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ON THE PERIODIC BOUNDARY-VALUE PROBLEM FOR
SYSTEMS OF SECOND-ORDER NONLINEAR ORDINARY

DIFFERENTIAL EQUATIONS

G. GAPRINDASHVILI

Abstract. The periodic boundary-value problem for systems of second-
order ordinary nonlinear differential equations is considered. Suffi-
cient conditions for the existence and uniqueness of a solution are
established.

§ 1. Statement of the Main Results

Consider the periodic boundary-value problem

x′′ = f(t, x, x′), (1.1)

x(a) = x(b), x′(a) = x′(b), (1.2)

where the vector-function f : [a, b] × R2n → Rn (Rn denotes the n-dimen-
sional Euclidean space with the norm ‖ · ‖) satisfies the local Caratheodory
conditions, i.e., f(·, x, y) : [a, b] → Rn is measurable for each (x, y) ∈ R2n,
f(t, ·) : R2n → Rn is continuous for almost all t ∈ [a, b], and the function

fr(·) = sup{‖f(·, x, y)‖ : ‖x‖+ ‖y‖ ≤ r}

is Lebesgue integrable on [a, b] for each positive r.
By a solution of the problem (1.1), (1.2) we mean a vector-function x :

[a, b] → Rn which has the absolutely continuous first derivative on [a, b] and
satisfies the differential system (1.1) almost everywhere in [a, b], as well as
the boundary conditions (1.2).

For the literature on (1.1),(1.2) we refer to [1,2] and the references cited
therein. Note that [1] deals with the scalar variant of the boundary-value
problem (1.1),(1.2) (i.e., when n = 1).
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Below, the sufficient conditions for solvability and unique solvability of
the boundary value problem (1.1), (1.2) are given. They supplement some
of those mentioned above.

We use the following notation:
x · y is the inner product of vectors x, y ∈ Rn;
R = R1, R+ = [0, +∞[;
for each positive number r and vector y ∈ Rn

ηr(y) =

{

0 for ‖y‖ ≤ r,
y
‖y‖ for ‖y‖ > r;

Uδ(t0) is the δ-neighborhood of t0 ∈ R;
˜C1([a, b]; S) (S ⊂ Rn) is the set of vector-functions x : [a, b] → S which

have an absolutely continuous first derivative on [a, b];
C(S1;S2) (S1 ⊂ R,S2 ⊂ Rn) is the set of continuous vector-functions

x : S1 → S2;
L([a, b];S) (S ⊂ R) is the set of functions x : [a, b] → S which are

Lebesgue integrable on [a, b].

Definition 1.1 (see [3,Definition 1.1] or [4, Definition 1.2]). Sup-
pose that the functions ϕ :]a, b[→]0,∞[ and z :]a, b[→ Rn have a first
derivative which is absolutely continuous on every segment contained in
]a, b[. A pair of functions (ϕ, z) is said to be a Nagumo pair of the differen-
tial system (1.1) if the condition

(x− z(t)) · (f(t, x, y)− z′′(t)) + ‖y − z′(t)‖2 − (ϕ′(t))2 ≥ ϕ(t)ϕ′′(t)

for a < t < b, ‖x− z(t)‖ = ϕ(t) and (x− z(t)) · (y − z′(t)) = ϕ(t)ϕ′(t)

is satisfied, the function ‖z′′(t)‖+ϕ(t) being essentially bounded from above
on every segment contained in ]a, b[.

Remark 1.1. The Nagumo pair of differential system (1.1) serves as a
vector analog for the upper and lower functions of the scalar equation (1.1),
which were introduced by Nagumo [5] and which since then have been widely
adopted in the theory of boundary-value problems (see [1] and the references
cited therein; also [4, Remark 1.2], [3, Remark 1.1]). Namely, if n = 1 and
σ1 and σ2 are, respectively, the upper and lower solutions of the differential
equation (1.1), then the pair (ϕ, z) defined by

ϕ(t) =
σ2(t)− σ1(t)

2
and z(t) =

σ2(t) + σ1(t)
2

(1.3)

is the Nagumo pair of (1.1) (and vice versa).
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Note also that the condition

x · f(t, x, y) + ‖y‖2 ≥ 0 for ‖x‖ = r0 and x · y = 0 (1.4)

(see [2, Theorem 3.1]) is necessary and sufficient for (ϕ, z) to be a Nagumo
pair of (1.1), where z(t) ≡ 0 and ϕ(t) ≡ r0 > 0.

Definition 1.2. A Nagumo pair (ϕ, z) of the differential system (1.1) is
said to be a Nagumo pair of the problem (1.1),(1.2) if ϕ ∈ ˜C1([a, b];R+),
z ∈ ˜C1([a, b];Rn) and the conditions

ϕ(a) = ϕ(b), z(a) = z(b) (1.51)

and

‖z′(a)− z′(b)‖ ≤ ϕ′(b)− ϕ′(a) (1.52)

are satisfied.

Remark 1.2. In the scalar case, (1.51)− (1.52) are equivalent to the con-
ditions

σi(a) = σi(b), (−1)i(σ′i(a)− σ′i(b)) ≤ 0 (i = 1, 2),

assuming that (1.3) is satisfied. See these conditions in [1, § 16].

Definition 1.3 (see [3, Definition 2.1] or [4, Definition 1.1]). Sup-
pose that ϕ ∈ C([a, b];R+) and z ∈ C([a, b];Rn). A vector-function f is said
to have the property V ([a, b], ϕ, z) if there exist positive constants r and r1

such that if a ≤ t1 < t2 ≤ b, χ ∈ C(R+; [0, 1]) and x ∈ ˜C1([t1, t2];Rn) is an
arbitrary solution of the differential system

x′′ = χ(‖x′‖)f(t, x, x′) (1.6)

satisfying the inequalities

‖x(t)− z(t)‖ ≤ ϕ(t) for t1 ≤ t ≤ t2 (1.7)

and

‖x′(t)‖ ≥ r for t1 ≤ t ≤ t2, (1.8)

then x admits the estimate

t2
∫

t1

‖x′(t)‖dt ≤ r1. (1.9)
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Remark 1.3. It is clear that each scalar function has the property
V ([a, b], ϕ, z) taking an arbitrary positive number for r and 2max{ϕ(t) +
‖z(t)‖ : a ≤ t ≤ b} for r1. The class of vector-functions with the prop-
erty V ([a, b], ϕ, z) is introduced just to unify the approach to the problem
(1.1),(1.2) in both the scalar and the vector cases. Some other boundary-
value problems were also studied using this approach (see [3,4] and the
references cited therein).

Effective sufficient conditions for a vector-function f to have the proper-
ty V ([a, b], ϕ, z) are contained in [4, Propositions 1.1, 1.2] and [3, Proposi-
tion 2.1]. For example, if

(f(t, x, y) · y)(x · y)− (x · f(t, x, y))‖y‖2 ≤ l(t)‖y‖3 + k‖y‖4

for a ≤ t ≤ b, ‖x− z(t)‖ ≤ ϕ(t) and ‖y‖ > ρ,
(1.10)

where l∈L([a, b];R+), k<1 and ρ>0, then f has the property V ([a, b], ϕ, z).

Theorem 1.11. Suppose that (ϕ, z) is a Nagumo pair of (1.1), (1.2), the
vector-function f has the property V ([a, b], ϕ, z), and the inequality

f(t, x, y) · ηρ(y) ≤ w(‖y‖)(l(t) + ‖y‖) (1.11)

is satisfied on the set

{(t, x, y) : a < t < b, ‖x− z(t)‖ ≤ ϕ(t)}, (1.12)

where ρ > 0, l ∈ L([a, b];R+), ω ∈ C(R+; ]0, +∞[), and

+∞
∫

0

ds
ω(s)

= +∞. (1.13)

Then the boundary-value problem (1.1), (1.2) has at least one solution x ∈
˜C1([a, b]; Rn) satisfying the estimate

‖x(t)− z(t)‖ ≤ ϕ(t) for a ≤ t ≤ b. (1.14)

Theorem 1.12. The conclusion of Theorem 1.11 remains valid if (1.11)
is replaced by

f(t, x, y) · ηρ(y) ≥ −ω(‖y‖)(l(t) + ‖y‖). (1.15)
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Theorem 1.2. Suppose that (ϕ, z) is a Nagumo pair of (1.1), (1.2), the
vector-function f has the property V ([a, b], ϕ, z), the inequality (1.11) is sat-
isfied on the set

{(t, x, y) : a0 ≤ t ≤ b, ‖x− z(t)‖ ≤ ϕ(t)},

and the inequality (1.15) on the set

{(t, x, y) : a < t < b0, ‖x− z(t)‖ ≤ ϕ(t)},

where ρ > 0, a ≤ a0 < b0 ≤ b, l ∈ L([a, b];R+), ω ∈ C(R+; ]0, +∞[), and
(1.13) holds. Then the boundary-value problem (1.1), (1.2) has at least one
solution x ∈ ˜C1([a, b];Rn) satisfying the estimate (1.14).

Theorem 1.3. Suppose that (ϕ, z) is a Nagumo pair of (1.1), (1.2), the
vector-function f has the property V ([a, b], ϕ, z), the inequality (1.11) is sat-
isfied on the set

{(t, x, y) : t ∈]a1, t0[∪]b2, b[, ‖x− z(t)‖ ≤ ϕ(t)},

and the inequality (1.15) on the set

{(t, x, y) : t ∈]a, a2[∪]t0, b1[, ‖x− z(t)‖ ≤ ϕ(t)},

where ρ > 0, a < a1 < a2 < t0 < b2 < b1 < b, l ∈ L([a, b];R+),
ω ∈ C(R+; ]0, +∞[), and (1.13) holds. Then the boundary-value problem
(1.1), (1.2) has at least one solution x ∈ ˜C1([a, b];Rn) satisfying the esti-
mate (1.14).

Remark 1.4. Theorems 1.1–1.3 extend Theorem 3.1 [2] in the case of peri-
odic boundary-value problem. As an example, define fi(t, x, y) = −yi‖y‖m+
1 − ‖x‖ and f = (fi)n

i=1, where m is an arbitrary natural number. Let us
verify the conditions of, e.g., Theorem 1.11 assuming that z(t) ≡ 0, ϕ ≡ 1,
ρ = 1, l(t) ≡ 1, and ω ≡ 1. First, according to (1.4) where r0 = 1,
(ϕ, z) is the Nagumo pair of (1.1),(1.2). Further, according to (1.10) where
k = 0, the vector-function f has the property V ([a, b], ϕ, z). Finally, the
correctness of (1.11), as well as of (1.13), is evident. On the other hand,
Theorem 3.1 [2] fails for this example when m > 2.

Theorem 1.2 can also be considered as a vector analog of Theorem 16.2
from [1].

Theorem 1.4. Suppose that for each positive r there exist li(t, r) ∈
L([a, b];R+) (i = 1, 2) such that l1(t, r) differs from zero on a subset of
positive measure of the interval ]a, b[ and

[f(t, x1, y1)− f(t, x2, y2)](x1 − x2) ≥
≥ l1(t, r)‖x1 − x2‖2 − l2(t, r)|(x1 − x2) · (y1 − y2)|

for ‖xk‖ ≤ r, ‖yk‖ ≤ r (k = 1, 2). (1.16)
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Then the boundary-value problem (1.1), (1.2) has at most one solution in
the class ˜C1([a, b];Rn).

Theorem 1.4 can be considered as a vector analog of Theorem 16.4
from [1].

§ 2. Some Auxiliary Results

Lemma 2.1. Suppose that a vector-function q : [a, b]×R2n → Rn satis-
fies the local Caratheodory conditions and the inequality

‖q(t, x, y)‖ ≤ l(t)

holds on [a, b]× R2n where l ∈ L([a, b];R+). Then the differential system

x′′ = x + q(t, x, y)

has at least one solution x ∈ ˜C1([a, b];Rn) satisfying the boundary condi-
tions (1.2).

Proof. It is easy to verify that the differential system

x′′ = x

has no nontrivial solution satisfying the boundary conditions (1.2). Thus
Lemma 2.1 immediately follows from Proposition 2.3 [1].

The next result deals with the solvability of an auxiliary differential sys-
tem

x′′ = g(t, x, x′). (2.1)

Lemma 2.2. Suppose that (ϕ, z) is a Nagumo pair of the boundary-value
problem (2.1), (1.2) and on [a, b]× R2n

‖g(t, x, y)‖ ≤ h(t, x), (2.2)

where the vector-functions g : [a, b] × R2n → Rn and h : [a, b] × Rn → Rn

satisfy the local Caratheodory conditions. Then the boundary-value prob-
lem (2.1), (1.2) has at least one solution x ∈ ˜C1([a, b];Rn) satisfying the
estimate (1.14).

Proof. Put

σ(s, t) =











0 for s ≤ 0 and τ ∈ R,
τ for |τ | < s,
s sign τ for |τ | ≥ s > 0,

γ(t, x) =

{

1 for ‖x− z(t)‖ ≤ ϕ(t),
ϕ(t)

‖x−z(t)‖ for ‖x− z(t)‖ > ϕ(t),
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σ1(t, x, y) = σ(‖x− z(t)‖ − ϕ(t), ϕ′(t)‖x− z(t)‖ − (x− z(t)) · (y − z′(t))),

ỹ(t, x, y) =

{

y for ‖x− z(t)‖ ≤ ϕ(t),
y + σ1(t,x,y)

‖x−z(t)‖2 (x− z(t)) for ‖x− z(t)‖ > ϕ(t),

g1(t, x, y) = x− z(t) + γ(t, x)[f(t, z(t) + γ(t, x)(x− z(t)),

ỹ(t, x, y))− x + z(t)]− (γ(t, x)− 1)z′′(t),

σ2(t, x, y) = σ
[

‖x− z(t)‖ − ϕ(t), ‖ỹ(t, x, y)− z′(t)‖2 −

−‖y − z′(t)‖2 − (ϕ′(t))2 +
( (x− z(t)) · (y − z′(t))

‖x− z(t)‖

)2]

,

g2(t, x, y) =











0 for ‖x− z(t)‖ ≤ ϕ(t),
σ2(t,x,y)+(‖x−z(t)‖−ϕ(t))(ϕ′′(t)+1)

‖x−z(t)‖2 (x− z(t))

for ‖x− z(t)‖ > ϕ(t)

and
g̃(t, x, y) = g1(t, x, y) + g2(t, x, y).

By the condition (2.2) on [a, b]× R2n we have

‖g̃(t, x, y)− x‖ ≤ h∗(t) + |ϕ′′(t)|+ ‖z′′(t)‖+ 2 + ‖z(t)‖+ ϕ(t)

where
h∗(t) = sup{h(t, x) : ‖x− z(t)‖ ≤ ϕ(t)}.

Therefore according to Lemma 2.1 the differential system

x′′ = g̃(t, x, x′)

has at least one solution x ∈ ˜C1([a, b];Rn) satisfying the boundary condi-
tions (1.2). Due to the definition of g̃ it remains to show that x admits
the estimate (1.14). Assume, on the contrary, that (1.14) is violated. Then
there exists t0 ∈ [a, b] where the function

u(t) = ‖x(t)− z(t)‖ − ϕ(t)

reaches its positive maximum on [a, b]. Assume first that t0 ∈]a, b[. Then by
the Fermat theorem we have

u′(t0) =
(x(t0)− z(t0)) · (x′(t0)− z′(t0))

‖x(t0)− z(t0)‖
− ϕ′(t0) = 0.

Hence
lim
t→t0

ỹ(t, x(t), x′(t)) = x′(t0)

and for a certain positive δ the inequalities

|ϕ′(t)‖x(t)− z(t)‖ − (x(t)− z(t)) · (x′(t)− z′(t))| <
< ‖x(t)− z(t)‖ − ϕ(t) (2.3)
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and

|‖ỹ(t, x(t), x′(t))− z′(t)‖2 − ‖x′(t)− z′(t)‖2 − (ϕ′(t))2 +

+
(

(x(t)− z(t)) · (x′(t)− z′(t))
‖x(t)− z(t)‖

)2

| < ‖x(t)− z(t)‖

hold in Uδ(t0). Therefore due to the definition of g̃ we obtain

u′′(t) =
(x(t)− z(t)) · (x′′(t)− z′′(t)) + ‖x′(t)− z′(t)‖2

‖x(t)− z(t)‖
−

−

[ (x(t)−z(t))·(x′(t)−z′(t))
‖x(t)−z(t)‖

]2

‖x(t)− z(t)‖
− ϕ′′(t) =

=
(x(t)− z(t)) · (g1(t, x(t), x′(t))− z′′(t))

‖x(t)− z(t)‖
+

+
‖ỹ(t, x(t), x′(t))− z′(t)‖2 − ϕ(t)ϕ′′(t)− (ϕ′(t))2

‖x(t)− z(t)‖
+

+
‖x(t)− z(t)‖ − ϕ(t)

‖x(t)− z(t)‖
for t ∈ Uδ(t0).

Furthermore, by (2.3) for each t ∈ Uδ(t0) we have

‖γ(t, x(t))(x(t)− z(t))‖ = ϕ(t)

and

γ(t, x(t))(x(t)− z(t)) · (ỹ(t, x(t), x′(t))− z′(t)) = ϕ(t)ϕ′(t).

Taking into account the last three equalities and Definition 1.1, it can be
shown that u′′(t) is positive for each t ∈ Uδ(t0). But this is impossible,
since t0 ∈]a, b[ and t0 is a point of maximum for u. Thus t0 /∈]a, b[. In view
of (1.2) and (1.51) both a and b are the points of maxima for the function
u. Therefore u′(a) ≤ 0 and u′(b) ≥ 0. Assuming u′(a) = 0 or u′(b) = 0, an
argument similar to the one carried out above leads us to a contradiction.
Thus

u′(a) =
(x(a)− z(a)) · (x′(a)− z′(a))

‖x(a)− z(a)‖
− ϕ′(a) < 0

and

u′(b) =
(x(b)− z(b)) · (x′(b)− z′(b))

‖x(b)− z(b)‖
− ϕ′(b) > 0.

But since x′(a) = x′(b) and

x(a)− z(a)
‖x(a)− z(a)‖

=
x(b)− z(b)
‖x(b)− z(b)‖

,
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the last two inequalities yield

x(a)− z(a)
‖x(a)− z(a)‖

· (z′(a)− z′(b)) > ϕ′(b)− ϕ′(a),

which contradicts (1.52). Therefore the estimate (1.14) is proved.

Lemma 2.3. Suppose that ρ, r1, and ρ′ are positive constants, ω ∈
C(R+; ]0, +∞[), l ∈ L([t1, t2];R+) and

ρ′
∫

ρ

ds
ω(s)

> r1 +

t2
∫

t1

l(t)dt. (2.4)

Then an arbitrary x ∈ ˜C1([t1, t2];Rn), satisfying (1.9) and the inequalities

‖x′(ti)‖ ≤ ρ (2.5i)

and

(−1)i−1x′′(t) · ηρ(x′(t)) ≤ ω(‖x′(t)‖)(l(t) + ‖x′(t)‖)
for t1 ≤ t ≤ t2 (2.6i)

with i ∈ {1, 2}, admits the estimate

‖x′(t)‖ ≤ ρ′ for t1 ≤ t ≤ t2. (2.7)

Proof. Assume for definiteness that i = 1. Admit to the contrary that (2.7)
is violated, i.e., there exists t∗ ∈]t1, t2] such that

‖x′(t∗)‖ > ρ′. (2.8)

By (2.51) there exists t∗ ∈ [t1, t∗[ such that

‖x′(t)‖ = ρ and ‖x′(t)‖ > ρ′ for t∗ ≤ t ≤ t∗.

Hence, taking into account the definition of the function ηr, from (2.61) we
get

‖x′(t)‖′ ≤ ω(‖x′(t)‖)(l(t) + ‖x′(t)‖) for t∗ ≤ t ≤ t∗.

Dividing this inequality by ω(‖x′(t)‖), integrating from t∗ to t∗, and using
(1.9) and (2.51), we obtain

‖x′(t∗)‖
∫

ρ

ds
ω(s)

≤ r1 +

t2
∫

t1

l(t)dt,

which, on account of (2.8), contradicts (2.4).
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Definition 2.1. Suppose that r and r1 are positive constants. A vector-
function x : [α, β] → Rn is said to belong to the set Wn([α, β], r, r1) if (1.8)
implies the estimate (1.9) for arbitrary t1 ∈ [α, β] and t2 ∈]t1, β].

Lemma 2.41. Suppose that r and r1 are positive constants, l ∈
L([t1, t2];R+), ω ∈ C(R+; ]0,+∞[), and (1.13) holds. Then there exists a
positive constant r′ such that if δ ∈]0, b−a

4 [ and an arbitrary x ∈ ˜C1([a, b];Rn)
∩Wn([a+δ, b−δ], r, r1) satisfies the boundary conditions (1.2), the inequality

‖x′′(t)‖ ≤ l(t) for t ∈]a, a + δ[∪]b− δ, b[, (2.9)

and furthermore the inequality

x′′(t) · ηr(x′(t)) ≤ ω(‖x′(t)‖)(l(t) + ‖x′(t)‖) (2.10)

on the set [a + δ, b− δ], then x admits an estimate

‖x′(t)‖ ≤ r′ for a ≤ t ≤ b. (2.11)

Proof. Due to Definition 2.1, without loss of generality we may assume that
r(b−a) > 2r1. In view of (1.13) there exist positive numbers r∗ and r′ such
that

r∗
∫

r

ds
ω(s)

> r1 +

b
∫

a

l(t)dt (2.12)

and

r′
∫

µ

ds
ω(s)

> r1 +

b
∫

a

l(t)dt (2.13)

where

µ = r∗ +

b
∫

a

l(t)dt.

Let us show that r′ is a suitable constant.
First note that for a certain t0 ∈

[3a+b
4 , a+3b

4

]

we have

‖x′(t0)‖ ≤ r. (2.14)

Indeed, assuming the contrary implies that

‖x′(t)‖ > r for
3a + b

4
≤ t ≤ a + 3b

4
.
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Therefore, taking into account the inequality r(b− a) ≥ 2r1, we obtain

a+3b
4

∫

3a+b
4

‖x′(t)‖dt > r1.

But this is impossible, since x ∈ Wn([a + δ, b − δ], r, r1). Thus (2.14) is
proved.

Now let us show that

‖x′(t)‖ ≤ r∗ for t0 ≤ t ≤ b− δ. (2.15)

Suppose to the contrary that for arbitrary t2 ∈]t0, b− δ] we have

‖x′(t2)‖ > r∗. (2.16)

Then by (2.14) there exists t1 ∈ [t0, t2[ such that

‖x′(t1)‖ = r and ‖x′(t)‖ > r for t1 < t ≤ t2.

Hence, taking into account x ∈ Wn([a + δ, b− δ], r, r1), we get the estimate
(1.9). Assuming i = 1, ρ = r, and ρ′ = r∗, it is easy to verify that x satisfies
the other conditions of Lemma 2.41 too. Therefore x admits the estimate
(2.7), which contradicts (2.16). Thus (2.15) is proved. In view of (1.2) and
(2.9) it implies that

‖x′(t)‖ ≤ µ for t ∈ [a, a + δ] ∪ [b− δ, b]. (2.17)

In particular, ‖x′(a + δ)‖ ≤ µ. Applying Lemma 2.3 where ρ = µ, ρ′ = r′

and i = 1, an argument similar to the one carried out above yields the
estimate

‖x′(t)‖ ≤ r′ for a + δ ≤ t ≤ t0. (2.18)

Finally, from (2.15), (2.17), and (2.18) we obtain the estimate (2.11).

In a similar manner we can prove

Lemma 2.42. Suppose that the conditions of Lemma 2.41 are satisfied,
except that the inequality (2.10) is replaced by

x′′(t) · ηr(x′(t)) ≥ −ω(‖x′(t)‖)(l(t) + ‖x′(t)‖). (2.19)

Then x admits the estimate (2.11).
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Lemma 2.5. Suppose that r and r1 are positive constants, a ≤ a0 <
b0 ≤ b, l ∈ L([t1, t2];R+), ω ∈ C(R+; ]0, +∞[), and (1.13) holds. Then
there exists a positive constant r′ such that if 0 < δ < min{a0 − a, b − b0}
and an arbitrary x ∈ ˜C1([a, b];Rn) ∩ Wn([a + δ, b − δ], r, r1) satisfies the
conditions (2.9), the inequality (2.10) on the set ]a0, b−δ[, and, furthermore,
the inequality (2.19) on the set ]a+ δ, b0[, then x admits the estimate (2.11).

The proof of Lemma 2.5 is similar to the one carried out above for Lemma
2.41, so we shall note only the main points.

Due to Definition 2.1, without loss of generality we may assume that
r(b0 − a0) ≥ r1. In view of (1.13) there exists a positive number r∗ such
that (2.12) holds. The constant

r′ = r∗ +

b
∫

a

l(t)dt

is just the suitable one.
First, taking into account the conditions x ∈ Wn([a + δ, b− δ], r, r1), we

conclude that for a certain t0 ∈ [a0, b0] (2.14) is satisfied. Further, applying
Lemma 2.3 (i = 1) and the inequality (2.10), we get the estimate (2.15).
Finally, from (2.9) and (2.15) it follows that we have ‖x′(t)‖ ≤ r′ on the
set [b− δ, b]. Thus the last estimate holds on [t0, b]. Analogously, applying
Lemma 2.3 (i = 2) and the inequality (2.19), it can be proved on [a, t0].

In a similar manner we can prove

Lemma 2.6. Suppose that r and r1 are positive constants, a < a1 <
a2 < t0 < b2 < b1 < b, l ∈ L([t1, t2];R+), ω ∈ C(R+; ]0, +∞[), and
(1.13) holds. Then there exists a positive constant r′ such that if 0 < δ <
min{a1−a, b−b1} and an arbitrary x ∈ ˜C1([a, b];Rn)∩Wn([a+δ, b−δ], r, r1)
satisfies the conditions (2.9), the inequality (2.10) on the set ]a1, t0[∪]b2, b[,
and furthermore the inequality (2.19) on the set ]a, a2[∪]t0, b1[, then x admits
the estimate (2.11).

§ 3. Proof of the Main Results

Proof of Theorem 1.11. Without loss of generality we can assume that

l(t) ≥ ‖z′′(t)‖+ |ϕ′′(t)| for a < t < b.

Put

ak = a +
b− a
4k

, bk = b− b− a
4k
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and

χρ(s) =











0 for s ≤ ρ,
2ρ−s

ρ for ρ < s < 2ρ,
0 for 2ρ ≤ s.

By Definition 1.1 there exists a sequence (ρk)+∞k=1 such that lim
k→+∞

ρk =

+∞ and for each k ∈ {1, 2, . . . }

(x− z(t)) · (χρk(‖y‖)f(t, x, y)− z′′(t)) + ‖y − z′(t)‖2 ≥ ϕ(t)ϕ′′(t)

for ak < t < bk, ‖x− z(t)‖ = ϕ(t) and (x− z(t)) · (y − z′(t)) = ϕ(t)ϕ′(t).

Put

h(t, x, y) =

{

z′′(t) + |ϕ′′(t)|
ϕ(t) (x− z(t)) for ‖x− z(t)‖ ≤ ϕ(t),

z′′(t) + |ϕ′′(t)|
ϕ(t) (x− z(t)) for ‖x− z(t)‖ > ϕ(t)

and

fk(t, x, y) =

{

h(t, x, y) for t 6∈ [ak, bk],
χρk

(‖y‖)f(t, x, y) for t ∈ [ak, bk]

(k = 1, 2. . . . ). It is easy to verify that for each k ∈ {1, 2, . . . } the vector-
function g(t, x, y) = fk(t, x, y) satisfies all the conditions of Lemma 2.2.
Therefore the differential system

x′′ = fk(t, x, x′) (3.1k)

has at least one solution xk ∈ ˜C1([a, b];Rn) satisfying the boundary condi-
tions (1.2) and the estimate

‖xk(t)− z(t)‖ ≤ ϕ(t) for a ≤ t ≤ b (k = 1, 2, . . . ). (3.2k)

Choose the positive constants r and r1 according to Definition 1.3 and the
constant r′ according to Lemma 2.41, assuming without loss of generality
that r ≥ ρ. Then by Lemma 2.41 we obtain

‖x′k(t)‖ ≤ r′ for a ≤ t ≤ b (k = 1, 2, . . . ). (3.3k)

In view of (3.2k) and (3.3k) the sequences (xk)+∞k=1 and (x′k)+∞k=1 are uni-
formly bounded and equicontinuous on [a, b]. So due to the well-known
Arzela–Ascoli theorem there exists a sequence (kj)+∞j=1 such that (xkj )

+∞
j=1

and (x′kj
)+∞j=1 uniformly converge on [a, b]. Put

x(t) = lim
j→∞

xkj (t) for a ≤ t ≤ b.

Due to the definition of the functions fk(k = 1, 2 . . . ) x belongs to the set
˜C1([a, b];Rn) and is a solution of (1.1),(1.2).
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The proof of Theorems 1.12, 1.2, and 1.3 is similar to the one carried
out above for Theorem 1.11. The only difference is that one has to apply
Lemmas 2.42,2.5, and 2.6 respectively instead of Lemma 2.41.

Remark 3.1. Theorem 1.11 (Theorem 1.12) can be strengthened by a
slight complication of Lemma 2.41 (Lemma 2.42). Namely, we can assume
that the vector-function f has the property V ([α, β], ϕ, z) for each segment
[α, β] contained in the interval ]a, b] (in the interval [a, b[). In that case the
vector-function f may fail to have the property V ([a, b], ϕ, z).

Proof of Theorem 1.4. Assume to the contrary that xi ∈ ˜C1([a, b];Rn) (i =
1, 2) are solutions of the boundary-value problem (1.1),(1.2) and x1(t) 6≡
x2(t). Put

x(t) = x1(t)− x2(t) for a ≤ t ≤ b,

u(t) = ‖x(t)‖

and

r = max{
2

∑

i=1

‖xi(t)‖+ ‖x′i(t)‖ : a ≤ t ≤ b}.

Choose the functions li(t, r)(i = 1, 2) according to the condition of Theorem
1.4. First prove that u′(t) 6≡ 0. Indeed, assuming the contrary we have

0 = u′′(t) =
x′′(t) · x(t) + ‖x′(t)‖2

‖x(t)‖
− (x(t) · x′(t))2

‖x(t)‖3
≥

≥ x′′(t) · x(t)
‖x(t)‖

for a < t < b.

Hence by (1.16) we obtain

l1(t, r) ≤ 0 for a < t < b.

But this is impossible, since l1(t, r) is nonnegative and differs from zero on a
subset of positive measure of the interval ]a, b[. Thus u′(t) 6≡ 0. Therefore,
there exists t0 ∈]a, b[ such that either

u(t0) > 0, u′(t0) > 0 (3.4)

or

u(t0) > 0, u′(t0) < 0. (3.5)

Without loss of generality assume that (3.4) holds. Then on [t0, b]

u(t) > 0, u′(t) > 0. (3.6)
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Indeed, if this is not so, then there exists t1 ∈]t0, b] such that u′(t1) = 0 and
(3.6) holds on [t0, t1[. Applying (1.16) once more we obtain

u′′(t) ≥ x′′(t) · x(t)
‖x(t)‖

≥ l1(t, r)u(t)− l2(t, r)|u′(t)| ≥

≥ −l2(t, r)|u′(t)| for t0 < t < t1.

According to the Gronwall–Bellman lemma (see e.g. [6]) the last inequality
yields

u′(t1) ≥ u′(t0) exp
[

−
t1

∫

t0

l2(t, r)dt
]

> 0.

The obtained contradiction shows that (3.6) holds on [t0, b]. Hence, taking
into account the equalities

u(a) = u(b), u′(a) = u′(b) (3.7)

which follow from the boundary conditions (1.2),we get

u(a) > 0, u′(a) > 0.

Repeating the argument that was carried out above we can show the validity
of (3.6) on [a, b], but this contradicts (3.7).
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