Kapanadze, R. Chichinadze and others).

Using the Laplace transform V. Kupradze and T. Burchuladze reduced
the dynamic problems to the boundary value problems for an elliptic system
A(∂x)u(x, τ) − τ2v(x, τ) = F (x, τ). The complex parameter τ that also
participates in the boundary conditions is the result of the formal Laplace
transformation with respect to the time variable.

Thus the initial boundary problems are formally reduced to the elliptic
boundary value problems with a complex parameter.

Such a reduction of the dynamic problem has long been known in math-
ematical physics. The investigation begins after this procedure, as it is
necessary to substantiate the inverse Laplace transformation by the param-
eter τ . For such a procedure V. Kupradze and T. Burchuladze used the
Green tensors. Presently, there are several approaches to obtain estimates
of the Green tensors. One of them is the representation of the Green tensors
in the form of a composition of singular kernels (T. Gegelia, D. Natroshvili,
R. Kapanadze, R. Chichinadze).

The methods of solution of dynamic problems proposed by V. Kupradze
and T. Burchuladze were afterwards extended to other models. Especially
intensive investigations are being carried out in this direction in the ther-
moelasticity theory and its modern models of Green–Lindsay and Lord–
Shulman (see Burchuladze and Gegelia [1]).

2.10. Contact (Interface) Problems of the Elasticity Theory.
The potential methods turned out efficient also in investigating contact and
boundary-contact problems. Let Ω and Ωk (k = 1, . . . , n) be domains with
the connected smooth boundaries ∂Ω and ∂Ωk. Note that Ω̄i ∩ Ω̄j = ∅ if
i 6= j and Ω̄i ⊂ Ω. We introduce the notation:

Ω0 ≡ Ω\
n
∪

k=1
Ωk, S ≡ ∂Ω

n
∪

k=r+1
∂Ωk (r < n), L ≡

r
∪

k=1
∂Ωk.

Let the domain Ω0 be filled up by an elastic medium with the Lamé con-
stants λ0 and µ0, and the domains Ωk (k = 1, . . . , r) by elastic media with
the Lamé constants λk and µk. Thus a nonhomogeneous elastic medium
with piecewise-homogeneous structure occupies the domain D = ∪r

k=0Ωk

and Ωi (i = r + 1, . . . , n) are hollow inclusions.
The case is admitted when Ω is the entire space R3; then ∂Ω = ∅. We

also may encounter the case r = n.
The basic boundary-contact problem consists in finding in the domain

Ωk (k = 0, . . . , r) a regular solution of the equation A(k)(∂x)u = ρkF ,
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which satisfies one of the boundary conditions of the basic problems on the
boundary S, and the contact conditions on the contact (interface) surfaces
∂Ωk (k = 1, . . . , r): displacement and boundary stress jumps are given
(A(k)(∂x) is defined by (2) where λ and µ are replaced by λk and µk).

We may also consider a more general problem when different boundary
conditions are given on the surfaces ∂Ω, ∂Ωr+1, . . . , ∂Ωn – this is a mixed
boundary-contact problem.

When the dynamic state is considered, to the above conditions we must
add initial conditions.

V. Kupradze was the first to investigate the boundary-contact problem
by the potential method. He proved that this problem is solvable when the
Poisson coefficients of the contacting media coincide. Subsequently, these
problems were investigated without any restrictions on the Poisson coeffi-
cients in Basheleishvili, Gegelia [1] and, for problems of thermoelasticity, in
Jentsch [1, 3, 14].

L. Jentsch [5–8] and afterwards V. Kupradze introduced into considera-
tion other contact problems. In these problems instead of displacement and
stress jumps we are given jumps of normal components of the displacement
and the stress vectors and values of the tangent components of the stress
vector (problem G) or jumps of normal components of the displacement and
stress vectors and values of the tangent components of the displacement vec-
tor (problem H). Other contact conditions are also possible. Various type
of contact problems of elasticity and thermoelasticity were investigated by
V. Kupradze, L. Jentsch, R. Katamadze, R. Gachechiladze, O. Maisaia and
others and for the anisotropic case in Jentsch and Natroshvili [1].

We would like to note that the true contact problems which occasionally
are also called Picone problems were investigated even earlier by the Hilbert
space methods (J. Lions, S. Campanato, G. Fichera). G. Fichera and af-
terwards O. Maisaia, R. Gachechiladze and M. Kvinikadze studied contact
problems for isotropic as well as for anisotropic and homogeneous media.

More complicated contact problems were investigated when, for example,
the assumptions of classical elasticity are valid for media occupying the do-
main Ωi (i=1, . . . , ν; ν <r), and the assumptions of couple-stress elasticity
are valid for other media occupying Ωi (i = ν + 1, . . . , r). Problems of this
kind are treated in the papers of O. Maisaia and M. Kvinikadze. Some new
properties of the solutions have been found.

So far it has been assumed that Ω̄i ⊂ Ω, but if Ωi ⊂ Ω, then ∂Ωi∩∂Ω 6= ∅
or Ωi ∩ Ω = ∅, but ∂Ωi ∩ ∂Ω 6= ∅. In such situations the contact problem
becomes essentially more complicated. Using pseudodifferential operators,
O. Chkadua has obtained the first results in this direction. In the plane
case similar problems of bimodal type were investigated with the aid of the
theory of singular integral equations with fixed singularities (see Duduchava
[1]) and Mellin techniques by L. Jentsch [10-25].
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2.11. New Models of Thermoelasticity. In recent years intensive in-
vestigations have involved new various models of the elasticity theory which
take into account interactions of different mechanical and nonmechanical
fields. Thermoelasticity is the natural generalization of the classical elastic-
ity theory. The classical model of the elasticity theory does not take into
account temperature changes. But deformation is always accompanied by
temperature changes and a temperature change is always accompanied by
deformation even in the absence of external force. The physical fundamen-
tals of the thermoelasticity theory were developed by J.M.K. Duhamel, W.
Voigt, H. Jeffreys, M.A. Biot and discussed by G. Cattaneo, I. Müller, S.
Kaliski, W. Nowacki, A.E. Green, K.A. Lindsay, H.W. Lord, Y. Shulman,
J. Ignaczak, Ya. Podstrigach, Yu. Kolyano, and others.

Equations of the classical thermoelasticity theory are written in the form

A(∂x)v(x, t)− γ grad θ(x, t)− ρ
∂2v(x, t)

∂t2
= F (x, t), (43)

∆θ(x, t)− 1
κ

∂θ(x, t)
∂t

+ η
∂
∂t

div v(x, t) = F4(x, t), (44)

where A(∂x) is the matrix differential Lamé operator (see Kupradze (1)),
v = (v1, v2, v3) is the displacement vector, θ is a temperature change, F =
(F1, F2, F3) and F4 are given by external force and γ, κ, ρ, η are physical
constants.

V. Kupradze and his pupils T. Burchuladze and N. Kakhniashvili were the
first to apply potential methods to thermoelasticity. They developed com-
pletely the theory of boundary value, initial-boundary and contact prob-
lems, studied the steady state oscilation problems and investigated other
aspects of the theory.

The classical model of thermoelasticity does not take into account the
heat flow time, which led to the well-known paradoxes in this theory. Hence
new improved models were created, of which the models of Green–Lindsay
and Lord–Shulman enjoy particular popularity. The Green–Lindsay model
is described by the system

A(∂x)v(x, t)−γ grad θ(x, t)−γτ1
∂
∂t

grad θ(x, t)−ρ
∂2v(x, t)

∂t2
=F (x, t),

∆θ(x, t)− 1
κ

∂θ(x, t)
∂t

+
τt

κ
∂2θ(x, t)

∂t2
+ η

∂
∂t

div v(x, t) = F4(x, t), (45)

and the Lord–Shulman model by the system

A(∂x)v(x, t)− γ grad θ(x, t)− ρ
∂2v(x, t)

∂t2
= F (x, t),

∆θ(x, t)− 1
κ

∂θ(x, t)
∂t

+
τ0

κ
∂2θ(x, t)

∂t2
+ η

∂
∂t

div v(x, t) +
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+ητt
∂2

∂t2
div v(x, t) = F4(x, t). (46)

For these models and also for models in which diffusion and couple
stresses are taken into account T. Burchuladze and his pupils constructed
fundamental solutions, derived Green formulas and representations of solu-
tions, constructed the corresponding potentials, established radiation condi-
tions, obtained estimates of Green tensors and investigated both boundary
value and initial-boundary problems (see Burchuladze and Gegelia [1]).

Mention should further be made of the approximate method of Fourier
series which in the foreign literature is called the Riesz–Fisher–Kupradze
method. T. Burchuladze showed that this method is efficient also for just
mentioned models (see Burchuladze and Gegelia [1]). Methods of construct-
ing explicit solutions for some domains bounded by a system of planes also
work well (see Burchuladze [1]).

2.12. Application of Pseudodifferential Operators. This subsec-
tion contains an outline of the investigation of the mixed problems of elastic-
ity by the potential method using pseudodifferential operators (see Prössdorf
[2], Maz’ya [1], Eskin [1], Boutet de Monvel [1], Triebel [1, 2], Shamir [1],
Duduchava [3], Shargorodsky [1, 2], Duduchava, Natroshvili and Shargorod-
sky [1], Natroshvili, Chkadua and Shargorodsky [1], Natroshvili and Shar-
gorodsky [1] and others).

Let Ω+ be a bounded domain from R3 with a smooth boundary S of the
class Ck (k ≥ 4); Ω− ≡ R3\(Ω+ ∪ S). Let S be represented as S = S̄1 ∪ S̄2,
where S1∩S2 = ∅, S̄1∩S̄2 ≡ L. It is assumed that S1 and S2 and also L are
smooth manifolds. S1 and S2 are two-dimensional surfaces with boundary
and L is a closed curve (without an edge).

Problem [Ω+, S1, S2]. Find a solution of the system (13) in the domain
Ω+, satisfying the conditions

u
∣

∣

+
S1

= ϕ, T (∂z, n)u
∣

∣

+
S2

= ψ. (47)

The mixed problem for the domain Ω− is formulated similarly, but in
that case, to preserve the uniqueness theorem, the solution must satisfy the
condition u(x) = o(1) for |x| → ∞.

Note that the formulation of the boundary value problems [Ω+, S1, S2] and
[Ω−, S1, S2] is not rigorous because we have not indicated those functional
classes where solutions are to be found. This refinement will be made later.

Let φ be the fundamental solution of the system (13). Consider the
single-layer potential

V (g)(x) ≡
∫

S

φ(x− y)g(y)dyS, (48)
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and denote its restriction on S by VS(g). VS(g) : S → R3 is a pseudodiffer-
ential operator (PDO) of order −1.

If u is the solution of the problem [Ω+, S1, S2], then it satisfies the system
(13) in the domain Ω+ and the boundary condition

u
∣

∣

+
S = f, (49)

where f : S → R3 and coincides with ϕ on S1. The values of f on S2 are
unknown. This function can be written in the form f = φ0 + ϕ0, where
φ0 is some known function coinciding with ϕ on S1, and ϕ0 is the desired
function on S, which is equal to zero on S1. Thus, if we find ϕ0, then for
defining u we obtain the first basic problem (13), (49).

The solution of the problem (13), (49) will be sought for in the form
of the simple-layer potential u = V (g). Then from (49) it follows that
VS(g) = f = φ0 +ϕ0. It can be proved that the operator VS(g) is invertible
in the corresponding pair of functional spaces. That is why g = V −1

S (φ0+ϕ0)
and therefore

u = V
(

V −1
S (φ0 + ϕ0)

)

= V
(

V −1
S (φ0)

)

+ V
(

V −1
S (ϕ0)

)

. (50)

The solution u represented by the formula (50) satisfies the system (13)
and the first boundary condition from (47). We must choose ϕ0 such that
the second boundary condition from (47) be fulfilled. Calculating T (∂x)u|+S ,
we obtain

T (∂z, n)u
∣

∣

+
S (z) = −V −1

S (φ0)(z)
2

+
∫

S

T∂zφ(z − y)V −1
S (φ0)(y)dyS −

−
V −1

S (ϕ0)(z)
2

+
∫

S

T∂zφ(z − y)V −1
S (ϕ0)(y)dyS.

For z ∈ S2 this equality implies

−
V −1

S (ϕ0)(z)
2

+
∫

S

T∂zφ(z − y)V −1
S (ϕ0)(y)dyS =

= ψ(z) +
V −1

S (φ0)(z)
2

−
∫

S

T∂zφ(z − y)V −1
S (φ0)(y)dyS, (51)

which is a pseudodifferential equation on the manifold S2 with the bound-
ary L.

Note that the PDO contained in (51) does not possess the transmission
property (see Eskin [1], Boutet de Monvel [1], Rempel and Schulze [1]) and
the theory of such equations in Hölder spaces Cm+α has not as yet been
developed. That is why we have to investigate the equation (51) in Bessel
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potential spaces Hs
p and in Besov spaces Bs

p,q (see Burchuladze and Gegelia
[1], Triebel [1, 2]). The PDO theory for these spaces is worked out in Shamir
[1], Duduchava [3], Shargorodsky [1, 2]. After the uniqueness and existence
theorems are proved in these spaces, the Hölder continuity of the solution
is established by means of the embedding theorem.

Before we proceed to formulate the results, two circumstances have to
be noted: for some particular cases we have expilicit formulas (see, e.g.,
Vorovich, Aleksandrov and Babeshko [1]) for the solution of the problem
[Ω+, S1, S2], according to which at points x near the edge L the solution
behaves like

√

ρ(x), where ρ(x) is the distance from the point x to L.
Therefore, generally speaking, the solution does not belong to the class W 2

p
for p ≥ 4/3, to the class W 1

p for p ≥ 4 and to the class Cα for α > 1/2.
Besides, if the solution of the problem [Ω+, S1, S2] is sought for in the

Sobolev spaces W 2
p (Ω+) or W 1

p (Ω+), then the equation (13) can be under-
stood in the sense of generalized functions. Then the respective sense should
be given to the boundary conditions (47), too, understanding by them the
trace of the corresponding functions. However, in the case of the space
W 1

p (Ω+) there arises a complication because the derivative of the function
from the class W 1

p (Ω+) belongs to the class Lp(Ω+) and its trace on S is
not determined. Therefore we should give sense to the second boundary
condition of (47) by means of Green’s formula and generated by it duality.
This can be done thanks to the fact that the solution of the problem is not
an arbitrary function from the class W 1

p (Ω+), but a function satisfying the
equation (13) in Ω+.

We finally obtain the validity of the following theorem (see Duducha-
va, Natroshvili and Shargorodsky [1], Natroshvili, Chkadua and Shargorod-
sky [1]).

Theorem 10. Let 4/3 < p < 4 (1 < p < 4/3) and ϕ ∈ B1−1/p
p,p (S1),

ψ ∈ B−1/p
p,p (S2) (ϕ ∈ B2−1/p

p,p (S1), ψ ∈ B1−1/p
p,p (S2)). Then the problem

[Ω+, S1, S2] has the unique solution of the class W 1
p (Ω+) (W 2

p (Ω+)). If
ϕ ∈ Bs

t,t(S1) and ψ ∈ Bs−1
t,t (S2), then the solution u of the class W 1

p (Ω+)

also belongs to the class Hs+1/t
t (Ω+). If ϕ ∈ Bs

t,q(S1), ψ ∈ Bs−1
t,q (S2),

then u ∈ Bs+1/t
t,q (Ω+). If ϕ ∈ Cα(S̄1), ψ ∈ Bα−1

∞,∞(S2) (0 < α ≤ 1
2 ), then

u ∈ Cα′(Ω+) with α′ < α.
Here 1 < t < ∞, 1 ≤ q ≤ ∞, 1/t− 1/2 < s < 1/t + 1/2.
A similar theorem holds for the problem [Ω−, S1, S2], too.
The method described can be used to investigate mixed problems for the

oscillation equation (11) and the pseudooscillation equation A(∂x)u−τ2u =
0, τ = σ + iω, σ 6= 0.

The initial-boundary mixed problems for the dynamic state are treated by
the conventional technique, i.e., by reducing them using the Laplace trans-
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form to the mixed problems of pseudooscillation (see Natroshvili, Chkadua
and Shargorodsky [1]).

Problems of the mathematical theory of cracks evoke special interest.
They are also successfully investigated by the method of pseudodifferen-
tial equations (see Duduchava, Natroshvili and Shargorodsky [1] and Na-
troshvili, Chkadua and Shargorodsky [1]).

2.13. Optimization and Control Problems in the Elasticity The-
ory. Let Ω be a domain from R3 with a sufficiently smooth boundary S.
Consider some basic problem of the elasticity theory:

Find in the domain Ω a regular solution of the equation

A(∂x)u(x) = F (x), (52)

by the boundary condition

∀y ∈ S : (D(∂y)u)(y) = f(y), (53)

where F = (F1, F2, F3) f = (f1, f2, f3) are given vectors in Ω̄ and on S,
respectively. A(∂x) is a differential operator of the elasticity theory (see (2)
or (6)), D(∂y) is the boundary operator of some basic problem (if the first
problem is considered, then D(∂y) is the identity operator; if the second
problem is considered, then D(∂y) is the boundary stress operator and so
on).

Under certain additional restrictions (see Kupradze (1)), which we shall
assume to be fulfilled, the problem (52), (53) has the unique solution u.
Let us consider some functional l(u) of the solution u. It is obvious that u
depends on the parameters of the problem (52), (53), i.e., on the coefficients
of the operator A(∂x), on the right-hand side F of the equation (52) and
on the boundary data f . These parameters can be used to control the
functional l(u). We may, for example, pose a question of finding in the
defined functional space H a vector F minimizing the functional l.

If a similar problem is considered for elastic stationary oscillation (in
that case the equation (52) is replaced by the equation (11)), then to the
considered parameters of the problem we should add an oscillation frequency
and then the control of the functional can be effected by any parameter (or
parameters) of the problem.

Similar problems can be investigated for the dynamic state, too. For
example, the following problem has been investigated:

∀(x, t) ∈ Q : A(∂x)u(x, t)− ρ(x)
∂2u(x, t)

∂t2
= 0,

∀x∈ Ω̄ : u(x, 0)=0,
∂u(x, 0)

∂t
=0; ∀(x, t)∈Σ : u(x, t)=g(x, t),

(54)



POTENTIAL METHODS IN CONTINUUM MECHANICS 625

where Ω is a domain from R3, Q = Ω× (0, T ), Σ = ∂Ω× (0, T ), g is a given
vector on Σ.

If g is a sufficiently smooth vector and ∂Ω is a sufficiently smooth surface,
then the problem (54) has a sufficiently smooth solution u.

Let ϕ and ψ be vectors of the class L2(Ω) given on Ω. Consider the
functional

J(g) ≡
∫

Ω

(

|u(x, t)− ϕ(x)|2 +
∣

∣

∣

∂u(x, t)
∂t

− ψ(x)
∣

∣

∣

2)

dx. (55)

Theorem 11. There exists a number T0 such that if T ≥ T0, then
inf J(g) = 0, g ∈ C∞(Ω).

Some investigations involve problems of the control of various functionals
by solutions of problems of thermoelasticity, by solutions of singular integral
equations and so on.

Problems of control have not been as yet considered with sufficient com-
pleteness in the elasticity theory. Only the first results have been obtained
(see works by O. Maisaia, A. Jorbenadze, T. Tsutsunava).

2.14. Noncorrect and Nonclassical Problems. Various nonclassical
(see Vorovich, Aleksandrov, Babeshko [1], Maz’ya [2] and others) and non-
correct problems of the elasticity theory have been investigated. In these
problems the sets with given boundary data or contacting media are not
bounded or have additional boundary conditions on one part of the bound-
ary and free boundary conditions on the remaining part.

We shall mention one noncorrect problem which was investigated by the
quasi-inversion method (O. Maisaia)

Let G1, G2, G3 be bounded domains from R3 and Ḡ1 ⊂ G2, Ḡ2 ⊂ G3.
Let Ω1 ≡ G2\Ḡ1 and Ω2 ≡ G3\Ḡ2. Then ∂Ω1 = ∂G2 ∪ ∂G1 and ∂Ω2 =
∂G3 ∪ ∂G2. Functions u(1) and u(2) are to be found, for which

∀x ∈ Ωk : A(k)(∂x)u(k)(x) = 0, k = 1, 2; (56)

∀y ∈ ∂G1 : u(1)(y) = ϕ(y), T (1)(∂y, n)u(1)(y) = ψ(y); (57)

∀z ∈ ∂G2 : u(1)(z)− u(2)(z) = 0,

T (1)(∂z, n)u(1)(z)− T (2)(∂z, n)u(2)(z) = 0.
(58)
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2.15. Potential Methods in the Plane Elasticity Theory. Po-
tential methods are used to solve and to investigate many plane problems
of elasticity, in problems of anisotropic plate bending, in boundary-contact
problems and so on. These problems are reduced to equivalent integral
equations, which makes it possible to represent the solutions of problems
by means of potentials whose kernels are written in terms of elementary
functions. These potentials are applied to obtain solutions in series or in
quadratures for some particular cases (a half-plane, a strip, an ellipse and
so on). For example, an effective solution is obtained for the mixed problem
for the whole plane with an elliptic cavity or with cuts arranged on the
straight line and so on (Jentsch [20, 21, 24], M. Basheleishvili, Sh. Zaza-
shvili, Zh. Rukhadze and others). The concept of equivalent potentials of
single-layer type was applied by J. Maul (see Jentch, Maul [1], Maul [1,2]
to very general mixed contact problems.

If an elastic medium occupies a plane domain with a piece-wise smooth
boundary, then we obtain singular integral equations containing singular
integrals with fixed singularities. Such equations and their applications are
treated in Duduchava [1].

Mention should also be made of the investigations conducted by complex
potentials (see works by G. Mandzhavidze, E. Obolashvili, R. Bantsuri, G.
Janashia and others).

2.16. Solutions in Quadratures of Boundary Value Problems
of the Elasticity Theory for a Ball and the Whole Space with a
Spherical Cavity. Methods of constructing effetive solutions of problems
of this theory play a special role in the theory of continuum mechanics. By
effectiveness we understand the construction of solutions either in elemen-
tary functions or in series or in quadratures. To avoid misunderstanding we
shall always indicate clearly in what form the solutions are constructed.

Sufficiently detailed information on effective solutions of the spatial prob-
lems of elasticity and thermoelasticity can be found in Kupradze (1). We
shall dwell here on some most noteworthy results obtained in this direction
by the potential methods.

Numerous works starting from the the well-known memoirs of Lord Kelvin
to the present-day studies are devoted to solution of the basic problems for
a ball and the entire space with a spherical cavity. It is not our intention
here to give a full account of the history of this question. We wish only to
note that in 1972 D. Natroshvili succeeded in summing series of spherical
functions that give solutions of the basic problems of the elasticity theory
and in representing the obtained solutions in the form of quadratures (D.
Natroshvili). After Professor G. Fichera learnt about D. Natroshvili’s re-
sults, he sent the Tbilisi collegues the paper of R. Marcolongo where the
solutions in quadratures of the basic problems were obtained by a differ-



POTENTIAL METHODS IN CONTINUUM MECHANICS 627

ent method without resorting to series as far back as 1904. The method
and results of Marcolongo became the subjectmatter of many interesting
investigations. We shall discourse on some of them below.

To grasp the essence of Marcolongo’s method which is in turn based on
V. Cerruti’s ideas, let us consider how this method is applied to the solution
of the problems of classical elasticity.

Let B+ be a ball with centre at the origin and radius ρ, B− ≡ R3\B+,
S ≡ ∂B+ = ∂B−.

The basic problems of the elasticity theory are formulated as follows:
Find in B+ a continuous vector u, which in B+ is a solution of the system
(2), by the boundary conditions: on the boundary S we are given displace-
ment f (Problem (I)+) or stress f (Problem (II)+), or tangential stress
components g and normal displacement component l (Problem (III)+),
or tangential displacement components g and a normal stress component
l (Problem (IV )+), or a linear combination of displacements and stresses
(Problem (V )+). The problems for the unbounded domain B− are formu-
lated in the same manner.

The following theorems are proved (see Gegelia and Chichinadze [2]):

Theorem 12. If

u(x) = v(x) +
ρ2 − r2

2
grad ψ(x), (59)

where the vector-function v and the scalar function ψ are continuous in B+

or B− and satisfy the conditions

∆v = 0, ∆ψ = 0, (Dr + α)ψ = β div v,

α =
µ

λ + 3µ
, β =

λ + µ
λ + 3µ

, r = |x|, Dr = r
d
dr

=
∑

xi
∂

∂xi
,

(60)

then the vector u is a solution of the system (2) in B+ or B−. And con-
versely, if u is a continuous solution of the system (2) in B+ or B−, then
there exist a vector v and a scalar ψ continuous in B+ or B− for which the
conditions (59) and (60) are fulfilled.

The solution of Problem (I)+ is sought for in the form (59). Then to
define v we obtain the Dirichlet problem ∀x ∈ B+ : ∆v(x) = 0, ∀y ∈ S :
v+(y) = f(y), whose solution is given by the Poisson formula

v(x) = Π(f)(x) ≡ 1
4πρ

∫

S

ρ2 − |x|2

|y − x|3
f(y)dyS. (61)

To define ψ we obtain an ordinary differential equation r dψ
dr + αψ =

β div Π(f).
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Finally, the solution of Problem (I)+ is given in the form

u(x) =
∫

S

K(x, y)f(y)dyS, (62)

where K = ‖Kij‖3×3,

Kij(x, y)=
1

4πρ

(

ρ2−|x|2

|y−x|3
δij +

β(ρ2−|x|2)
2

∂2

∂xi∂xj

1
∫

0

(ρ2−|τx|2

|y−τx|3
− 1

ρ

) dτ
τ2−α

)

.

The representation (62) implies

Theorem 13. If f ∈ C(S), then the solution of Problem (I)+ is given
in quadratures in the form of the integral (62) and is the unique classical
solution (from the class C2(B+) ∩ C(B+)) of this problem.

The solution of Problem (I)− is also given in quadratures and it is also the
unique solution in the class of functions satisfying the condition at infinity
u(x) = o(1).

Similar theorems are valid for Problems (II)± and (V )±, while for Prob-
lems (III)± and (IV )± more rigid restrictions are imposed on the boundary
data g and l (see Chichinadze [4], Gegelia, Chichinadze [2]).

Note that it is not convenient to represent the solution in the form (59)
for Problems (III)± and (IV )±. For these problems we must modify the
representation (59) and Theorem 12.

2.17. Solution in Quadratures of Boundary Value Problems
of the Thermoelasticity Theory. Marcolongo’s method is applied with
some modifications in the thermoelasticity theory as well. In classical ther-
moelasticity a static state is described by a separated system of equations

µ∆u(x)+(λ+µ) grad div u(x)−γ grad θ(x)=0, ∆θ(x)=0. (63)

If we find θ from the Laplace equation and substitute it in the first equa-
tion (62), then we shall obtain a system of nonhomogeneous equations of
the classical elasticity theory. This simple way of investigating the sta-
tionary state is quite suitable for proving theorems of the existence and
uniqueness of solutions of boundary value problems, but cannot be used for
constructing effective solutions. Formulas for representation of solutions of
nonhomogeneous equations are rather inefficient and not suitable for our
purposes.

Boundary value problems for the system (63) can be solved in quadra-
tures directly, applying a theorem similar to Theorem 12. A lot of problems
of the form (p, q)± (p = 1, 2, 3, 4, 5, q = 1, 2), where p corresponds to the
problem (p)± of the elasticity theory and q to the problem (q)± of harmonic
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functions, have been posed in the thermoelasticity theory. All these prob-
lems are solved in quadratures and theorems of the type of Theorem 13 (see
Gegelia and Chichinadze [2]) are proved.

Problems for a sphere have not been solved for nonclassical models of
thermoelasticity such as, for example, the Lord–Shulman or Green–Lindsay
theory (see Burchuladze and Gegelia [1]).

2.18. Problems for the Polyharmonic Equation. The method of
representation of solutions by means of harmonic functions proved to be
suitable in solving problems for a higher order equation. Consider the poly-
harmonic equation

∆ν+1u(x) = 0, (64)

where ∆ν+1 = ∆(∆ν), ∆1 = ∆ is the Laplace operator and ν is a positive
integer.

In regard to the equation (64) it is of interest to investigate the Lauricella,
Riquier and mixed problems (M. Nicolesco, I. Vekua, K. Miranda). In these
problems it is required to find a continuous solution of the equation (64) in
the domain by the following boundary equations:

Lauricella problem: ∀y ∈ S :
( dku

dnk

)+
(y) = fk(y), k = 0, . . . , ν;

Riquier problem: ∀y ∈ S : (∆ku)+(y) = fk(y), k = 0, . . . , ν;
Mixed problem: ∀y ∈ S:

(dku
dnk

)+
(y) = fk(y), k = 0, . . . , µ, 1 ≤ µ < ν,

(∆k)+(y) = fk(y), k = µ + 1, . . . , ν.

All these problems are solved in quadratures (see Chichinadze [5, 6],
Gegelia and Chichinadze [2]).

2.19. Problems for Elastic Mixtures. In recent years researchers
have displayed great interest in the investigation of elastic mixtures. We
shall not discuss here whether the respective models are viable or not. For
information concerning this question we refer the reader to Khoroshun and
Soltanov [1], Natroshvili, Jagmaidze and Svanadze [1], Truesdell and Toupin
[1], Green and Naghdi [1], Steel [1], Green and Steel [1], Atkin, Chadwik
and Steel [1], Tiersten and Jahanmir [1], Villaggio [1].

Thorough consideration has been given to the two-component mixture
whose equations are written in the form

a1∆
(1)
u + b1 grad div

(1)
u + c∆

(2)
u + d grad div

(2)
u = F1,

c∆
(1)
u + d grad div

(1)
u + a2∆

(2)
u + b2 grad div

(2)
u = F2,

(65)
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where a1, a2, b1, b2, c, d are the elastic constants,
(1)
u =

((1)
u 1,

(1)
u 2,

(1)
u 3

)

and
(2)
u =

((2)
u 1,

(2)
u 2,

(2)
u 3

)

are the displacement vectors.
The boundary value problems are posed and comletely investigated for

the system (65) in Natroshvili, Jagmaidze and Svanadze [1] by means of
potential methods. Problems of thermoelastic mixtures have also been in-
vestigated. All these problems are solved in quadratures for the ball and
the whole space with a spherical cavity in Chichinadze [5], Gegelia and
Chichinadze [2].

2.20. Boundary Value Problems of Macropolar Fluid Flow. If
a fluid contains a countless quantity of solid particles in the form of an
admixture, the flow of such a fluid will not obey satisfactorily the classical
Navier–Stokes model. Eringen [1] gives an example confirming this phe-
nomenon. In such situations it is better to represent the flow both as the
displacement of the point and as its rotation about itself. This is the mo-
ment theory of flow or, speaking differently, the flow with regard to the fluid
microstructure. The model of such a flow was created by A. Eringen, also
by D. Kondif and I. Dagler. It however turned out to be rather complicated,
since it involved a nonlinear system of partial equations containing seven
equations with respect to seven unknowns

(µ + α)∆v(x, t) + 2α rot ω(x, t)− grad p(x, t) + ρf(x, t) =

=
∂v(x, t)

∂t
+ vk(x, t)

∂v(x, t)
∂xk

, (66)

(ν + β)∆ω(x, t) + (ε + ν − β) grad div ω(x, t) + 2α rot v(x, t)−

−4αω(x, t) + ρG(x, t) = I
∂ω(x, t)

∂t
+ Jvk(x, t)

∂ω(x, t)
∂xk

,

div v(x, t) = 0. (67)

This is a closed system of nonstationary flow of a viscous noncompressible
homogeneous isotropic micropolar fluid, v = (v1, v2, v3) is the flow velocity,
ω = (ω1, ω2, ω3) is a rotation, p is the pressure, and α, β, µ, ν, τ , ρ are the
physical constants.

Like in the classical Navier–Stokes model, two linearization variants of
the system (66) are considered, namely systems obtained by analogy with
the Stokes linearization and with the Ozeen linearization.

All the basic problems formulated for the obtained linearization systems
are investigated in Chichinadze [1], Buchukuri and Chichinadze [1, 2].

In addition to the above-mentioned references, various questions of the
micropolar fluid flow are treated in work by N. Ramkinson.
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2.21. Effective Solutions of Boundary Value Problems of Fluid
Flow. It should be noted that the method of representing solutions of the
Stokes-linearized classical Navier–Stokes model by means of harmonic func-
tions proved to be a convenient tool in solving the fluid problem for a sphere.

The above-mentioned homogeneous system of equations is written in the
form

µ∆v(x)− grad p(x) = 0, div v(x) = 0, (68)

where v = (v1, v2, v3) is a velocity vector, p is a pressure, µ is the viscosity
coefficient.

For this case the following representation theorem is valid.

Theorem 14. If

v(x) = u(x) + x(2Dr + 1)ψ(x)− r2 grad ψ(x) +
ρ2 − r2

2
grad ψ(x),

p(x) = −µ(2Dr + 1)ψ(x), (69)

∆u = 0, ∆ψ = 0, 2D2
rψ + 4Drψ + 3ψ = −div u,

then the pair (v, p) gives the solution of the system (68) in B+ and B−.

The converse statement is valid, too. Here B+ ≡ {x ∈ R3
∣

∣ |x| < ρ},
B− ≡ R3\B+, S ≡ ∂Ω+ = ∂Ω−, Dr = r d

dr , r ≡ |x|.
This theorem is used to prove

Theorem 15. If f ∈ C(S) and the necessary condition of solvability
∫

S

yf(y)dyS = 0,

is fulfilled, then the pair (v, p) defined by the equalities

v(x) =
1

4πρ

∫

S

ρ2 − |x|2

|x− y|3
f(y)dyS +

+
ρ2 − x2

4πρ
grad div

∫

S

( 1
|x− y|

+
3χ(x, y)

2ρ2

)

f(y)dyS, (70)

p(x)=− µ
2πρ

div
∫

S

(ρ2−|x|2

|x−y|3
+

1
|x−y|

− 3χ(x, y)
2ρ2

)

f(y)dyS+p0 (71)

gives all classical solutions of the first basic problem.
Here p0 is an arbitrary constant and χ(x, y) = |x− y|+ x·y

ρ ln((|x− y|+
ρ)2 − |x|2).
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Similar theorems are valid also for the other problems of fluid flow.
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