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TIME-DEPENDENT BARRIER OPTIONS AND BOUNDARY
CROSSING PROBABILITIES

A. NOVIKOV, V. FRISHLING, AND N. KORDZAKHIA

Abstract. The problem of pricing of time-dependent barrier options is con-
sidered in the case when interest rate and volatility are given functions in
Black–Scholes framework. The calculation of the fair price reduces to the cal-
culation of non-linear boundary crossing probabilities for a standard Brow-
nian motion. The proposed method is based on a piecewise-linear approxi-
mation for the boundary and repeated integration. The numerical example
provided draws attention to the performance of suggested method in com-
parison to some alternatives.
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1. Introduction

In the diffusion equation for an underlying asset St let us assume the coeffi-
cients µ(t) and σ(t) to be time-dependent,

dSt = µ(t)Stdt + σ(t)StdWt, 0 ≤ t ≤ T < ∞, (1)

Wt is a standard Wiener process given on a probability space (Ω,F, P). We
assume a bank account process Bt is driven by the equation dBt = r(t)Btdt and
hence

Bt = exp

( t∫

0

r(s)ds

)
,

where r(t) is a positive function of time, the so-called spot interest rate. The
solution of equation (1) is

St = S0 exp

{ t∫

0

µ(s)ds− 1

2

t∫

0

σ2(s)ds +

t∫

0

σ(s)dWs

}
. (2)

We assume here that µ(s) and σ(s) are square-integrable and nonrandom func-
tions. Further, we also assume that µ(s) = r(s), 0 ≤ s ≤ T . This assumption
means that we use the free-arbitrage approach to pricing of options (see details,
e.g., in [1] or [2]). Then the process {St/Bt, t ≥ 0} is a martingale with respect
to the information flow Ft = σ{Ss, 0 ≤ s ≤ t} and probability measure P
defined above.
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It is well known that under the free-arbitrage assumption the fair price of an
option with a payoff function fT is given by the formula

CT = E[fT /BT ],

where E(·) is a symbol of expectation with respect to measure P (see details,
e.g., in [1] or [2]).

A down-and-out call option is a call option that expires if the stock price falls
below the prespecified “out” barrier H. “Down” here refers to an initial price of
stock S0 being above of the barrier H. A down-and-in call is a call that comes
into existence if the stock price falls below the “in” barrier at any time during
the option’s life. Note, if we buy a down-and-out call and a down-and-in call
with the same barrier price, H, strike price K, and time to expiration, T , the
payoff of the portfolio is the same as for a standard call option. In the case of
up-and-out option, the barrier lies above the initial stock price, and if the stock
price ever rises above the barrier, then the option becomes worthless. Similarly,
there exist up-and-in options. Below we consider the case of up-and-out barrier
option with time-dependent upper barrier H(t). In this case the payoff function
is

fT = (ST −K)+I{τ > T} = (ST −K) I{ST > K, τ > T}
where we use the notation I{A} for the indicator function of a set A and

τ = inf {t ≥ 0 : St ≥ H(t)} .

2. Pricing of Time-Dependent Barrier Options

The problem is to find a fast and accurate algorithm for the calculation of
the fair price of up-and-out barrier option

CT = E
[
(ST −K)I{ST > K, τ > T}/BT

]
.

This problem has been addressed, e.g., by Roberts and Shortland in [3]. For
simplicity of the notation and further exposition, we assume the volatility func-
tion is a constant: σ(s) = σ > 0. The following proposition reduces the pricing
problem to the calculation of boundary crossing probabilities by the standard
Wiener process with respect to measure P.

Proposition 1. The fair price of a up-and-out European call option with a
single upper barrier H(t) is given by

CT = S0p1 −K exp

(
−

T∫

0

r(s)ds

)
p0, (3)
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where

p1 = P{σWT + σ2T > G; σWt + σ2t < g(t), t ≤ T},
p0 = P{σWT > G; σWt < g(t), t ≤ T},

G = ln

(
K

S0

)
+

1

2
σ2T −

T∫

0

r(s)ds,

g(t) = ln

(
H(t)

S0

)
+

1

2
σ2t−

t∫

0

r(s)ds.

Proof. Using (2) with σ(s) = σ we have

CT = E

[
I
{
ST > K, τ > T

} ST

BT

]
− E

[
I
{
ST > K, τ > T

} K

BT

]

= S0E

[
I
{
ST > K, τ > T

}
exp

{
σWT − 1

2
σ2T

}]

−K exp

{
−

T∫

0

r(s)ds

}
P

{
ST > K, τ > T

}
.

To see that P{ST > K, τ > T} = p0 one needs just express St and τ in terms
of Wt.

Denote the Girsanov exponent

ZT (f) = exp

{ T∫

0

f(s)dWs − 1

2

T∫

0

f 2(s)ds

}
.

By the Girsanov theorem (see, e.g., [2]) for any square-integrable nonrandom
function f(s) and an event A ∈ FT

E[I{A}ZT (f)] = P̃{A} (4)

where probability measure P̃ is such that the process

{
W̃t := Wt −

t∫

0

f(s)ds, t ≥ 0

}

is a standard Wiener process with respect to (Ft, P̃ ). Applying this fact with
f(s) = σ we have

p1 = P̃{σWT > G; σWt < g(t), t ≤ T}
= P̃{σW̃T + σ2T > G; σW̃t + σ2t < g(t), t ≤ T}
= P{σWT + σ2T > G; σWt + σ2t < g(t), t ≤ T} . ¤
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Remark 1. For other types of barrier options, such as double barrier options
or partial barrier options, the equation (3) still holds with modified values of p1

and p0.

We now need tools for the calculation of probabilities p1 and p0 in Proposition
1. In fact, the calculation of boundary crossing probabilities has other impor-
tant applications besides the pricing of barrier options. This problem arises
in various fields such as psychology (see [4]), clinical trials (see [5]) and many
other areas as physics, insurance, and nonparametric statistics. While the time
of calculation for the purpose of evaluating the fair price of barrier options is
very important, in other applications like clinical trials or physics a high de-
gree of accuracy becomes more important than the time of calculation. For
calculation other methods could be used, such as partial differential equations
(PDE), see [6], integral equations [7] and Monte Carlo simulation approaches.
We now introduce a method based on numerical integration, proposed by Wang
and Pötzelberger [8] and then developed by Novikov et al. [9] which led to
an another work by Pötzelberger and Wang [10]. This method may in fact
have certain advantages over the other methods. One of the advantages of this
approach is that it can be used in the case of boundaries which may even be dis-
continuous. Another important advantage is that we can control the accuracy
of the approximation as it will be shown below.

Let ĝ(s) be the boundary on the interval [0, T ] which is considered as an
approximation for function g(s) defined in Proposition 1. For example, one
may consider ĝ(s) as piecewise-linear continuous functions with nodes ti, t0 =
0 < t1 < · · · < tn = T (in general, this function might be discontinuous or
nonlinear). Denote

p(i, ĝ | xi, xi + 1) = P{Ws ≤ ĝ(s), s ∈ (ti, ti+1) | Wti = xi, Wti+1
= xi+1}

When ĝ(t) is a linear function on the interval (ti, ti+1) the last probability is
given by (see, e.g., [8], [9])

p
(
i, ĝ | xi, xi + 1

)

= I
{
ĝ(ti) > xi, ĝ(ti+1) > xi+1

}[
1− exp

{
− 2(ĝ(ti)− xi)(ĝ(ti+1)− xi+1)

ti+1 − ti

}]
.

The next formula gives the representation for a boundary crossing probability
of the form

P (ĝ, K, T ) := P
{
Wt ≤ ĝ(t), t ≤ T ; WT > K

}

as an n-fold repeated integral of p(i, ĝ|xi, xi + 1) and the transition probability
of the Wiener process:

P (ĝ, K, T ) = E
[
I{WT > K}]

n−1∏
i=0

p(i, ĝ | Wti ,Wti+1
). (5)

This formula seems to be firstly noted by Wang and Pötzelberger [8] for the
case of piecewise one-sided continuous linear boundaries. Its generalization to
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the case of nonlinear two-sided boundaries was presented by Novikov et al. [9],
see also [10].

Denote the density of the standard Wiener process Wt by ϕ(x, t) = 1√
2πt
×

exp(−x2

2t
). The following recurrent algorithm indicated in [9] for the general

case of two-sided boundaries can be used to evaluate the boundary crossing
probability P (ĝ, K, T ) in (5).

Let z0(x) = p(0, ĝn | 0, x)ϕ(x, ∆t1),

zk+1(x) =

bgn(tk)∫

−∞

zk(u)p(k + 1, ĝn | u, x)ϕ(x− u, ∆tk)du, k = 0, . . . , n− 1.

Then

P (ĝ, K, T ) =

bgn(T )∫

K

zn−1(u)ϕ(u, T )du. (6)

We should note that formula (3′) in [9] contains a misprint which is corrected
in (6). An example which illustrates calculation using this algorithm will be
presented in Section 3. Here we discuss an accuracy of the approximation.

In [9] it is demonstrated how the measure transformation method based on the
Girsanov theorem can be used for estimating difference between probabilities
P (g, K, T ) and P (ĝ, K, T ) in terms of the distance

∆T (ĝ, g) :=

T∫

0

( d

ds

(
ĝ(s)− g(s)

))2

ds.

Here the same technique is used to get an estimate for an accuracy of approxi-
mation for option prices.

We will always assume that the boundaries g(t) and ĝ(t) which define the price

CT and its approximation ĈT, respectively (see the notation in Proposition 1)
have the following properties:

g(s)− ĝ(s) is a continuous function,

g(0)− ĝ(0) = g(T )− ĝ(T ) = 0, ∆T (ĝ, g) < ∞.

Theorem 1.

|CT − ĈT| ≤ C
√

∆T (ĝ, g),

where

C =

√
2

πσ2
E

[
(ST −K)+/BT

]
. (7)
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Proof. We will use the following representations for CT and ĈT in terms of the
original Wiener process:

CT = E

[(
S0BT exp

{
σWT − σ2T

2

}
−K

)+

I
{
σWt < g(t), t ≤ T

}
/BT

]
,

ĈT = E

[(
S0BT exp

{
σWT − σ2T

2

}
−K

)+

I
{
σWt < ĝ(t), t ≤ T

}
/BT

]
.

Let probability measure P̃ be defined by formula (4) with

f(s) =
d

ds

(
g(s)− ĝ(s)

)
/σ.

Then by the Girsanov theorem the process
{
W̃t = Wt + (ĝ(t)− g(t))/σ, t ≥ 0

}
(8)

is a standard Wiener process with respect to (Ft, P̃ ). Note that due to the

assumption ĝ(T )−g(T ) = 0 we have the equality W̃T = WT . Besides, expressing

Wt via W̃t from (8) and substituting it into the representation for ZT (f) we also
have

(ZT (f))−1 = exp

{
−

T∫

0

d

ds

(
ĝ(s)− g(s)

)
/σdW̃s − ∆(ĝ(s), g(s))

2σ2

}
.

As E( . ) = Ẽ[(ZT (f))−1( . )] , we have

CT = Ẽ

[(
ZT (f)

)−1
(

S0BT exp

{
σWT − σ2T

2

}
−K

)+

× I
{
σWt < g(t), t ≤ T

}
/BT

]

= Ẽ

[(
ZT (f)

)−1
(

S0BT exp

{
σW̃T − σ2T

2

}
−K

)+

× I
{
σW̃t < ĝ(t), t ≤ T

}
/BT

]

= E

[(
ZT (−f)

)(
S0BT exp

{
σWT − σ2T

2

}
−K

)+

× I
{
σWt < ĝ(t), t ≤ T

}
/BT

]
.

Using this representation we get

|CT − ĈT| =
∣∣E[

(ZT (−f)− 1)(ST −K)+I{σWt < ĝ(t), t ≤ T}/BT

]∣∣
≤ E

[|ZT (−f)− 1|(ST −K)+/BT

]
.

Here the random variables ZT (−f) and ST are independent as they are functions

of Gaussian random variables
∫ T

0
f(s)dW (s) and WT which are independent.
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Indeed, due to the properties of stochastic integrals and the choice of function
f(s) the covariance of those random variables is

E

[
WT

T∫

0

f(s)dW (s)

]
=

T∫

0

f(s)ds =
(
g(T )− ĝ(T ) + ĝ(0)− g(0)

)
/σ = 0

Hence

E
[|ZT (f)− 1| (ST −K)+/BT ] = E[|ZT (f)− 1|] E

[
(ST −K)+/BT

]

To complete the proof we note that a random variable log(ZT (f) is normally
distributed with mean −∆T (ĝ, g)/(2σ2) and variance ∆T (ĝ, g)/(σ2). By direct
calculation we have the equality

E|ZT (f)− 1| = 2

(
Φ

(√
∆T (ĝ, g)/σ2

)− 1

2

)
,

where Φ(x) is a standard normal distribution. As Φ(x)− 1/2 ≤ x/
√

2π, x > 0
it follows that

E|ZT (f)− 1| ≤
√

2∆T (ĝ, g)

πσ2
. ¤

Remark 2. The price of the ordinary call option E[(ST −K)+/BT ] in (7) is
easy to evaluate by the famous Black–Scholes formula. If we assume that the
boundary g(t) is a twice continuously differentiable function and the lengths
of intervals (ti, ti+1), i = 1, . . . , n − 1, for a piecewise-linear approximating
function ĝt are equal (i.e., a uniform partition is considered), then, obviously,
∆T (ĝ, g) = O( 1

n2 ) as n →∞. Hence by Theorem 1 we have

|CT − ĈT| = O
( 1

n

)
.

We can essentially improve this estimate by using Theorem 3 from [9] along
with Proposition 1.

Proposition 2. Let g(t) be a twice continuously differentiable function and
ĝ(t) be a piecewise-linear continuous function such

ĝ(ti) = g(ti), ti =
iT

n
, i = 0, . . . , n.

Then as n →∞
|CT − ĈT| = O

(
log n

n3/2

)
.

Theoretically, we can improve this estimate for the rate of convergence if we
allow the use of a non-uniform partition. In the context of boundary cross-
ing problems it has recently been shown by Pötzelberger and Wang [10] that
under some conditions on boundaries with the use of a specifically designed
non-uniform partition

∣∣P{Wt < g(t), t ≤ T} − P{Wt < ĝ(t), t ≤ T}∣∣ = O

(
1

n2

)
.
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Applying this fact along with Proposition 1 we get

|CT − ĈT| = O

(
1

n2

)
.

Note that a search for an optimal non-uniform partition could be a rather
time-consuming procedure especially for large n.

3. Numerical Example

This section contains a numerical example of the calculation of the fair price
of a barrier option which was considered by Roberts and Shortland in [3]. In
this paper the Vasicek model is used for the risk-free interest rate It:

It − r = a +

t∫

0

(r − Is)ds + σ Ŵt,

where Ŵt is a standard Wiener process independent of Wt. Then r(t) = EIt =

r + ae−t and
∫ t

0
r(s)ds = rt + a(1 − e−t). Note that the interest rate is now

considered to be stochastic rather than deterministic as in Section 2.
Roberts and Shortland considered in [5] the example with S0 = 10, σ =

0.1, r = 0.1, and a = 0.05. The style of option was the up-and-in European
call option with boundary H = 12, strike price K = 11, and maturity at T = 1.
To price this option we use that the sum of prices of “up-and-down” and “up-
and-in” options equals to the price of “standard call” and hence the assertion
of Theorem 1 is true for “up-and-in” options also.

The boundary function g(t) for this example is

g(t) = ln(H/S0) + σ2t/2−
t∫

0

r(s)ds = 0.18232− 0.095t− 0.05(1− e−t).

By using an analytic approximation Roberts and Shortland obtained the
following bounds for the fair price:

0.51675 ≤ CT ≤ 0.51796.

They also used the Monte-Carlo method to evaluate the fair price of the option.
By simulating 1 million sample paths of the stock price with step size 0.001
they obtained

CT = 0.513903

with standard error 0.016. This value of the fair price is less than the lower
bound, although a 95% confidence interval for CT does include these bounds.
In order for a 95% confidence interval to have comparable width to the ana-
lytic bounds, we would require about 700 million sample paths with step size
0.001. The computational time required to do this would clearly prevent the
direct Monte Carlo method from being useful. However, the use of the variance
reduction technique might dramatically reduce the required sample size.
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Using the suggested numerical integration method with piecewise-linear ap-
proximation for 50 and 400 uniformly spaced nodes, we obtained for both cases
the following value for the approximation of the fair price:

ĈT = 0.51683 . (9)

This value is within the analytic bounds obtained by Roberts and Shortland.
Note that by Theorem 1 the upper bound for errors of these estimates are 9·10−4

and 1.1 · 10−4, respectively for n = 50 and n = 400. The stability of numerical
integration is verified by using the Gaussian quadrature method with 32 and 64
nodes, the reported numbers are the same as in (9).

For the calculation of boundary probabilities in Proposition 1 we also used
the integral equation method from [7]. Solving the integral equation iteratively,
for three iterations only we obtained the fair price as CT = 0.51695. This is
also within the bounds given by Roberts and Shortland.

By using the PDE approach we obtained CT = 0.51671 as the fair price. It is
noteworthy that this is slightly less than the lower bound obtained by Roberts
and Shortland, although the difference is only in the fifth digit. However this
is an acceptable accuracy for the bank practice.
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