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Abstract. Some classes of entire functions which are eigenfunctions of gen-
eralizations of the Laguerre derivative operator are considered.

Since this property is an analog of the one characterizing the exponential
function, we refer to such functions as Laguerre-type exponentials, or shortly
L-exponentials. The definition of L-circular and L-hyperbolic functions easily
follows.

Applications in the framework of generalized evolution problems are also
mentioned.
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1. Introduction

The exponential function eax is an eigenfunction of the derivative operator
since

Deax = aeax, (1.1)

where D := d/dx, and a denotes a real or complex arbitrary constant.
Another interesting differential operator exists in literature, namely the La-

guerre derivative denoted in the following by DL and defined by

DL := DxD =
d

dx
x

d

dx
. (1.2)

In the preceding articles, we have shown the role of the Laguerre derivative
in the framework of the so-called monomiality principle and its application
to the multidimensional Hermite (Hermite–Kampé de Fériet or Gould–Hopper
polynomials, see [1], [2],[3]) or Laguerre polynomials [4], [5], [6].

It is easily seen, by induction, that the Laguerre derivative verifies

(DxD)n = DnxnDn. (1.3)

Furthermore, introducing the Tricomi function of order zero or the relevant
Bessel function

C0(x) :=
∞∑

k=0

(−1)k xk

(k!)2 = J0(2
√

x), (1.4)

we obtain
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Theorem 1.1. The function

e1(ax) := C0(−ax) (1.5)

is an eigenfunction of the Laguerre derivative operator, i.e.

DL e1(ax) = ae1(ax). (1.6)

Proof. Note that

DL = D + xD2, (1.7)

and consequently

DL e1(ax) =
(
D + xD2

) ∞∑

k=0

ak xk

(k!)2
(1.8)

=
∞∑

k=1

(k + k(k − 1)) ak xk−1

(k!)2
=

∞∑

k=1

k2 ak xk−1

(k!)2

= a

∞∑

k=0

ak xk

(k!)2
= ae1(ax).

¤
Note that the preceding conclusion depends on the coefficients of the combi-

nation expressing the Laguerre derivative DL in terms of D, and xD, so
that it turns out the identity (k + k(k − 1)) = k2.

In the following we will show that the above technique can be iterated, pro-
ducing Laguerre classes of exponential-type functions called L-exponentials and
the relevant L-circular, L-hyperbolic, L-Gaussian functions.

Further extensions are given in the concluding section, and applications to
the solution of generalized evolution problems is touched on.

2. Generalizations of the Laguerre Derivative and
L-Exponential Functions

In this section, we generalize the Laguerre derivative and define the relevant
L-exponential functions.

We start by considering the operator

D2L := DxDxD = D
(
xD + x2D2

)
= D + 3xD2 + x2D3, (2.1)

and the function

e2(x) :=
∞∑

k=0

xk

(k!)3 . (2.2)

The following theorem holds true:

Theorem 2.1. The function e2(ax) is an eigenfunction of the operator
D2L, i.e.

D2L e2(ax) = ae2(ax) (2.3)
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Proof. Note that

D2L e2(ax) =
(
D + 3xD2 + x2D3

) ∞∑

k=0

ak xk

(k!)3

=
∞∑

k=1

(k + 3k(k − 1) + k(k − 1)(k − 2)) ak xk−1

(k!)3
=

∞∑

k=1

k3 ak xk−1

(k!)3

= a

∞∑

k=0

ak xk

(k!)3
= ae2(ax). (2.4)

This completes the proof. ¤

Even in this case, the conclusion depends on the identity k + 3k(k − 1) +
k(k − 1)(k − 2) = k3 so that it can be recognized that the coefficients of the
combination expressing the 2L-derivative D2L in terms of D, xD2, and x2D3

are the Stirling numbers of second kind, S(3, 1), S(3, 2), S(3, 3), (see [7], and
[8], p. 835 for an extended table).

We can consequently extend the above results as follows.
Considering the operator

D(n−1)L := Dx · · ·DxDxD = D
(
xD + x2D2 + · · ·+ xn−1Dn−1

)

= S(n, 1)D + S(n, 2)xD2 + · · ·+ S(n, n)xn−1Dn (2.5)

and the function

en(x) :=
∞∑

k=0

xk

(k!)n+1 , (2.6)

we can state the following theorem:

Theorem 2.2. The function en(ax) is an eigenfunction of the operator
DnL, i.e.

DnL en(ax) = aen(ax). (2.7)

Proof. Proceeding by induction, i.e. assuming equation (2.5) to be true, and
recalling the above remarks, it is sufficient to prove that the coefficients of the
combination expressing the nL-derivative DnL in terms of D, xD2, . . . , and
xnDn+1, verify the same induction property as the Stirling numbers of second
kind, namely (see [7]):

S(n + 1, h) = S(n, h− 1) + hS(n, h). (2.8)

This is clearly true since, considering in the equation

DnL := D
(
S(n, 1)xD + S(n, 2)x2D2 + · · ·+ S(n, n)xnDn

)
, (2.9)

the general terms, i.e.

D
(
S(n, h− 1)xh−1Dh−1 + S(n, h)xhDh

)
, (2.10)
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we find

(h− 1)S(n, h− 1)xh−2Dh−1+ S(n, h− 1)xh−1Dh

+ hS(n, h)xh−1Dh + S(n, h)xhDh+1

so that the coefficient of xh−1Dh is given by S(n, h− 1) + hS(n, h) and must
coincide with S(n + 1, h) and then recursion (2.8) holds true. ¤

Remark 2.1. The above results show that, for every positive integer n, we
can define a Laguerre-exponential function, satisfying an eigenfunction property,
which is an analog of the elementary property (1.1) of the exponential. This

function, denoted by en(x) :=
∑∞

k=0
xk

(k!)n+1 , reduces to the exponential function

when n = 0 so that we can set by definition:

e0(x) := ex, D0L := D.

Obviously, D1L := DL.
For this reason we will refer to such functions as L-exponential functions or,

shortly, L-exponentials.

Examples of the above functions are given in Fig. 1.
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The above definitions allow us to introduce an extension of the Gauss function
e−x2

by means of

Definition 2.1. The L-Gaussian functions are given by the entire even
functions

e1(−x2) =
∞∑

k=0

(−1)k x2k

(k!)2
, (2.11)
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and, in general,

en(−x2) =
∞∑

k=0

(−1)k x2k

(k!)n+1
. (2.12)

Examples of the above functions are given in Fig. 2.
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3. L-Circular and L-Hyperbolic Functions

Write the 1L-exponential as follows:

e1(ix) =
∞∑

k=0

(i)k xk

(k!)2
(3.1)

=
∞∑

h=0

(−1)h x2h

((2h)!)2
+ i

∞∑

h=0

(−1)h x2h+1

((2h + 1)!)2
.

Then we can formulate the definition

Definition 3.1. The 1L-circular functions are given by

cos1(x) := < (e1(ix)) = E (e1(ix)) =
∞∑

h=0

(−1)h x2h

((2h)!)2
, (3.2)

sin1(x) := = (e1(ix)) =
1

i
O (e1(ix)) =

∞∑

h=0

(−1)h x2h+1

((2h + 1)!)2
, (3.3)
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where E(f) or O(f) are the even part or the odd part of f .
Obviously,

e1(ix) = cos1(x) + i sin1(x), e1(−ix) = cos1(x)− i sin1(x), (3.4)

so that the Euler-type formulas

cos1(x) =
e1(ix) + e1(−ix)

2
, sin1(x) =

e1(ix)− e1(−ix)

2i
(3.5)

hold true.
Recalling equation (1.3), we find the following result:

Theorem 3.1. The 1L-circular functions (3.2), (3.3) are solutions of the
differential equation

D2
L v + v =

(
D2x2D2

)
v + v = 0. (3.6)

Proof. Equation (3.6) is an easy consequence of Theorem 1.1, since

D2
L e1(ix) = DL (ie1(ix)) = −e1(ix), (3.7)

so that

D2
L (cos1(x) + i sin1(x)) = − cos1(x)− i sin1(x). (3.8)

Then separating the real from the imaginary part in the above equation, the
proclaimed result follows. ¤

Write now the nL-exponential in the form

en(ix) =
∞∑

k=0

(i)k xk

(k!)n+1
(3.9)

=
∞∑

h=0

(−1)h x2h

((2h)!)n+1
+ i

∞∑

h=0

(−1)h x2h+1

((2h + 1)!)n+1
.

Then we can formulate the definition

Definition 3.2. The nL-circular functions are given by

cosn(x) := < (en(ix)) = E (en(ix)) =
∞∑

h=0

(−1)h x2h

((2h)!)n+1
, (3.10)

sinn(x) := = (en(ix)) =
1

i
O (en(ix)) =

∞∑

h=0

(−1)h x2h+1

((2h + 1)!)n+1
. (3.11)

Obviously,

en(ix) = cosn(x) + i sinn(x), en(−ix) = cosn(x)− i sinn(x) (3.12)

so that we find again the Euler-type formulas:

cosn(x) =
en(ix) + en(−ix)

2
, sinn(x) =

en(ix)− en(−ix)

2i
. (3.13)

The same method used in Theorem 3.1 yields the more general result
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Theorem 3.2. The nL-circular functions (3.10), (3.11) are solutions of the
differential equation

D2
nL v + v = 0.

and satisfy the conditions

cosn(0) = 1, sinn(0) = 0.

Then, using the same proof as in Theorem 2.2, we obtain

Theorem 3.3. The nL-circular functions satisfy

DnL cosn(x) = − sinn(x), DnL sinn(x) = cosn(x). (3.14)

Examples of the above functions are given in Fig. 3.
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We consider now the L-hyperbolic functions.

Definition 3.3. The nL-circular functions are given by

coshn(x) := < (en(x)) = E (en(x)) =
∞∑

h=0

x2h

((2h)!)n+1
, (3.15)

sinhn(x) := = (en(x)) = O (en(x)) =
∞∑

h=0

x2h+1

((2h + 1)!)n+1
. (3.16)

Obviously,

en(x) = cosn(x) + sinn(x), en(−x) = cosn(x)− sinn(x) (3.17)
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so that we find again the Euler-type formulas:

cosn(x) =
en(x) + en(−x)

2
, sinn(x) =

en(x)− en(ix)

2
. (3.18)

Furthermore, we have

Theorem 3.4. The nL-hyperbolic functions (3.15), (3.16) are solutions of
the differential equation

D2
nL w − w = 0, (3.19)

and satisfy the conditions

coshn(0) = 1, sinhn(0) = 0.

Theorem 3.5. The nL-hyperbolic functions satisfy

DnL coshn(x) = sinhn(x), DnL sinhn(x) = coshn(x). (3.20)

We omit graphics of the L-hyperbolic functions, whose shapes are similar to
those of ordinary hyperbolic functions.

3.1. Pseudo-L-circular and pseudo-L-hyperbolic functions. According
to the results stated in [9], [10] it is easy to find the functions decomposing the
L-exponentials with respect to the cyclic group of a given (integral) order r.

The relevant functions are denoted by [10]

Π[r,k]en(x) :=
∞∑

h=0

xrh+k

((rh + k)!)n+1
, (k = 0, 1, . . . , r − 1), (3.21)

and called pseudo-nL-hyperbolic functions of order r, while the pseudo-nL-
circular functions of order r are defined by the position

σ−k
0 Π[r,k]en(σ0 x) =

∞∑

h=0

(−1)h xrh+k

((rh + k)!)n+1
, (k = 0, 1, . . . , r − 1), (3.22)

where σ0 denotes any complex r-th root of −1.
The following statement is valid.

Theorem 3.6. The pseudo-nL-circular functions of order r, (3.22) are
solutions of the differential equation

Dr
nL w + w = 0. (3.23)

The pseudo-nL-hyperbolic functions of order r, (3.21) are solutions of the
differential equation

Dr
nL w − w = 0. (3.24)

Remark 3.1. Note that equation (1.3) can be easily generalized as follows:

Dr
nL = (DxDx · · ·DxD)r

︸ ︷︷ ︸
(n+1) Derivatives

= DrxrDrxr · · ·DrxrDr.
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4. Consideration of the Above Results, and Further Properties

We prove the following

Theorem 4.1. The only polynomial solutions of the differential equation
DnL p = 0 are given by constants.

Proof. Note that DL p(x) = D (xD p(x)) = 0 implies xD p(x) = constant
and consequently p(x) = c1 + c2 log x, ch = constants (h = 1, 2) so that
the unique polynomial solution is a constant. Furthermore, D2L p(x) =
DLxD p(x) = 0 implies xD p(x) = c1 + c2 log x so that D p(x) =
c1 + c2 log x + c3

∫
log x

x
dx, and the unique polynomial solution is again a con-

stant. Proceeding by induction, we find that DnL p(x) = D(n−1)L xD p(x) = 0
implies that xD p(x) is a linear combination of a set of functions obtained
by adding to the preceding set the primitive of each function divided by x.
In any case, the only polynomial solution derived in such a way is always a
constant. ¤

It was previously noted (see, e.g., [5]) that, considering in the space of poly-
nomial functions the correspondence

D → DL, x· → D−1
x , (4.1)

where

D−n
x (1) :=

xn

n!
, (4.2)

a differential isomorphism is determined.
In such an isomorphism, the exponential function is transformed into the

function e1(x), the Hermite polynomials H
(1)
n (x, y) := (x − y)n become the

Laguerre polynomials Ln(x, y) := n!
∑n

r=0
(−1)ryn−rxr

(n−r)!(r!)2
and the monomiality

principle ensures that all the relations proved in the initial polynomial space
still hold after performing the substitutions stated in equations (4.1).

Note that an iterative application of equations (4.1) to the exponential func-
tion gives subsequently functions e1(x), e2(x), e3(x), . . . , and so on.

Accordingly, the derivative operator is transformed into

DL = DxD, D2L = DLD−1
x DL, D3L = DLD−1

x DLD−1
x DL, (4.3)

and so on.
Thus we can conclude that the L-exponentials (and the relevant L-circular

and L-hyperbolic functions) are determined by an iterative application of the
above mentioned-differential isomorphism.

This gives an explanation of the above results, since the subsequent deriva-
tives are transformed into the powers of the Laguerre derivative, determining
e.g., the validity of Theorems 3.1, 3.2, 3.3, 3.4, 3.5, 3.6.
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5. Applications

5.1. Diffusion equations.

Theorem 5.1. For any fixed integral n, consider the problem
{

DnL S(x, t) = ∂
∂t

S(x, t), in the half − plane t > 0,
S(0, t) = s(t),

(5.1)

with analytic boundary condition s(t).
The operational solution of equation (5.1) is given by

S(x, t) = en

(
x

∂

∂t

)
s(t) =

∞∑

k=0

xk

(k!)n+1

dk

dtk
s(t). (5.2)

Representing s(t) =
∞∑

k=0

akt
k, from equation (5.2), we find, in particular:

S(x, 0) =
∞∑

k=0

ak
xk

(k!)n
. (5.20)

Note that the operational solution becomes an effective solution whenever the
series in equation (5.2) is convergent. The validity of this condition depends on
the growth of the coefficients ak of the boundary data s(t), but it is usually
satisfied in physical problems.

More generally, the following results holds.

Theorem 5.2. Let Ω̂x be a differential operator with respect to the variable
x, and denote by ψ(x) an eigenfunction of Ω̂x such that

Ω̂x ψ(ax) = a ψ(ax), ψ(0) = 1, (5.3)

then the evolution problem
{

Ω̂x S(x, t) = ∂
∂t

S(x, t), in the half − plane t > 0,
S(0, t) = s(t),

(5.4)

with analytic boundary condition s(t) admits an operational solution

S(x, t) = ψ

(
x

∂

∂t

)
s(t). (5.5)

Proof. The eigenfunction property of ψ implies:

Ω̂x S(x, t) = Ω̂x ψ

(
x

∂

∂t

)
s(t) =

∂

∂t
ψ

(
x

∂

∂t

)
s(t) =

∂

∂t
S(x, t),

since ∂
∂t

commutes with ψ
(
x ∂

∂t

)
.

Furthermore, as a consequence of the hypothesis ψ(0) = 1, the boundary
condition, for x = 0, is trivially satisfied. ¤
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5.2. L-hyperbolic-type problems.

Theorem 5.3. Let Ω̂x be a 2nd order differential operator with respect
to the variable x, DnL := (DnL)t the nL-derivative with respect to the t
variable, and denote by ψ(t) and χ(t) two functions such that

DnL ψ(t) = χ(t), DnL χ(t) = ψ(t), (5.6)

ψ(0) = 1, χ(0) = 0; (5.7)

then the abstract L-hyperbolic-type problem




Ω̂2
x S(x, t) = D2

nL S(x, t), in the half − plane t > 0,
S(x, 0) = q(x),
DnL S(x, t)|t=0 = v(x)

(5.8)

with analytic initial condition q(x), v(x), admits an operational solution

S(x, t) = ψ
(
tΩ̂x

)
q(x) + χ

(
tΩ̂x

)
w(x), (5.9)

where w(x) := Ω̂−1
x v(x).

Proof. Since Ω̂x commutes with ψ
(
tΩ̂x

)
and χ

(
tΩ̂x

)
, by using conditions

(5.6), and the chain rule with respect to the Laguerre derivative (see Remark
5.1 below), we can write

DnL S(x, t) = Ω̂x χ
(
tΩ̂x

)
q(x) + Ω̂x ψ

(
tΩ̂x

)
w(x),

D2
nL S(x, t) = Ω̂2

x ψ
(
tΩ̂x

)
q(x) + Ω̂2

x χ
(
tΩ̂x

)
w(x) = Ω̂2

x S(x, t).

Furthermore, for the initial conditions, by using equations (5.7) and the defini-
tion of w we find

S(x, 0) = ψ(0)q(x) + χ(0)w(x) = q(x),

DnL S(x, t)|t=0 = Ω̂x χ(0)q(x) + Ω̂x ψ(0)w(x) = Ω̂x w(x) = v(x).

Note that conditions (5.6)-(5.7) are satisfied, fixing an arbitrary integral n
and assuming

ψ(x) := coshnL(x), χ(x) := sinhnL(x).

¤

5.3. L-elliptic-type problems.

Theorem 5.4. Let Ω̂x be a 2nd order differential operator with respect to
the variable x, DnL := (DnL)y the nL-derivative with respect to the variable

y, and denote by ϕ(y) and τ(y) two functions such that

DnL ϕ(y) = −τ(y), DnL τ(y) = ϕ(y), (5.10)

ϕ(0) = 1, τ(0) = 0; (5.11)
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then the abstract L-elliptic-type problem{
Ω̂2

x S(x, y) + D2
nL S(x, y) = 0, in the half − plane y > 0,

S(x, 0) = q(x),
(5.12)

with analytic boundary condition q(x), admits the operational solution

S(x, y) = ϕ
(
yΩ̂x

)
q(x). (5.13)

Proof. Since Ω̂x commutes with ϕ
(
yΩ̂x

)
, by using conditions (5.10) we can

write

DnL S(x, y) = −Ω̂x τ
(
yΩ̂x

)
q(x),

D2
nL S(x, y) = −Ω̂2

x ϕ
(
yΩ̂x

)
q(x) = −Ω̂2

x S(x, y).

Furthermore, for the boundary conditions, by using equations (5.11) we find:

S(x, 0) = ϕ(0)q(x) = q(x).

¤
Note that conditions (5.10)–(5.11) are satisfied, fixing an arbitrary integral

n and assuming

ϕ(x) := cosnL(x), τ(x) := sinnL(x).

Remark 5.1. Note that for the Laguerre derivative, the chain rule

d

dt
=

d

dx

dx

dt
becomes

d

dt
t
d

dt
=

d

dx

d

dt
t
dx

dt
, ⇔ (DL)t =

d

dx
(DL)t x

and, in general,

(DnL)t =
d

dx
(DnL)t x.

6. Concluding Remarks

The concepts we have so far developed can be further generalized. Limiting
ourselves to the case of second order operators, we note that the function

e1,m(x) :=
∞∑

k=0

xk

k!(k + m)!
(6.1)

is such that e1,m(ax) is an eigenfunction of the operator

Ω̂m := DL + mD =
d

dx
x

d

dx
+ m

d

dx
(6.2)

and, indeed,

Ω̂m e1,m(ax) = a e1,m(ax). (6.3)
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It is therefore clear that we can introduce more general forms of L-circular
functions as follows:

cos1,m(x) :=
e1,m(ix) + e1,m(−ix)

2
, (6.4)

sin1,m(x) :=
e1,m(ix)− e1,m(−ix)

2i
, (6.5)

and analogous forms for the hyperbolic case.
It is also evident that the above functions satisfy the differential equation

Ω̂2
m v(x) = −v(x). (6.6)

It is furthermore interesting to note that e1,m(x) can be viewed as the n-th
order Tricomi function defined by the generating function

+∞∑
m=−∞

tm e1,m(x) = exp
(
t +

x

t

)
(6.7)

and that the formalism we have just envisaged can be exploited in a more
general framework, as, e.g., that associated with partial differential equations.
Namely, the solution of the evolution problem

{
Ω̂mF (x, t) = ∂

∂t
F (x, t)

F (0, t) = g(t)
(6.8)

can be solved in the form

F (x, t) = m! e1,m

(
x

∂

∂t

)
g(t) (6.9)

which, once expanded in a series, yields

F (x, t) = m!
∞∑

k=0

xk

k!(k + m)!
g(k)(t). (6.10)

Different solutions, expressed in terms of integral transforms, will be discussed
elsewhere.

Before concluding, let us note that more in general we can introduce the
functions

er,m1,...,mr(x) :=
∞∑

k=0

xk

k!(k + m1)! . . . (k + mr)!
(6.11)

which are essentially the multi-index Bessel functions discussed in ref. [11].
Their role in the definition of more general forms of generalized circular and
hyperbolic functions will be discussed elsewhere.
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