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A FACTORIZATION METHOD FOR AN INVERSE
NEUMANN PROBLEM FOR HARMONIC VECTOR FIELDS

R. KRESS

Abstract. Extending the previous work on the corresponding inverse Dirich-
let problem, we present a factorization method for the solution of an inverse
Neumann boundary value problem for harmonic vector fields.
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1. Introduction

Roughly speaking, inverse boundary value problems for partial differential
equations consist of determining the shape of an unknown object D from a
knowledge of the type of a boundary condition on the boundary ∂D and of
one or several solutions to the differential equation at locations away from the
boundary. They are difficult to solve since they are both nonlinear and im-
properly posed. Recently new solution methods have been developed which
circumvent the issue of nonlinearity by introducing a parameter point z and
then solving a linear operator equation to decide whether or not z ∈ D. These
methods are called factorization or sampling methods and two different variants
were first introduced for inverse obstacle scattering problems, i.e., for inverse
boundary value problems for the Helmholtz equation, by Colton and Kirsch [3]
and by Kirsch [6]. The second variant was extended to inverse boundary value
problems for the Laplace equation in [5, 8, 9, 11]. The corresponding approach
in inverse impedance tomography, i.e., for inverse transmission problems for the
Laplace equation, was initiated in [1, 2]. An extension of Kirsch’s factorization
method to an inverse Dirichlet boundary value problem for harmonic vector
fields, i.e., for solutions of

div v = 0, curl v = 0, (1.1)

is described in [10]. It is the aim of the present paper to extend this analysis to
an inverse Neumann problem.

Assuming that D is a bounded domain in R3 with a connected C2 boundary
∂D and outward unit normal ν and y is a point in R3 \ D̄ and p a vector in R3,
we consider the exterior boundary value problem to find a harmonic vector field
v(·, y, p) ∈ C1(R3 \ D̄) in R3 \D satisfying the Neumann boundary condition

ν · v(·, y, p) = −ν · grad div {Φ(· , y)p} on ∂D, (1.2)
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where Φ denotes the fundamental solution to the Laplace equation. Further-
more, we require that v(x) → 0 as |x| → ∞ uniformly in all directions. In
addition, in the case of a multiply connected domain D, for simplicity, we as-
sume that v is circulation free, i.e., v can be represented via v = grad u by a
scalar potential u. We may interpret v + grad div{Φp} as the total magneto-
static field of a dipole located at the point y with polarization p in the exterior
of a superconductor D. Since v depends linearly on the polarization vector p
we may write

v(· , · , p) = wp,

where w is a 3× 3–matrix depending on x, y ∈ R3 \ D̄.
Let B be an additional bounded simply connected domain with a connected

C2 boundary ∂B that contains D̄. Then the inverse problem we are interested
in is to determine the shape of D, i.e., the boundary ∂D, from the knowledge
of w(x, y) for all x, y in ∂B. To solve this inverse problem, we will characterize
D in terms of spectral data, i.e., in terms of eigenvalues and eigenfunctions, of
the integral operator W defined by

(Wg)(x) := −
∫

∂B

w(x, y)g(y) ds(y), x ∈ ∂B. (1.3)

We will consider the two cases where the density g is either normal or tangential
to the boundary ∂B. In the case, where g = g̃ν with some scalar function g̃ and
ν denoting the outward normal to ∂B, we replace (1.3) by the integral operator
Wν : L2(∂B) → L2(∂B) defined by

(Wν g̃)(x) := −
∫

∂B

wν(x, y)g̃(y) ds(y), x ∈ ∂B, (1.4)

with the scalar kernel

wν(x, y) = ν(x) · w(x, y)ν(y), x, y ∈ ∂B,

i.e., related to the direction of the dipoles we only use the normal components
of the field v as data. In the second case, where g is a tangential field, we view
(1.3) as an integral operator W : L2

t (∂B) → L2
t (∂B) mapping the space L2

t (∂B)
of tangential fields on ∂B into itself, i.e., we use only the tangential components
of the field v as data. To distinguish between the two cases, in the sequel, we
use the subscript ν for those operators that correspond to the first case.

In particular, we will show that Wν and W are compact, self-adjoint, and

positive semi-definite operators. Therefore their square roots W
1/2
ν and W 1/2

are well defined. If for some constant unit vector e and a parameter point z ∈ R3

we define the dipole field H(· , z) := grad div{Φ(· , z)e} in R3 \ {z}, then our
main result is the characterization of the domain D by the property that the
improperly posed linear operator equations

W 1/2
ν g̃ = ν ·H(· , z)|∂B (1.5)

and

W 1/2g = {ν ×H(· , z)|∂B} × ν (1.6)
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have solutions g̃ ∈ L2(∂B) and g ∈ L2
t (∂B), respectively, if and only if z ∈

D. With the aid of Picard’s theorem this can be used numerically for the
visualization of the unknown domain.

We note that in [10] the signs in (1.3) and (1.4) are reversed so that W and
Wν remain positive semi-definite. As is typical of the factorization methods,
one does not need to know the boundary condition in advance, since the sign
of the eigenvalues depend on whether the boundary condition is Dirichlet or
Neumann.

The plan of this paper is as follows. Since the study of an inverse problem al-
ways requires a solid foundation of the corresponding direct problem, in Section
2 we summarize the classical existence and uniqueness results for the exterior
Neumann problem for harmonic vector fields extended by an investigation of
the solution operator as needed in the following analysis. Then, in Section 3
we introduce the inverse problem with dipoles in normal direction. Our main
result is the theoretical foundation of the factorization method through Theo-
rem 3.3 and its two corollaries. The final Section 4 is devoted to the inverse
problem with dipoles in tangential directions and is shorter since the analysis
is analogous to that in Section 3.

2. Direct Problem

We consider the exterior Neumann problem for harmonic vector fields in
the bounded domain D ⊂ R3 with a connected C2 boundary ∂D and exte-
rior unit normal ν: Given a scalar function f ∈ C(∂D), find a vector field
v ∈ C1(R3 \ D̄) satisfying the differential equations

div v = 0, curl v = 0 in R3 \ D̄, (2.1)

and the boundary condition

ν · v = f on ∂D (2.2)

in the sense of uniform convergence

lim
h→0

ν(x) · v(x + hν(x)) = f(x), x ∈ ∂D.

At infinity it is required that v(x) → 0 for |x| → ∞ uniformly in all directions.
Furthermore, for simplicity, if D and consequently R3\D̄ is multiply connected,
then we impose the condition that v is circulation free. In order to introduce
notation for the subsequent analysis we briefly recall the classical results on
existence and uniqueness for (2.1)–(2.2).

Since we assume that v = grad u for some harmonic function u, the homo-
geneous form of the boundary condition ν · v = 0 on ∂D and the behavior
of harmonic vector fields at infinity via Green’s integral theorem imply that
grad u = 0 and consequently v = 0 for any solution to the homogeneous bound-
ary value problem (2.1)–(2.2).

If we denote by

Φ(x, y) :=
1

4π

1

|x− y| , x 6= y,



552 R. KRESS

the fundamental solution of Laplace’s equation in R3, then the vector field

v(x) = grad

∫

∂D

Φ(x, y)ϕ(y) ds(y), x ∈ R3 \ D̄, (2.3)

with density ϕ ∈ C(∂D) is a solution of (2.1)–(2.2) if ϕ solves the integral
equation

−ϕ + K∗ϕ = 2f, (2.4)

where the integral operator K∗ : C(∂D) → C(∂D) is given by

(K∗ϕ)(x) := 2

∫

∂D

∂Φ(x, y)

∂ν(x)
ϕ(y) ds(y), x ∈ ∂D.

Since the operator K∗ is compact and −I + K∗ is injective (see Theorem 6.20
in [8]), by the Riesz theory, there exists a bounded inverse (−I + K∗)−1 :
C(∂D) → C(∂D). This concludes the classical uniqueness and existence anal-
ysis for the exterior Neumann problem (2.1)–(2.2).

Using the Fredholm alternative it can be shown that the nullspace of −I +K∗

with respect to L2(∂D) coincides with the nullspace with respect to C(∂D) (see
also [4], p. 59). Therefore the inverse operator (−I+K∗)−1 : L2(∂D) → L2(∂D)
also exists and is bounded.

Recall that we assume B ⊂ R2 to be a bounded, simply connected domain
with connected C2 boundary and outward unit normal ν such that D̄ ⊂ B. We
introduce an operator

Aν : ν · v|∂D 7→ ν · v|∂B

that, for solutions v to (2.1)–(2.2), maps the normal component on ∂D onto
the normal component on ∂B. From the above existence analysis we have that

Aν = 2Uν(−I + K∗)−1, (2.5)

where Uν : L2(∂D) → L2(∂B) is defined by

(Uνϕ)(x) :=

∫

∂D

∂Φ(x, y)

∂ν(x)
ϕ(y) ds(y), x ∈ ∂B.

We note that, by considering weak solutions v ∈ L2
loc(R3 \ D̄) of the Neumann

problem, the operator Aν can be extended as a bounded operator from the
Sobolev space H−1/2(∂D) into L2(∂B) (see [12]).

Theorem 2.1. The compact operator Aν : L2(∂D) → L2(∂B) is injective
and has the dense range.

Proof. From the above we already know that (−I + K∗)−1 : L2(∂D) → L2(∂D)
is injective. Therefore to establish injectivity of Aν it remains to show that
Uν : L2(∂D) → L2(∂B) is injective. From Uνϕ = 0 we have that the single-
layer potential u with density ϕ solves the homogeneous Neumann problem for
harmonic functions in R3 \ B. Hence we have u = 0 in R3 \ B, whence by
analyticity u = 0 in R3 \ D̄ follows. From this, using the potential theoretic
jump-relations in the L2 sense due to Kersten [7] (see also [8] p. 172) we obtain
that −ϕ + K∗ϕ = 0. Hence ϕ = 0, since −I + K∗ is injective.
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To establish that Aν(L
2(∂D)) is dense in L2(∂B) we show that the adjoint

operator A∗
ν : L2(∂B) → L2(∂D) is injective. Clearly,

A∗
ν = 2(−I + K)−1U∗

ν , (2.6)

where

(Kϕ)(x) = 2

∫

∂D

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ ∂D,

is the adjoint of K∗ and

(U∗
ν g)(x) =

∫

∂B

∂Φ(x, y)

∂ν(y)
g(y) ds(y), x ∈ ∂D,

is the adjoint of Uν . Again, since by the Fredholm alternative (−I + K)−1 :
L2(∂D) → L2(∂D) is injective we only need to be concerned with the injectivity
of U∗

ν . From U∗
ν g = 0 we have that the double-layer potential u with density g

solves the homogeneous Dirichlet problem for harmonic functions in D. Hence
we have u = 0 in D, whence by analyticity u = 0 in B follows. From this,
using the potential theoretic jump-relations in the L2 sense we obtain that
−g + KBg = 0, where KB denotes the operator K with D replaced by B.
Hence g = 0, since −I + KB is injective. ¤

As is typical of compact operators, the ranges of Aν and A∗
ν have more

regularity than L2. In particular, since its kernel is C2, the operator U∗
ν is

bounded from L2(∂B) into the Hölder space C1,α(∂D). Furthermore, because
K is compact from C1,α(∂D) into itself (see Theorem 3.4 in [4]), the inverse
(I − K)−1 : C1,α(∂D) → C1,α(∂D) also exists and is bounded. Therefore A∗

ν

maps L2(∂B) boundedly into C1,α(∂D) and, consequently, also boundedly into
the Sobolev space H1(∂D).

3. Inverse Problem with Normal Dipoles

We now consider the special case of the exterior Neumann problem (2.1)–(2.2)
with the boundary data given by a dipole with polarization vector p located at
some point y ∈ R3\D̄, i.e., the field v = v(· , y, p) is harmonic in R3\D̄, satisfies
the boundary condition (1.2), is circulation free and vanishes at infinity. The
inverse problem we want to consider in this section is, given ν(x) · v(x, y, ν(y))
for all x, y ∈ ∂B, to determine the shape of D. We will develop an explicit
characterization of the unknown domain D in terms of spectral data of the
integral operator Wν : L2(∂B) → L2(∂B) with kernel wν as defined by (1.4).

In the sequel, by (· , ·) we denote the inner product in L2(∂B) and L2(∂D).
For convenience, we introduce the subspaces

L2
0(∂D) :=

{
g ∈ L2(∂D) : (g, 1)=0

}
and L2

0(∂B) :=
{
g ∈ L2(∂B) : (g, 1)=0

}
.

We define the pseudodifferential operator T as the normal derivative of the
double-layer potential, i.e.,

(Tϕ)(x) :=
∂

∂ν(x)

∫

∂D

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ ∂D,
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that maps the Sobolev space H1/2(∂D) boundedly into H−1/2(∂D) (see [12]).
The operator T has a one-dimensional nullspace N(T ) = span{1} and it can be
shown that it is self-adjoint, negative semi-definite and an isomorphism from
H1(∂D) ∩ L2

0(∂D) onto L2
0(∂D). By the compactness of the embedding from

H1(∂D) into L2(∂D) this implies that the inverse T−1 is compact from L2
0(∂D)

into L2
0(∂D). Furthermore, T−1 inherits the self-adjointness and negative semi-

definiteness from T . Therefore the spectral theorem for self-adjoint compact
operators can be used to define the self-adjoint and positive semi-definite op-
erator [−T ]1/2 that is bounded from H1/2(∂D) into L2(∂D) and bounded from
L2(∂D) into H−1/2(∂D). It is the square root of −T in the sense that it satisfies

[−T ]1/2[−T ]1/2 = −T

on H1(∂D). For details the reader is referred to [11].
For the following theorem we note that TA∗

ν is well defined on L2(∂B), since
A∗

ν is bounded from L2(∂B) into H1(∂D).

Theorem 3.1. The operators Wν, Aν, and T are related through the factor-
ization

Wν = −AνTA∗
ν . (3.1)

Proof. The operators Pν : L2(∂D) → L2(∂B) and P ∗
ν : L2(∂B) → L2(∂D) given

by

(Pνϕ)(x) :=
∂

∂ν(x)

∫

∂D

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ ∂B,

and

(P ∗
ν g)(x) :=

∂

∂ν(x)

∫

∂B

∂Φ(x, y)

∂ν(y)
g(y) ds(y), x ∈ ∂D,

are adjoint. Noting that

divx {Φ(· , y) g(y)ν(y)} = −∂Φ(· , y)

∂ν(y)
g(y)

for g ∈ L2(∂B), from the boundary condition (1.2) we have that

ν(x) · v(x, y, g(y)ν(y)) =

(
Aν

∂

∂ν

∂Φ(· , y)

∂ν(y)
g(y)

)
(x), x, y ∈ ∂B.

Integrating this over ∂B and using the boundedness of Aν , we deduce that

Wν = −AνP
∗
ν . (3.2)

By the definition of the operators, we have Pν = AνT , whence P ∗
ν = TA∗

ν

follows. Inserting this into (3.2) completes the proof. ¤

As a first consequence of the factorization (3.1) we note that the operator
W : L2(∂B) → L2(∂B) is compact, since A : L2(∂D) → L2(∂B) is compact
and TA∗

ν : L2(∂B) → L2(∂D) is bounded.
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Theorem 3.2. The compact operator Wν : L2(∂B) → L2(∂B) is positive
semi-definite. The nullspace of Wν is given by span{1} and there exists a com-
plete orthonormal system gn, n = 1, 2, . . . , of L2

0(∂B) of eigenelements of Wν

with positive eigenvalues λn, i.e.,

Wνgn = λngn, n = 1, 2, . . . . (3.3)

Proof. From (3.1) and the self-adjointness of T we observe that Wν is a self-
adjoint operator. For g ∈ L2(∂B) we have (Wνg, g) = −(TA∗

νg, A∗
νg) and the

negative semi-definiteness of T implies that Wν is positive semi-definite. The
equality (Wνg, g) = 0 holds if and only if TA∗

νg = 0, that is, if Wνg = 0, since
Aν is injective by Theorem 2.1.

To characterize the nullspace of Wν , assume TA∗
νg = 0, i.e., A∗

νg = const.
From this, using K1 = −1 and (2.6) we conclude that U∗

ν g = const. Therefore
the double-layer potential u with density g on ∂B satisfies u = const on ∂D
and consequently u = const in B. The jump-relations now imply g ∈ span{1}.
Reversing the arguments also shows that A∗

ν1 = const and therefore Wν1 = 0,
and the proof is complete.

The statement on the eigenvalues and eigenfunctions are straightforward con-
sequences of the spectral theory for self-adjoint compact operators (see Theorem
15.12 in [8]). ¤

Using the eigenvalues λn and eigenfunctions gn of the operator Wν we are
now in a position to define the functions

ϕn :=
1√
λn

[−T ]1/2A∗
νgn, n = 1, 2, . . . . (3.4)

Since A∗
νgn ∈ H1(∂D), we clearly have ϕn ∈ L2(∂D). Using (3.1) and the

orthonormality of gn, it can be seen that ϕn form an orthonormal system in
L2(∂D).

For the constant unit vector e and z ∈ B we define

Ψ(· , z) :=
∂

∂ν
div{Φ(· , z)e} on ∂B.

In view of

grad div{Φ(· , z)e} = curl curl{Φ(· , z)e}, (3.5)

by Stokes’ theorem we have Ψ(· , z) ∈ L2
0(∂B). Hence the Fourier series

Ψ(· , z) =
∞∑

n=1

(Ψ(· , z), gn)gn (3.6)

converges in L2(∂B), because the gn are complete in L2
0(∂B).

Theorem 3.3. The point z ∈ B belongs to D if and only if

∞∑
n=1

1

λn

|(Ψ(· , z), gn)|2 < ∞. (3.7)
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Proof. Let z ∈ D. Then the field

H(· , z) := grad div{Φ(· , z)e}
is harmonic in R3 \ {z}, circulation free and vanishes at infinity. Therefore,
setting

f(· , z) :=
∂

∂ν
div{Φ(· , z)e} on ∂D

we have

Aνf = Ψ.

Because by (3.5) and Stokes’ theorem clearly f ∈ L2
0(∂D), using the invertibility

of T as discussed above, there exists a function ψ ∈ H1(∂D) such that Tψ = f .
Hence we have Ψ = Aνf = AνTψ and consequently

g = Aν [−T ]1/2ϕ,

where ϕ = −[−T ]1/2ψ is in L2(∂D). Since (3.4) is an orthonormal system,
Bessel’s inequality implies that

∞∑
n=1

|(ϕ, ϕn)|2 ≤ ‖ϕ‖2. (3.8)

From (3.1) and (3.4) we find that
√

λn (ϕ, ϕn) = (ϕ, [−T ]1/2A∗
νgn) = (Aν [−T ]1/2ϕ, gn) = (g, gn), n = 1, 2, . . . ,

and inserting this into (3.8) yields the convergence of series (3.7).
Conversely, assume that the series (3.7) converges. Then,

ϕ :=
∞∑

n=1

1√
λn

(Ψ(· , z), gn)ϕn

defines a function ϕ ∈ L2(∂D). With the aid of (3.6), the boundedness of the
operators [−T ]1/2 : L2(∂D) → H−1/2(∂D) and Aν : H−1/2(∂D) → L2(∂B) and
the relation

Aν [−T ]1/2ϕn =
√

λn gn, n = 1, 2, . . . ,

we deduce that ϕ satisfies Aν [−T ]1/2ϕ = Ψ(· , z). By the uniqueness for the
Neumann problem in the exterior of B and analyticity, this implies that for the
weak solution v ∈ L2

loc(R3 \ D̄) to the Neumann problem in the exterior of D
with normal derivative [−T ]1/2ϕ ∈ H−1/2(∂D) we have v = H(· , z). Therefore
the point z cannot belong to B\D, since H(· , z) 6∈ L2

loc(R3\D̄) if z ∈ B\D. ¤
Since the operator Wν is compact, self-adjoint, and positive semi-definite the

square root operator W
1/2
ν : L2(∂B) → L2(∂B) is well defined by

W 1/2
ν g =

∞∑
n=1

√
λn (g, gn)gn. (3.9)

In terms of this operator, by using Picard’s theorem (see Theorem 15.18 in [8])
we can reformulate Theorem 3.3 as the following corollary.
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Corollary 3.4. The point z ∈ B belongs to D if and only if the operator
equation

W 1/2
ν g = Ψ(· , z)

has a solution g ∈ L2(∂B).

Corollary 3.5. The domain D is uniquely determined by the knowledge of
ν(x) · v(x, y, ν(y)) for x, y ∈ ∂B.

Proof. This is an immediate consequence of Theorem 3.3. ¤

4. Inverse Problem with Tangential Dipoles

We now turn to the case of the inverse problem using tangential dipole fields
g ∈ L2

t (∂B) and the tangential components of v(x, y, g(y)) as data. Here,
by L2

t (∂B) we denote the space of square integrable tangential fields on ∂B.
Again we will develop an explicit characterization of the unknown domain D
in terms of spectral data of the integral operator W : L2

t (∂B) → L2
t (∂B) with

kernel w as defined by (1.3). For doing so, we need to replace the operator
Aν mapping the normal components of harmonic vector fields on ∂D onto the
normal components on ∂B by the operator A that maps the normal components
on ∂D onto the tangential components on ∂B, i.e., A : ν ·v|∂D 7→ {ν × v|∂B}×ν.
Then (2.5) has to be replaced by

A = 2U(−I + K∗)−1, (4.1)

where U : L2(∂D) → L2
t (∂B) is now given by

(Uϕ)(x) := Grad

∫

∂D

Φ(x, y)ϕ(y) ds(y), x ∈ ∂B.

Here Grad denotes the surface gradient on ∂B. Analogously to Aν , the operator
A can be extended as a bounded operator from the Sobolev space H−1/2(∂D)
into L2

t (∂B).

Theorem 4.1. The compact operator A : L2(∂D) → L2
t (∂B) is injective on

the subspace L2
0(∂D).

Proof. Using K1 = −1, it can be seen that (−I+K∗)−1 maps L2
0(∂D) into itself.

Hence we only need to be concerned with the injectivity of U on L2
0(∂D). From

Uϕ = 0 we have that the single-layer potential u with density ϕ is constant
u = u0 on ∂B. Then, employing the jump-relations, by Green’s theorem and
using ϕ ∈ L2

0(∂D) we have that∫

∂B

u
∂u

∂ν
ds = u0

∫

∂D

∂u+

∂ν
ds = u0

∫

∂D

∂u−
∂ν

ds = 0,

where by the subscripts + and− we distinguish the limits obtained by approach-
ing ∂D from within R3 \D̄ and D, respectively. From this we can conclude that
u = 0 first in R3 \ D̄ and then also in D and the jump-relations yield ϕ = 0.

The L2 adjoint A∗ : L2
t (∂B) → Lt(∂D) is given by

A∗ = 2(−I + K)−1U∗, (4.2)
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where

(U∗g)(x) = − div

∫

∂B

Φ(x, y)g(y) ds(y), x ∈ ∂D,

is the adjoint U∗ : L2
t (∂B) → L2(∂D) of U . This, as in Section 2, can be used

to show that A∗ maps L2
t (∂B) boundedly into L2(∂D). ¤

Theorem 4.2. The operators W , A, and T are related through the factor-
ization

W = −ATA∗. (4.3)

Proof. The operators P : L2(∂D) → L2
t (∂B) and P ∗ : L2

t (∂B) → L2(∂D)
defined by

(Pϕ)(x) := Grad

∫

∂D

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ ∂B,

and

(P ∗g)(x) := − ∂

∂ν(x)
div

∫

∂B

Φ(x, y)g(y) ds(y), x ∈ ∂D,

are adjoint. Integrating

v(x, y, g(y)) = −
(

A
∂

∂ν
div{Φ(· , y)g(y)}

)
(x), x, y ∈ ∂B,

over ∂B and using the boundedness of A, we can deduce that

W = −AP ∗. (4.4)

By the definition of the operators, we have P = AT , whence P ∗ = TA∗ follows.
Inserting this into (4.4) completes the proof. ¤

Consider the single-layer operator S : L2(∂B) → H1(∂B) given by

(Sϕ)(x) :=

∫

∂B

Φ(x, y) ϕ(y) ds(y), x ∈ ∂B.

Then, by interchanging orders of integration for functions ϕ, ψ ∈ C1,α(∂B) and
using a denseness argument it can be seen that

(Grad Sϕ, ψ) = −(ϕ, Grad Sψ) (4.5)

for all ϕ, ψ ∈ L2(∂B). We denote

L2
t,div(∂B) := {g ∈ L2

t (∂B) : Div g ∈ L2(∂B)},
where Div is the surface divergence of a tangential field on ∂B in the weak
sense.

Theorem 4.3. The compact operator W : L2(∂B) → L2
t (∂B) is positive

semi-definite. The nullspace of W is given by

L2,0
t,div(∂B) := {g ∈ L2

t,div(∂B) : Div g = 0}
and there exists an orthonormal system gn ∈ L2

t (∂B) of eigenelements of W
with positive eigenvalues λn, i.e.,

Wgn = λngn, n = 1, 2, . . . . (4.6)
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The eigenelements are complete in the orthogonal complement of L2,0
t,div(∂B).

Proof. As in the proof of Theorem 3.2, from (4.3) we deduce that W is self-
adjoint and that equality holds in (Wg, g) ≥ 0 if and only if Wg = 0. In view
of Theorem 4.1 and (4.4) we have that N(W ) = N(P ∗).

To characterize the nullspace of P ∗ let P ∗g = 0. Then

u(x) := div

∫

∂B

Φ(x, y)g(y) ds(y), x ∈ R3 \ ∂B, (4.7)

has a vanishing normal derivative on ∂D. This implies that u = u0 = const
in D and, by analyticity, u = u0 in B. Since the single-layer operator S is an
isomorphism from L2(∂B) onto H1(∂B) (see [12]), there exists g0 ∈ L2(∂B)
such that u0 = Sg0. Now let f ∈ H1(∂B) and, correspondingly, ϕ ∈ L2(∂B)
such that f = Sϕ. Then, using (4.5) and the self-adjointness of S, we obtain

(Grad f, g) = (Grad Sϕ, g) = −(ϕ, Grad Sg) = −(ϕ, u0) = −(f, g0)

i.e., g ∈ L2
t,div(∂B) with Div g = g0. Hence we can transform (4.7) into

u(x) =

∫

∂B

Φ(x, y)g0(y) ds(y), x ∈ R3 \ ∂B. (4.8)

From this and the fact that u = u0 in B, by the L2 jump relations we conclude
that

g0 + KBg0 = 0.

Since the nullspace of I + KB has dimension one with N(I + KB) = span{ψ0}
for some ψ0 with

∫
∂B

ψ0 ds = 1 (see Theorem 6.20 in [8]), the observation
∫

∂B

g0 ds =

∫

∂B

Div g ds = 0

now implies that Div g = 0, i.e., g ∈ L2,0
t,div(∂B).

Conversely, from (4.8) and the definition of P ∗ it is obvious that for g ∈
L2

t,div(∂B) with Div g = 0 we have that P ∗g = 0. Now as in the proof of
Theorem 3.2 the statement on the eigenelements and eigenvalues follows from
the spectral theorem. ¤

For a constant unit vector e and z ∈ B we define

χ(· , z) := Grad div{Φ(· , z)e} on ∂B.

Since

(χ(· , z), g) = (Grad div{Φ(· , z)e}, g) = −(div{Φ(· , z)e}, Div g)

for all g ∈ L2
t,div(∂B), it is obvious that χ(· , z) is orthogonal to the nullspace

L2,0
t,div(∂B) of W . Therefore we have the Fourier series

χ(· , z) =
∞∑

n=1

(Ψ(· , z), gn)gn. (4.9)

With the aid to this expansion the proof of the following theorem is completely
analogous to that of Theorem 3.3. Only instead of the uniqueness for the
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Neumann problem in the exterior of B the uniqueness for the Dirichlet problem
has to used.

Theorem 4.4. The point z ∈ B belongs to D if and only if
∞∑

n=1

1

λn

|(χ(· , z), gn)|2 < ∞. (4.10)

Corollary 4.5. The point z ∈ B belongs to D if and only if the operator
equation

W 1/2g = χ(· , z)

has a solution g ∈ L2(∂B).

Corollary 4.6. The domain D is uniquely determined by the knowledge of
ν(x)× v(x, y, p) for all x, y ∈ ∂B and p ∈ R3 with p · ν(y) = 0.
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