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ON SEPARABLE SUPPORTS OF BOREL MEASURES

A. KHARAZISHVILI

Abstract. Some properties of Borel measures with separable sup-
ports are considered. In particular, it is proved that any σ-finite
Borel measure on a Suslin line has a separable supports and from this
fact it is deduced, using the continuum hypothesis, that any Suslin
line contains a Luzin subspace with the cardinality of the continuum.

Let E be a topological space. We say that the space E has the pro-
perty (S) if for every σ-finite Borel measure µ defined in this space there
exists a separable support, i.e., a separable closed set F (µ) ⊂ E such that
µ(E\F (µ)) = 0.

Let us consider some examples of topological spaces having the property
(S).

Example 1. It is obvious that any separable topological space E has
the property (S).

Example 2. Let E be an arbitrary metric space whose topological weight
is not measurable in a wide sense. Then according to the well-known result
from the topological measure theory the space E has the property (S).

Example 3. Let E be the Alexandrov compactification of some discrete
topological space. Then the following statements are equivalent:

a) the space E has the property (S);
b) card(E) is not measurable in a wide sense.

Example 4. Let E be a Hausdorff topological space. We say that E is a
Luzin space if every σ-finite diffused (i.e., continuous) Borel measure defined
in E is identically zero. The classical Luzin set on the real line R is a Luzin
topological space (about Luzin sets see, for example, [1]). One can easily
check that any σ-finite Borel measure defined in the Luzin topological space
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E is concentrated on a countable subset of E. The latter fact immediately
implies that every Luzin space has the property (S). Notice here that the
topological space E from Example 3 is a Luzin space if and only if the
cardinal number card(E) is not measurable in a wide sense.

We shall show that the property (S) is not, generally speaking, a here-
ditary property in the class of all topological spaces.

Example 5. Denote by the symbol R∗ the set of all real numbers
equipped with the Sorgenfrey topology. Since the topological space R∗

is separable, the product-space R∗ ×R∗ is separable too. Thus we see that
the space R∗ × R∗ has the property (S). On the other hand, the space
R∗ × R∗ contains a closed discrete subspace D with the cardinality of the
continuum. Assuming that the cardinality of the continuum is measurable
in a wide sense, we can define in D a probability continuous Borel measure.
But such a measure vanishes on all separable subsets of D. Therefore we
find (under our assumption about the cardinality of the continuum) that
the topological space D ⊂ R∗ ×R∗ does not have the property (S).

Example 6. Let (E, ·) be a topological group and let µ be a σ-finite
Borel measure in the group E which is quasi-invariant with respect to some
everywhere dense subgroup Γ of E. Assume also that there exists a closed
separable set F ⊂ E with µ(F ) > 0. Then we may assert that the given
topological group E is separable too. Indeed, assume that the opposite is
true: E is not a separable topological space. Using the method of transfi-
nite recursion let us define an ω1-sequence (Fξ)ξ<ω1 satisfying the following
conditions:

a) the family (Fξ)ξ<ω1 is increasing by inclusion;
b) (∀ξ)(ξ < ω1 ⇒ Fξ is a closed separable subgroup of E);
c) if ζ < ξ < ω1, then µ(Fξ\Fζ) > 0.

Take as F0 the closed subgroup of E generated by the set F . Assume
that for an ordinal number ξ (0 < ξ < ω1) we have already constructed a
partial family of closed separable groups (Fζ)ζ<ξ. Denote by H the closure
of the union of this partial family. It is obvious that H is also a closed
separable subgroup of E. Since the group Γ is dense everywhere in E and
E is not separable, there exists an element g ∈ Γ\H. It is clear that

g ·H ∩H = ∅, µ(H) > 0, µ(g ·H) > 0.

Therefore we may take as Fξ the closed subgroup of E generated by the
set H ∪ g · H. We shall thereby define the needed ω1-sequence (Fξ)ξ<ω1 .
Simultaneously, we shall obtain an uncountable family (Fξ+1\Fξ)ξ<ω1 of
pairwise disjoint sets everyone of which has a strictly positive µ-measure.
However the existence of such a family contradicts the σ-finiteness of the
measure µ. Therefore the given topological group E is separable. By the
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foregoing arguments we actually establish the validity of a more general
result. Namely, let E be again a topological group, µ be a σ-finite Borel
measure in E, and Γ be some everywhere dense subset of E. If the measure
µ is quasi-invariant with respect to Γ, then at least one of the following two
assertions is valid:

a) the topological group E is separable;
b) the measure µ vanishes on all closed separable subsets of E.
In particular, if the mentioned measure µ is not identically zero and

the given topological group E is not separable, then E does not have the
property (S).

In connection with the property (S) notice that we have

Proposition 1. Let (Ei)i∈I be an arbitrary countable family of topolo-
gical spaces everyone of which has the property (S). Then the product-space
∏

i∈I Ei has the property (S) too.

Proof. Let µ be a σ-finite Borel measure defined in the product-space
∏

i∈I Ei. It may be assumed without loss of generality that µ is a prob-
ability measure. Fix an index i ∈ I and for any Borel set X ⊂ Ei write

µi(X) = µ
(

X ×
∏

j∈I\{i}

Ej
)

.

This formula defines the probability Borel measure µi in the topological
space Ei. By the condition, there exists a separable support Fi ⊂ Ei for
µi. Now consider the product-space

∏

i∈I Fi. This space is certainly sep-
arable and, as one can easily check, represents a support for the original
measure µ.

Proposition 2. Let I be a set of indices whose cardinality is not mea-
surable in a wide sense. Assume (Ei)i∈I to be a family of topological spaces
everyone of which has the property (S). Denote by the symbol E the topo-
logical sum of the family (Ei)i∈I . Then the space E also has the property
(S).

Proof. Let µ be an arbitrary σ-finite Borel measure defined in the topolo-
gical space E. We write

J = {i ∈ I : µ(Ei) = 0}.

Since the measure µ is σ-finite, we have the inequality

card(I\J) ≤ ω0.
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Further, since J ⊂ I and card(I) is not measurable in a wide sense, we find
that card(J) is not measurable in a wide sense too. From the latter fact we
readily conclude that the equality

µ
(

∪
i∈J

Ei
)

= 0

is valid.
Let us now assume that for any index i ∈ I\J the set Fi is a separab-

le support for the restriction of the measure µ onto the space Ei. Then
it is easy to see that the set ∪i∈I\JFi is a separable support for the mea-
sure µ.

Proposition 3. Let E be a topological space and (Ei)i∈I be a countable
family of subspaces of E everyone of which has the property (S). Then the
space

E′ = ∪
i∈I

Ei ⊂ E

has the property (S) too.

Proof. Let µ be an arbitrary σ-finite Borel measure in the topological space
E′. For any index i ∈ I denote by µi the trace of the measure µ on the set
Ei. Recall that the measure µi is defined by the formula

µi(X) = µ∗(X)

where X is an arbitrary Borel subset of the space Ei and µ∗ is the outer
measure associated with µ. By the condition, for the measure µi there
exists a separable support Fi ⊂ Ei. Hence it is easy to see that the closure
of the set ∪i∈IFi in the space E′ is a separable support for the original
measure µ.

Example 7. Let α be a cardinal number strictly larger than the cardi-
nality of the continuum and let T be the unit circle in the Euclidean plane
R2. Consider T as a compact commutative group and denote by µ the
probability Haar measure in the compact commutative group Tα. It is easy
to check that the topological group Tα is not separable. According to the
result of Example 6 the Haar measure µ is not concentrated on a separable
subset of Tα. Hence the topological space Tα does not have the property
(S). We thus conclude that the topological product of spaces having the
property (S) does not have, generally speaking, this property.

Example 8. Let E be a discrete topological space with the cardinality
ω1. According to the classical result of Ulam (see, for example, [1]) the
cardinal number ω1 is not measurable in a wide sense. Therefore E is a Luzin
topological space and, in particular, has the property (S). Next consider
the cardinal number ω1 equipped with its order topology. It is obvious that
the topological space ω1 is locally compact and locally countable. Denote
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by the symbol µ the standard Dieudonne two-valued probability continuous
measure defined on the Borel σ-algebra of the space ω1. Notice that the
measure µ is not concentrated on a separable subspace of ω1 and therefore
the space ω1 does not have the property (S). At the same time the space ω1

is an injective continuous image of the discrete space E. We have thereby
shown that the property (S) is not, generally speaking, invariant even under
injective continuous mappings.

The next proposition indicates a certain relationship between the topo-
logical spaces having the property (S) and Luzin subspaces of these spaces.

Proposition 4. Assume that the continuum hypothesis holds and let E
be an arbitrary Hausdorff topological space with the cardinality of the conti-
nuum. If E has the property (S), then at least one of the next two assertions
is valid:

1) E is a separable topological space;
2) E contains some Luzin subspace with the cardinality of the continuum.

Proof. Assume that the given space E is not separable. Consider the injec-
tive family of all closed separable subsets of E. It is easy to check that the
cardinality of this family is equal to the cardinality of the continuum. There-
fore this family can be represented as an ω1-sequence (Fξ)ξ<ω1 . Further,
using the method of transfinite recursion, define an injective ω1-sequence
(xξ)ξ<ω1 of points of the space E. Assume that for an ordinal number
ξ < ω1 we have already defined a partial ξ-sequence of points (xζ)ζ<ξ.
Consider the set

P =
(

∪
ζ<ξ

Fζ

)

∪
(

∪
ζ<ξ

{xζ}
)

.

It is obvious that the set P is separable. Therefore we have E\P 6= ∅. Take
as xξ any point from the nonempty set E\P . Thereby we shall construct
the needed ω1-sequence (xξ)ξ<ω1 . After that we write

X = ∪
ξ<ω1

{xξ}.

Clearly, card(X) is equal to the cardinality of the continuum. Now, taking
into consideration the fact that our topological space E has the property
(S), it is not difficult to check that X is a Luzin subspace of E.

Remark. Assume again that the continuum hypothesis holds and let E
be an arbitrary nonseparable topological space with the cardinality of the
continuum. Then there exists a subspace X of E satisfying the following
conditions:

a) card(X) is equal to the cardinality of the continuum;
b) every uncountable set Y ⊂ X is nonseparable.
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In particular, if the given topological space E is metrizable, then the
mentioned space X has the property (S) although all uncountable subsets
of X are nonseparable (moreover, in this case X is a Luzin space).

The proof of the existence of the mentioned space X ⊂ E is quite similar
to that of Proposition 4.

Example 9. Assume that the continuum hypothesis holds and consi-
der any Sierpinski set E on the real line R (about Sierpinski sets see, for
example, [1]). Since E is a separable metric space, it hereditarily has the
property (S). At the same time, it is not difficult to show that the space E
does not contain any uncountable Luzin subspace.

Example 10. Let E be an arbitrary nonseparable metric space. As is
well known, E contains a discrete subspace D with the cardinality ω1. Using
the result of Ulam mentioned above, we see that D is an uncountable Luzin
subspace of E.

Notice now that there may also exist nonseparable nonmetrizable topo-
logical spaces having the property (S). We wish to show here that such
spaces can be encountered even among linearly ordered topological spaces.
Let us recall a few simple notions from the theory of ordered sets. Let (E,≤)
be an arbitrary linearly ordered set. We say that two nonempty open in-
tervals in E are disjoint if the right end-point of one of these intervals is
less than or equal to the left end-point of the other interval. In particular,
any two disjoint intervals do not have the common points. Further, we say
that a linearly ordered set (E,≤) has the Suslin property if every family
of nonempty open disjoint intervals is at most countable. We wish to em-
phasize that this definition immediately implies that for arbitrary linearly
ordered sets the Suslin property is the hereditary one (in this connection we
remark here that the separability property and the Suslin property are not
the hereditary ones for arbitrary topological spaces). Recall that the Suslin
line is any linearly ordered set E having the Suslin property and being non-
separable with respect to the order topology in (E,≤). As is well known,
the existence of the Suslin line is not provable in the modern set theory and
does not contradict this theory (see, for example, [2]). We shall see below
that any Suslin line equipped with its order topology has the property (S).

In the first place we need the following auxiliary statement.

Lemma. Let (E,≤) be a linearly ordered set having the Suslin property
and considered as a topological space with respect to its order topology. Fur-
ther, let µ be an arbitrary Borel measure in E and let V be an arbitrary open
subset of E locally negligible with respect to the measure µ (the latter means
that for any point x ∈ V there exists an open interval V (x) ⊂ V containing
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the point x and being negligible with respect to µ). Then the whole set V is
negligible with respect to µ, i.e., the equality µ(V ) = 0 is fulfilled.

Proof. Let us define a binary relation ∼ in the given set V by the formula

x ∼ y ⇔ µ([x, y]) = 0 and µ([y, x]) = 0.

Clearly, the relation ∼ is an equivalence relation in the set V . Let (Vi)i∈I

be the partition of V canonically associated with ∼. Then it is not difficult
to check that

a) every set Vi is open in E;
b) for any index i ∈ I we have µ(Vi) = 0;
c) card(I) ≤ ω0.
Now we immediately obtain

µ(V ) =
∑

i∈I

µ(Vi) = 0.

It is easy to see that in the formulation of the above lemma we can
replace an arbitrary open locally negligible set V ⊂ E by an arbitrary Borel
locally negligible set X ⊂ E. Notice also that in the same formulation of the
lemma the Suslin property of the considered linearly ordered set (E,≤) is
quite essential. Indeed, let us take the ordinal number ω1 equipped with its
order topology. Denote by µ the Dieudonne probability continuous measure
defined on the Borel σ-algebra of the space ω1. Then it is obvious that the
whole space ω1 is locally negligible with respect to the measure µ but we
have the equality µ(ω1) = 1.

Using the above lemma, we obtain

Proposition 5. Let (E,≤) be a linearly ordered set having the Suslin
property and equipped with its order topology. Then the topological space E
has the property (S).

Proof. If our topological space E is separable, then there is nothing to prove.
Therefore let us assume that E is nonseparable, i.e., that the linearly ordered
set (E,≤) is the Suslin line. Let µ be any σ-finite Borel measure in E. We
introduce the notation

V = {x ∈ E : E is locally negligible at the point x with respect to µ}.

Obviously, V is an open subset of E locally negligible with respect to
the measure µ. Therefore according to the above lemma we have µ(V ) = 0.
Consider the closed set F = E\V . We assert that this set is separable.
Assume that the opposite is true: the set F is not separable. This means
that the linearly ordered set (F,≤) is also the Suslin line. Let λ be the
restriction of the measure µ onto the topological space F . The measure λ is
certainly σ-finite and, moreover, has the following property: the λ-measure
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of any nonempty open interval in F is strictly positive. Now let us consider
the topological product F × F equipped with the product-measure λ × λ.
According to the classical result of Kupera (see, for example, [2]) in the
space F ×F there exists an uncountable family of nonempty open pairwise
disjoint rectangles. It is obvious that the (λ × λ)-measure of everyone of
these rectangles is strictly positive. But the product-measure λ × λ is σ-
finite and therefore such a family of rectangles cannot exist. The obtained
contradiction proves our proposition.

Notice that a result analogous to Proposition 5 and concerning Boolean
algebras with measures was obtained by several authors (J.L.Kelley, D.Ma-
haram, and others).

As a consequence of Proposition 5 we have

Proposition 6. Assume that the continuum hypothesis holds. Then any
Suslin line contains some Luzin subspace with the cardinality of the conti-
nuum.

To prove this proposition it is enough to apply the results of Propositions
4 and 5 with regard to the fact that the cardinality of any Suslin line is
less than or equal to the cardinality of the continuum. The latter fact
readily follows, for example, from the well-known Erdös–Rado combinatorial
theorem (about this theorem and its various applications see [2]).

Naturally, there arises the following question: does every uncountable
topological space contain an uncountable subspace having the property (S)?
Our next example shows that the answer to this question is negative.

Example 11. Assume that the continuum hypothesis holds. Let E be
an arbitrary Sierpinski set on the real line R. Equip the set R with the usual
density topology (about the density topology on R see, in particular, [1]).
Denote by the symbol R∗ the set R equipped with the density topology
and consider the Sierpinski set E as a subspace of the topological space
R∗. Now it is not difficult to check that every uncountable subspace of the
topological space E does not have the property (S). Notice here that an
analogous example can be constructed in the manner following. Assume
again that the continuum hypothesis holds and E is again any Sierpinski
set on the real line R. Consider the family of sets

{

V \X : V is an open subset of R and X

is at most a countable subset of R
}

.

In the set R this family of sets is a topology strictly stronger than the
standard Euclidean topology in R and strictly weaker than the density
topology in R. Denote by the symbol R∗∗ the set R equipped with this
topology and consider the Sierpinski set E as a subspace of the topological
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space R∗∗. Now it is not difficult to prove that any uncountable subspace
of the topological space E does not have the property (S).

In connection with the last example let us recall that a topological space
E is a Sierpinski space if it does not contain a Luzin subspace with the
cardinality equal to the cardinality of E. Notice that Sierpinski spaces
have some interesting topological properties. For instance, assume that the
continuum hypothesis holds and take an arbitrary Sierpinski space E with
the cardinality of the continuum. Then it can be proved that any analytic
subset of E is a Borel set in E.

In conclusion let us formulate one unsolved problem concerning topolo-
gical spaces having the property (S).

Problem. Obtain a characterization of spaces having the property (S)
in some purely topological terms.
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