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REGULAR FRÉCHET–LIE GROUPS OF INVERTIBLE
ELEMENTS IN SOME INVERSE LIMITS OF UNITAL

INVOLUTIVE BANACH ALGEBRAS

JEAN MARION AND THIERRY ROBART

Abstract. We consider a wide class of unital involutive topological
algebras provided with a C∗-norm and which are inverse limits of
sequences of unital involutive Banach algebras; these algebras are
taking a prominent position in noncommutative differential geometry,
where they are often called unital smooth algebras. In this paper we
prove that the group of invertible elements of such a unital solution
smooth algebra and the subgroup of its unitary elements are regular
analytic Fréchet–Lie groups of Campbell–Baker–Hausdorff type and
fulfill a nice infinite-dimensional version of Lie’s second fundamental
theorem.

Introduction

Recent developments in the noncommutative differential geometry orig-
inated by A. Connes, particularly in its metric aspects (see [1],[2] and the
references therein) and its applications for diverse models in particle physics
([2], [3], [4]), have placed in a prominent position a wide class of unital in-
volutive algebras A which carry a C∗-norm and which are inverse limits of
suitable sequences of unital involutive Banach algebras; they consitute the
noncommutative version of inverse limits of suitable sequences of Banach
spaces.

The main goal of this work is to prove that the group GL(A) of invert-
ible elements in A and the subgroup U(A) of its unitary elements (playing
an important role in the noncommutative geometry picture of Yang–Mills
theory ([2],[3])) have a canonical structure of regular analytic Fréchet–Lie
group of Campbell–Baker–Hausdorff type fulfilling a nice version of Lie’s
second fundamental theorem.

The present paper is organized as follows:
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(a) In Section 1 we recall what is the LB-machinery (ILB-chains and
strong ILB–Lie groups) initiated by H. Omori ([5] and [6]), as well as their
main properties, and we initiate the class of unital involutive ILB-algebras.
In the setting of the classical differential geometry a typical example of unital
involutive ILB-algebra is given by considering spaces of the type C∞(M ;A)
in which M is a compact smooth manifold and A is a unital C∗-algebra.

(b) Section 2 is devoted to fundamental examples in the context of non-
commutative geometry: starting from a unital involutive algebra A provided
with a C∗-norm ‖ ‖ and using the construction initiated by J. Cuntz in [7],
we prove that there exists a unital involutive ILB-algebra A′ such that
A ⊆ A′ ⊆ A0, where A0 is the C∗-algebra completion of A with respect to
‖ ‖, the inclusions being continuous ∗ homomorphisms with dense range.

(c) Section 3 is related to some aspects of differentiability and analyticity
on Fréchet spaces according to the ideas of J. Leslie, J. Bochniack, J. Siciak,
and some others (see, for example, [8], [9], [6], [10], [5]) and to the notion of
generalized Campbell–Baker–Hausdorff Lie group (for shortness: CBH–Lie
group) initiated by J. Milnor in [11], which are not necessarily known by
nonspecialists in infinite-dimensional analysis and which we shall use in the
next sections.

(d) In Section 4 we prove (Theorem 1) that the group GL(A) of invert-
ible elements of any unital involutive ILB-algebra A has a natural analytic
regular Campbell–Baker–Hausdorff Fréchet–Lie group structure with Lie
algebra A.

(e) In Section 5 we quote that the group GL(A) fulfills a nice infinite-
dimensional version of Lie’s second fundamental theorem: any closed Lie
subalgebra of A is Lie algebra of a unique connected CBH–Lie group em-
bedded in GL(A) as a Lie subgroup (Theorem 2).

Although this assertion could be most likely deduced from some results
of J. Leslie in [10], the type of proof given here is interesting in itself: the
proofs generally used for this theorem in the infinite-dimensional context
require appropriate versions of the implicit functions theorem and of Frobe-
nius’s theorem (see, for example, [1] for the Banach case, and [10] for more
general cases with the use of a bornological machinery); in contrast, our
proof is only based on some properties of analytic foliations and on the use
of the Campbell–Hausdorff formula.

(f) Let A be any unital involutive topological algebra. The group of its
unitary elements

U(A) = {u ∈ GL(A)|u.u∗ = u∗.u = 11}

provided with the induced topology of A is a topological group. This group
plays an important part in the ”noncommutative geometry version” of the
Yang–Mills theory (see, for example, [2]) and has energy representations
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associated with the image of its “abstract Maurer–Cartan cocycle” by a
suitable K-cycle over A, even when it is not a Lie group ([12]).

In Section 6 we prove that when A is a unital involutive ILB-algebra,
U(A) is a regular Fréchet–CBH–Lie subgroup of GL(A) with Lie algebra
K(A) = {v ∈ A|v + v∗ = 0}.

1. The Class of Initial Involutive ILB-Algebras

(a) In [5], and especially in [6] to which we refer, H. Omori et al. have
indicated what we could call the “the inverse limit Banach-machinery” (to
make short: ILB machinery). More precisely (see [6], §6):

Definition 1. (1) A system {A, Ak, k ∈ N} is called an ILB-chain if Ak
is a Banach space and Ak+1 ⊆ Ak for any integer k ≥ 0, the inclusion being
continuous and with dense image, and if A = ∩kAk is provided with the
inverse limit topology.

(2) A group Γ with unit element e is called a strong ILB–Lie group
modelled on the ILB-chain {A, Ak, k ∈ N} if the following conditions are
fulfilled for any integer k ≥ 0:

(N1): there exists a mapping Exp from A into Γ and for any element k in
N a convex open neighborhood U0

k of zero in Ak such that Exp is a
bijective mapping from U0

k ∩ A onto an open neighborhood W 0
k of

e in Γ; we denote by Log the inverse mapping;
(N2): there exists a convex open neighborhood U1

k of zero in Ak such that

Exp(U1
k ∩A). Exp(U1

k ∩A) ⊆ Exp(U0
k ∩A)

and Exp(U1
k ∩A)−1 ⊆ Exp(U0

k ∩A);

(N3): let h be the mapping from (U1
k ∩A)× (U1

k ∩A) into U0
k ∩A defined

by
h(v, w) = Log(Exp(v). Exp(w));

then h can be extended to a continuous mapping (denoted by the
same notation) from U1

k × U1
k into U0

k ;
(N4): for any w in U1

k ∩A the mapping hw defined by hw(v) = h(v, w) is
a C∞-mapping from U1

k ∩A into U0
k ∩A;

(N5): set θ(u, v, w) = (dhw)v(w); for any pair (j, k) of elements in N the
mapping θ can be extended to a Cj-mapping from Ak+j × (U1

k ∩
Ak+j)× (U1

k ∩Ak) into Ak;
(N6): the mapping c from U1

k ∩ A into U0
k ∩ A defined by c(v) =

Log((Exp v)−1) can be extended to a continuous mapping from
U1

k into U0
k ;

(N7): for any element γ in Γ there exists a neighborhood Vk of zero in Ak

such that
γ−1. Exp(Vk ∩A).γ ⊆ Exp(U0

k ∩A)
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and such that the mapping v 7→ Log(γ−1. Exp v.γ) can be extended
to a C∞-mapping from Vk into U0

k .

A first important result is that any strong ILB-group is a Fréchet–Lie
group ([6], Theorem 6.9).

Let us recall now another important result.
Let Γ be a strong ILB–Lie group with unit 11 and with Lie algebra γ; let

C(I; γ) be the set of continuous mappings from I = [0, 1] into γ, and let
C1,e(I; Γ) be the set of C1-mappings g from I into Γ such that g(0) = 11.

We provide C(I; γ) with the uniform convergence topology and with the
algebraic structures pointwise defined from that of γ so that it becomes
a Fréchet–Lie alebra; likewise, we provide C1,e(I; Γ) with the pointwise
group-operations and with the C1-uniform convergence topology so that it
becomes a FL–Lie group whose Lie algebra consists of the space C1,0(I; γ)
of C1-mappings σ from I into γ such that s(0) = 0 ([6], Lemma 5.2).

It is proved in ([6], Theorems 4.1, 5.1 and 6.9) that

Lemma 1. Any strong ILB–Lie group Γ with unit 11 and with Lie algebra
γ is a regular Fréchet–Lie group in the following sense: for any element s
in C(I; γ) there exists an element gs in C1,e(I; Γ) satisfying the following
equation:

dgs

dt
(t) = s(t).g(t) with g(0) = 11

Moreover, the assignment s 7→ gs is a C∞-diffeomorphism from C(I; γ)
onto C1,e(I; Γ).

(b) Let us initiate now the ILB-version for unital involutive algebras.
Throughout this paper K denotes indiscriminately one of the fields of

numbers R or C.
A unital involutive algebra B (always assumed to be associative) over

K being given, as usual we shall denote by * its involution, by 11 its unit
element, by GL(B) the group of its invertible elements, and by U(B) the
subgroup of its unitary elements

U(B) = {u ∈ GL(B)|u∗.u = u.u∗ = 11}.

By C∗-norm (resp.: C∗-seminorm) on B is meant any algebra norm
(resp.: algebra seminorm) ‖ ‖ on B satisfying ‖v∗.v‖ = ‖v‖2, v ∈ B.

Definition 2. Let A be a unital involutive topological algebra over K
that we assume to be equipped with a C∗-norm ‖ ‖0. We shall say that A
is a unital involutive ILB-algebra if there exists a sequence {(Ak, ‖ ‖k)}k∈N
of unital involutive Banach algebras satisfying the following properties:

(R1): (A0, ‖ ‖0) is that C∗-algebra consisting of the completion of Ak with
respect to ‖ ‖0;
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(R2): for any integer k ≥ 0, Ak+1 is a unital involutive subalgebra of A,
and the topology of Ak+1 given by ‖ ‖k+1 is stronger than the one
induced by (Ak, ‖ ‖k);

(R3): the system (A,Ak, k ∈ N) is an ILB-chain that we shall call the
ILBA-chain of A.

We note that a unital involutive ILB-algebra A as a locally convex topo-
logical vector space is a Fréchet vector space. The topology of A being the
superior limit of the topologies on A induced by Ak, one easily deduces
that the multiplication m from A × A into A and the involution on A are
continuous and then

Lemma 2. Any unital involutive ILB-algebra is a unital involutive Fré-
chet algebra.

(c) Of course any unital C∗-algebra (A, ‖ ‖) is a unital involutive ILB-
algebra by taking the ILBA-chain {(A,Ak, ‖ ‖k)}k∈N with Ak = A and
‖ ‖k = ‖ ‖ for any k in N.

A typical example of unital involutive ILB-algebra is the set A =
C∞(M ;A) of smooth mappings from a smooth compact manifold M into a
unital C∗-algebra A, provided with the C∞-uniform convergence topology
(see, for example, [13]) and with involution and algebraic structure point-
wise defined from that of A.

In this case, for any k ≥ 1 the unital involutive Banach algebra Ak is the
algebra Ck(M ; A) of mappings of class Ck from M into A provided with
the Ck-uniform convergence topology, and A0 is the unital C∗-algebra of
continuous mappings from M into A provided with the uniform convergence
topology. More generally, one can easily see that the space C∞(B) of smooth
sections of a smooth bundle B over M of unital C∗-algebras has a natural
structure of unital involutive ILB-algebra.

2. Unital Involutive ILB-Algebras in Noncommutative
Geometry

We want to discuss now a version of unital involutive ILB-algebras in the
context of noncommutative geometry in which the notion of smooth alge-
bra takes an important place (see, for example, [14]): in noncommutative
geometry, by smooth algebra is meant a pair (A,A0) in which A0 is a unital
C∗-algebra and A a unital involutive Fréchet dense subalgebra. A unital in-
volutive ILB-algebra A with its ILBA-chain {(A,Ak, ‖ ‖)}k∈N being given,
it follows from Lemma 2 that the pair (A,A0) is a smooth algebra.

(a) Let us refer to [7] and the reference therein for detailed construction
and results described below.

Let A be a unital involutive algebra over K, and let D A be the universal
algebra generated by elements pi(v), i ∈ N, v ∈ A, which are linear in v and
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fulfill the following relations: for any k in N, and any pair (v, w) of elements
in A:

pk(v, w) =
∑

i+j=k

pi(v).pj(w).

DA is a N-graded involutive algebra, the degree of pi(v) being the integer
i, and the involution being given by

pi(v)∗ = −pi(v∗);

moreover, DA carries a natural derivation δ such that

δ(pi1(v1) . . . pim(vm)) =
k=m
∑

k=1

(ik + 1)pi1(v1) · · · pik+1(vk) · · · pim(vm).

For any integer i ≥ 0 we have pi(v) = 1
i!δ

i(v) so that, identifying p0 with the
identity on A, DA is generated by A and all the δi(A), i ≥ 1; one obtains
then a formal homomorphism eδ from A into DA by taking

eδ(v) =
i=∞
∑

i=0

pi(v).

For any integer k ≥ 0 let JkA be the ideal of DA generated by all elements
with degree ≥ k; then eδ leads to an actual homomorphism of algebras from
A into DA/JkA which allows one to consider A as a subalgebra of DA/JkA.

Let us assume moreover that A is equipped with a C∗-norm ‖ ‖; for
any integer k ≥ 1 we provide DA/JkA with the Hausdorff locally convex
topological algebra structure by taking the topology given by all algebra
seminorms which are bounded by some multiple of ‖ ‖ on A and for which
the projection onto the subspace of elements with degree k is bounded.

Let us denote by A0,k the completion of eδ(A) in DA/JkA, by A0
k the

unital involutive topological algebra A0,k/(A0,k ∩J1A), and by A0 the com-
pletion of A with respect to the C∗-norm ‖ ‖. We have the dense inclusions
of unital involutive Hausdorff locally convex complete topological algebras
containing A:

· · · ⊆ A0
k+1 ⊆ A0

k ⊆ · · · ⊆ A0,

and δ extends to a continuous derivation sending A0
k+1 into A0

k, k ∈ N.
(b) We want now to show how the above construction may be connected

with unital involutive ILB-algebras. To see this, let us define recursively a
norm ‖ ‖(k) on A0

k by ‖ ‖(0) = ‖ ‖, and for k ≥ 1 by

‖a‖(k) = ‖a‖(k−1) + ‖δa‖(k−1), a ∈ A0
k,
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so that for any integer n ≥ 0 and any a in A0
n one has

‖a‖(k) =
k=n
∑

k=0

n!
k!(n− k)!

‖δka‖.

Let Ak be the completion of A0
k with respect to the norm ‖ ‖(k), k ≥ 1,

and let A′ = ∩
k∈N
Ak.

Lemma 3. A′ is a unital involutive ILB-algebra with the ILBA-chain
(A′,Ak, k ∈ N).

Proof. By definition (A0, ‖ ‖0 = ‖ ‖) is a unital C∗-algebra, and then a
unital Banach algebra; moreover, without loss of generality we may assume
that for any pair (u, v) of elements in A0 one has ‖u.v‖ ≤ ‖u‖.‖v‖; of course,
we have also ‖u∗‖ = ‖u‖.

Let u and v be in A1. We have

‖u.v‖1 = ‖u.v‖+ ‖δ(u.v)‖ = ‖u.v‖+ ‖δu.v + u.δv‖ ≤
≤ ‖u‖.‖v‖+ ‖δu‖.‖v‖+ ‖u‖.‖δv‖ ≤
≤ (‖u‖+ ‖δu‖).(‖v‖+ ‖δv‖) ≤ ‖u‖1.‖v‖1

and ‖u∗‖1 = ‖u∗‖+ ‖δu∗‖ = ‖u∗‖+ ‖− (δu)∗‖ = ‖u‖+ ‖δu‖ = ‖u‖1, which
proves that (A1, ‖ ‖1) is a unital involutive Banach algebra; similarly, by
induction on k, one proves that for any integer k ≥ 0 and for any pair (u, v)
of elements in Ak, one has

‖u.v‖(k) ≤ ‖u‖(k).‖v‖(k) and ‖u∗‖(k) = ‖u‖(k).

The inclusions A · · · ⊆ A0
k+1 ⊆ A0

k ⊆ · · · ⊆ A0 imply the inclusions

A · · · ⊆ Ak+1 ⊆ Ak ⊆ · · · ⊆ A0.

Moreover, the equality ‖a‖(k) = ‖a‖(k−1)+‖δa‖(k−1), a ∈ A0
k, the continuity

of δ, and the density of A0
k+1 in A0

k imply that the inclusion of Ak+1 in Ak is
continuous and that it is with dense range. The assertion is now obvious.

3. On Differentiable and Analytic Mappings in Fréchet
Spaces; Campbell–Baker–Hausdorff Lie Groups

(a) In infinite-dimensional Hausdorff locally convex vector spaces there
are several notions of differentiability and of analyticity that are generally
nonequivalent (see, for example, [6,8,9]), although they coincide with the
usual ones in the case of finite-dimensional spaces.

The notion of differentiability used here for Fréchet spaces is that initiated
by J. Leslie and which has been taken up in [6], §1, to which we refer: E
and F being two Fréchet spaces, and U being some nonempty open subset
in E, a mapping f from U into F is said to be C0 on U if it is continuous
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on U . It is called of class Ck on U , k ≥ 1, if it is of class Ck−1 on U , if there
exists a continuous mapping Dkf from U × Ek into F with the following
properties:

— for any x in U the mapping Dkf(x) is a symmetric k-linear mapping
from Ek into F ;

— let φ be the mapping defined on E by

φ(v) = f(x + v)− f(x)− (Df(x))(v)− · · · − (Dkf(x))(v, · · · , v);

then the mapping from R×E into F defined by R(t, v) =

{

φ(tv)
tk if t 6= 0,

0 if t = 0
is continuous on some neighborhood of (0, 0) in R× E.

Although on infinite-dimensional Banach spaces this notion of differen-
tiability is weaker than the usual definition, it fulfills the chain rule and a
nice version of Taylor’s expansion.

(b) For the corresponding notion of analyticity we refer to [9]. More
precisely, let E and F be two Fréchet spaces and let U be a nonempty
subset of E; an integer n ≥ 0 being given, a continuous mapping p from E
into F is said to be a continuous homogeneous polynomial with degree n if
there exists an n-linear mapping p̂ from the Cartesian product En into F
such that

p(v) = p̂(v, . . . , v)

for any element v in E. We shall denote by S(E;F ) the space of normal
series of the form

s =
n=∞
∑

n=0

pn,

where for each integer n ≥ 0 pn is a continuous homogeneous polynomial
with degree n from E into F . In this context a continuous mapping f from
U into F is said to be analytic on U if for any element n in U there exists
a formal series

sx =
n=∞
∑

n=0

pn,x

in S(E,F ) and an open neighborhood Vx of E such that for any v in Vx

f(x + v) =
n=∞
∑

n=0

pn,x(v).

As any Fréchet space is a Banach space, it follows from Theorem 5.2 in [9]
that

Lemma 4. If the formal series s =
∑

pn in S(E;F ) is convergent on
some nonempty open subset U of E, the mapping v 7→ s(v) =

∑

pn(v) is
analytic on U .
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(c) According to J. Milnor’s idea, by Campbell–Baker–Hausdorff Lie
group (in short, CBH–Lie group) is meant any analytic Fréchet–Lie group Γ
with Lie algebra γ and unit 11 such that the exponential mapping exp from
γ into Γ fulfills the following property: there exists an open neighborhood
U of zero in γ and an open neighborhood W of 11 in Γ such that the re-
striction of exp to U is an analytic diffeomorphism from U onto W so that
(W, log = exp−1) is a canonical system of analytic local coordinates for Γ
near 11 (Cf. [11]). As a consequence, the group law near 11 is given by the
well-known Campbell–Hausdorff formula.

Let B be a unital Banach algebra with Banach algebra norm denoted by
‖ ‖ and with unit 11, and let GL(B) be the group of its invertible elements.
B has a canonical Banach–Lie algebra structure, the Lie bracket being given
by [v, w] = v.w−w.v, (v, w) ∈ B ×B; moreover, without loss of generality,
we may assume that there exists a constant C > 0 such that for any pair
(v, w) of elements in B : ‖v.w‖ ≤ C‖v‖.‖w‖ and ‖[v, w]‖ ≤ ‖v‖.‖w‖.

In the next lemma we summarize, without proof, the well-known results
about the group GL(B); we refer to [15], Chap. II, §6 for the proof of these
assertions:

Lemma 5. GL(B) has a canonical structure of Banach–Lie group with
Lie algebra B, its underlying topology being the induced topology of B. Let
Exp be the mapping from B into GL(B) defined by

Exp v
∑

n∈N

vn

n!
, v ∈ B.

Then, Exp is the exponential mapping of GL(B), and there exist an open
neighborhood U of zero in B and an open neighborhood W of 11 in GL(B)
such that Exp is an analytic diffeomorphism from U onto W so that GL(B)
is an analytic Lie group; we shall denote by Log the inverse diffeomorphism.
As a consequence (U, Log) is a canonical local chart of GL(B) near 11, and
the group law in GL(B) near 11 is given by the Campbell–Hausdorff formula

Exp(v).Exp(w) = h(v, w) = v + w +
1
2
[v, w] +

+
1
12

([v, [v, w]]− [w, [v, w]]) + · · · .

We observe in particular that by Lemma 5 GL(B) is a CBH–Lie group
for any unital Banach algebra. In contrast, it is known that the Fréchet–Lie
group Diff (M) of all diffeomorphisms of a compact smooth manifold is not
a CBH–Lie group (see, for example, [11], §9).
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4. The Lie Group GL(A), A Being a Unital Involutive
ILB-Algebra

(a) Let {A, (Ak, ‖ ‖k), k ∈ N} be the ILBA-chain of a unital involute
ILB-algebra A. The inverse limit topology on A is given by all the algebra
norms ‖ ‖k restricted to A; taking into account Lemma 5 the group GL(A)
appears as the inverse limit of the analytic Banach–Lie groups GL(Ak),
k ∈ N, and, moreover, Expk denoting the exponential mapping of Ak, it is
clear that its restriction to A (still denoted by Exp) maps A into GL(A).
Taking into account this observation one easily deduces that

Lemma 6. The mapping Exp from A into GL(A) is a local homeo-
mophism, i.e., restricts to a homeomorphism from some open neighborhood
U of zero in A onto some open neighborhood of 11 in GL(A).

For any u in GL(A) let Lu and Ru be respectively the left and the right
multiplication by u in A so that Lu(v) = u.v and Ru(v) = v.u for any v in
A; we shall denote by Ad u the automorphism Lu ◦Ru−1 so that Ad u(v) =
u.v.u−1 for any v in A.

Lemma 7. For any u in GL(A) the mappings Lu, Ru, and Ad u are
analytic K-linear automorphisms of A.

Proof. For any u in GL(A), Lu, Ru, and Ad u are clearly algebraic K-linear
automorphisms of A; moreover, the equalities (Lu)−1 = Lu−1 , (Ru)−1 =
Ru−1 , and (Ad u)−1 = Ad u−1 show that it suffices to prove the analyticity
of the mappings Lu and Ru.

A trivial computation shows that for any v and any w in A the corre-
sponding Câteaux derivative is given by

(Lu)′v(w) = lim
t→0

1
t
(Lu(v + tw)− Lu(v)) = u.w = Lu(w);

the continuity of the multiplication and the K-linearity of Lu imply then
that Lu, as the mapping from A into itself, is analytic; the proof is similar
for Ru.

Theorem 1. Let A be a unital involutive ILB-algebra; the group GL(A)
has a canonical structure of regular analytic Fréchet–CBH–Lie group, with
Lie algebra A, with exponential mapping Exp defined by

Exp v =
∑

n∈N

vn

n!
, v ∈ A,

and with adjoint representation Ad of GL(A) into A such that for any u in
GL(A)

Ad(u) = Ad u.
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Proof. It is divided into four steps.
(1) The notations being as in Lemma 5, let W ◦ be a symmetric open

neighhborhood of 11 in GL(A) contained in W and fulfilling W ◦.W ◦ ⊆ W ,
and let U◦ be the open neighborhood of zero in A defined by U◦ = Log(W ◦).

For any integer k the family {vn}n∈N is summable in Ak; one easily
deduces from Lemma 4 that one can find an open neighborhood U∞ ⊆ U◦

of zero in A such that for any element v in U∞ the element 11−v is invertible
with

(11− v)−1 =
∑

n∈N
vn,

so that one can find an open neighborhood W∞ ⊆ W ◦ of 11 in GL(A) such
that the “inverse” mapping u 7→ u−1 is analytic in W∞; it siffices to take
W∞ = Exp(U∞). By Lemma 6 the mapping Log is a homeomorphism from
W∞ onto U∞. It follows from Lemma 7 that for any element u in GL(A)
the set u.W∞ is an open neighborhood of u in GL(A) and Log ◦Lu−1 is a
homeomorphism from u.W∞ onto U∞. As a consequence GL(A) is an open
subset of A.

Moreover, the families

{vn

n!

}

n∈N
and

{

(−1)n (11− u)n

n

}

n≥1

are summable and the corresponding series which converge: the first to
Exp v in some neighborhood of ero in A, and the second to Log u in some
neighborhood of 11 in GL(A). It follows then from Lemmas 4 and 5 that
there exist an open neighborhood Ω of zero in A and an open neighborhood
Λ of 11 in GL(A) such that the mapping

Exp : v 7→ Exp v =
∑

n∈N

vn

n!

is an analytic diffeomorphism from Ω onto Λ, the inverse diffeomorphism
Log from L onto W being given by

log u =
∑

n≥1

(−1)n (11− u)n

n
.

At this stage we have proved that GL(A) is an analytic manifold modelled
on the Fréchet space A, the underlying topology being the topology induced
from A, and that for any element u in GL(A) the pair

(u.Λ, log ◦Lu−1)

is an analytic chart near u.
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(2) To prove that GL(A) is an analytic Lie group modelled on A it remains
to prove the analyticity of the mappings u − u−1, u ∈ GL(A), and of the
multiplication m : (u, u′) 7→ u.u′ on GL(A)×GL(A).

Using the analyticity of the mappings u 7→ u−1 on some open neighbor-
hood of 11 in GL(A) and the analyticity of the mappings Lu′ , u′ ∈ GL(A),
implies clearly the analyticity of the mapping u 7→ u−1 on the whole mani-
fold GL(A).

Let u, u′ be elements in GL(A) and let v, v′ be elements in A; an easy
computation of the Gâteaux derivative Dm(u, u′)v,v′ of m at the point (u, u′)
following the vector (v, v′) gives

Dm(u, u′)v,v′ = u.v′ + v.u′ = Ru′(v) + Lu(v′),

from which one deduces that for any (u, u′) in GL(A) × GL(A) the linear
mapping

Dm(u, u′) : (v, v′) 7→ Dm(u, u′)v,v′ = Ru′(v) + Lu(v′)

is a continuous endomorphism of A×A; according to the type of analyticity
used here it follows that m is analytic.

(3) According to the general theory of finite or infinite-dimensional man-
ifold the tangent space T1 GL(A) of GL(A) at the point 11 is the set of
equivalent classes of parametrized smooth paths through 11 which are de-
fined as follows: let P (GL(A)) be the set of smooth mappings p from an
open neighborhood of zero in R with values in GL(A) such that p(0) = 1;
then two elements p, q will be equivalent if the following equality is fulfilled:

d
dt

(

Log p(t)
)

t=0 =
d
dt

(

Log q(t)
)

t=0.

An easy computation shows that d
dt

(

Log p(t)
)

t=0 = dp
dt (0), which belongs

to A.
Conversely, for any v in A, let us associate the smooth mapping from R

into GL(A) defined by

pv(t) = Exp(tv);

a trivial computation gives d
dt

(

Log p(t)
)

t=0 = v so that T1 GL(A) ∼= A.
It remains to compute the Lie bracket of A as Lie algebra of GL(A). To

do this, we have to observe first of all that the adjoint representation Ad of
GL(A) into its Lie algebra A is clearly given by Ad(u) = Ad u = Lu ◦Ru−1 ,
u ∈ GL(A), with Ad u analytic by Lemma 7.

Let v, w be elements in A; according to the general theory of Lie groups
the Lie bracket [v, w] must be equal to the image of w by the first derivative
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at the point u = 11 in the direction v of the smooth mapping η : u 7→
Ad u(w)−w = u.w.u−1−w from GL(A) into A; an easy computation gives

[v, w] = h′(11, v)(w) = lim
t→0

( (11 + tv).w.(11 + tv)−1 − w
t

)

=

= lim
t→0

(

1
t

(

(11 + tv).w.
(

∑

n≥0

(−1)ntnvn
)

− w
)

)

=

= lim
t→0

(

1
t

(

(11 + tv).w.
(

11 + t
∑

n≥1

(−1)ntn−1vn
)

− w
)

)

= v.w − w.v,

so that A is the Lie algebra of GL(A) provided with its canonical Lie bracket.
(4) As for integer k ≥ 0 the Banach Lie group GL(Ak) is a CBH–Lie

group, and its Campbell–Hausdorff series is convergent (and then is analytic
by Lemma 4) on some neighborhood of (0, 0) in Ak×Ak; one easily deduces
that the formal Campbell–Hausdorff series, as element of S(A × A;A), is
convergent on some open neighborhood Ξ of (0, 0) in A× A.
A being Fréchet space, it follows that A×A is a Baire space, and then the

analyticity of the Campbell–Hausdorff function of GL(A) on Ξ is fulfilled by
Lemma 4. As a consequence GL(A) is an analytic Fréchet–CBH–Lie group.

The proof that GL(A) fulfills the properties (N1)–(N7) described in De-
finition 1 is now straightforward and easy so that GL(A) is also a strong
ILB–Lie group, and then a regular Fréchet–Lie group by Lemma 1. We sum-
marize these properties by saying that GL(A) is a regular analytic Fréchet–
CBH–Lie group.

5. Lie’s Second Fundamental Theorem for GL(A)

(a) For any real or complex finite-dimensional Lie group G with Lie
algebra G we have the following result known as Lie’s second fundamental
theorem:

“Let H be a Lie subalgebra of G; then H is integrable, that is to say,
there exists a unique connected Lie group H with Lie algebra H which can
be immersed as Lie subgroup of G.”

A generalization of this assertion in the infinite-dimensional context forces
one, first of all, to consider only closed Lie subalgebras: for closed Lie sub-
algebras Lie’s second fundamental theorem remains true for Banach–Lie
groups; we refer to [10] for a detailed discussion of this theorem in the
infinite-dimensional case.

Another point is that the property for a mapping M from an infinite-
dimensional manifold M into another infinite-dimensional manifond N to
be an immersion is a very strong property; a weaker property for π is to be
an embedding, that is to say, a C1-mapping on M such that for any x in
M the differential (dπ)x is one-to-one.
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Moreover, even with a stronger hypothesis (by considering only closed Lie
subalgebras) and with a weaker result (embedding Lie subgroups instead of
immersed Lie subgroups), the proof for an extension of Lie’s second theorem
meets, for non-Banach Lie groups, with major difficulties or obstructions
due to the fact that there is no “nice” theory of differential equations, and
a fortiori no “good” Frobenius theorem for the most part of non-Banach
Hausdorff locally convex topological vector spaces in spite of some efforts
using the bornological machinery (see, for example, [10]).

(b) Theorem 2. Let A be a unital involutive ILB-algebra provided with
its Lie algebra structure of the analytic CBH–Lie group GL(A). Any closed
Lie subalgebra H of A is the Lie algebra of a unique connected CBH–Lie
group which can be embedded as a Lie subgroup H in GL(A).

Proof. (1) Let A be a unital involutive algebra. It follows from Theorem 1
that one can find an open neighborhood Λ of 11 in the analytic CBH–Lie
group GL(A) such that Exp is an analytic diffeomorphism from Ω onto Λ
so that Log is an analytic diffeomorphism from Λ onto Ω; we consider Λ
provided with the analytic manifold structure induced by that of GL(A) (or
equivalently by that of A!).

Let H be a closed Lie subalgebra of the Lie algebra A so that, as a
topological vector subspace of A, it is a Fréchet space. Ω ∩ H is an open
neighborhood of zero on H that we equip with the induced topology of H.
Let us consider now the set

H1 = Exp(Ω ∩H)

provided with the topology carried from that of Ω ∩ H by Exp; owing to
the analyticity of Exp one easily deduces that H1 is an analytic manifold
modelled on the Fréchet space H and regularly embedded in the analytic
manifold Λ. Moreover, the mapping

(a, a′) 7→ a.a′ = Exp(Log a). Exp(Log a′) = Exp
(

h(Log a, Log a′)
)

,

where h denotes the analytic mapping defined by the Campbell–Hausdorff
formula, is analytic (with respect to the analytic structure of H1 × H1 on
some nonempty open neighborhood of (11, 11) in H1 ×H1.

(2) Let u be any element in GL(A); the analyticity of the mappings Lu

implies that u.H1 is an analytic manifold regularly embedded in u.Λ and
analytically diffeomorphic to H1; the mapping û defined for any element
u.a in u.H1 by û(u.a) = Log a is an analytic diffeomorphism from the open
neighborhood u.(Λ ∩H1) onto Ω ∩H.

Let L be the union over GL(A) of all the analytic manifolds u.H, u ∈
GL(A). L is both an analytic vector bundle over GL(A) with fibers of type
H, and the invariant distribution of left translation of the Lie subalgebra
H.
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Let us prove that u.H1, when provided with the chart {u.(Λ ∩ H1); û},
is an integral manifold of L in a neighborhood of u.

Let a ∈ u.H1 ∩ H1 so that b = u−1.a belongs to H1; one can find an
open neighborhood V of 11 in H1 such that b.V is an open neighborhood
of b in H1 and a.V an open neighborhood of a in H1. It follows that
u.(b.V ) = u.(u−1.a.V ) = a.V , which is an open subset in u.H1 and in H1,
is then an open neighborhood of a in u.H1 ∩H1.

(3) We have then proved that the u.H1, u ∈ GL(A), are integral manifolds
and that the family of open subsets of the u.H1 provides a basis for a
topology Θ on GL(A) which is stronger than the induced topology of that
of A (which is the underlying topology of its structure of analytic Lie group).

Let H be the connected component of 11 in GL(A) with respect to Θ. It
is clear that H contains H1; moreover, the regularity of the embedding of
H1 in GL(A) implies that H is an analytic manifold. It follows that H is
an integral manifold of L and that {u.H}u∈GL(A) is an analytic foliation of
L. As a result it follows that H is a subgroup of GL(A).

(4) We have now to prove that H is a CBH–Lie group.
Let (u◦, v◦) be an element in H ×H, let w◦ := u◦.v◦−1, and let i(v◦) be

the inner automorphism of GL(A) defined by i(v◦)(u) = v◦.u.v◦−1 which is
analytic on GL(A), since it is the restriction of Ad v◦ which is analytic on
A by Lemma 7.

The restriction j(v◦) of i(v◦) to H is an inner automorphism of H and we
can find an open neighborhood Y of 11 in H such that the set j(v◦)(Y ) = Y ∗

is contained in Λ ∩H so that one easily deduces that j(v◦) is analytic (in
the sense of the analytic structure of the manifold H) in the neighborhood
Y ∗ of 11 in H.

Let us point out that for any (u, v) sufficiently near (u◦, v◦) in H so that
u◦−1.u.v−1.v◦ lies in Y ∗, easy computation shows that u.v−1 = w◦.j(v◦)
(u◦−1.u.v−1.v◦).

Taking into account the analyticity of the left multiplication in H1 (and
then in H) and of j(v◦) in Y ∗, one deduces that the mapping µ from H×H
into H defined by µ(u, v) = u.v−1 is analytic in some neighborhood of
(u◦, v◦) for any (u◦, v◦) in H×H. It follows that H is an analytic Lie group
embedding in GL(A) and its Lie algebra is H. As the exponential mapping
of H is clearly the restriction of the exponential mapping of GL(A), one
easily deduces that H is a CBH–Lie group.

(5) It remains now to prove the unicity of H up to an isomorphism of
Lie groups. Let H ′ be a connected CBH–Lie group embedded in GL(A)
and with Lie algebra H; we denote by s the embedding from H ′ into GL(A)
and by s∗ the differential mapping of s at the unit which is then a smooth
isomorphism of Lie algebras from the tangent space T1H ′ of H ′ at the unit
onto the Lie algebra H.

The unicity of a one-parameter subgroup having the same velocity vector
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at t = 0 implies that near the unit one has

s(Exp u) = Exp(s∗(u)),

which proves that s is a local Lie group isomorphism from H ′ into H.
We achieve the proof by observing that, H and H ′ being connected Lie

groups, we can find open neighborhoods W and W ′ of the unit in H and
H ′, respectively, so that s maps diffeomorphically W onto W ′ such that
H is the union of all the W.s.W = Wn and H ′ is the union of all the
W ′. · · · .W ′ = W

′n, n ∈ N ; it follows then that s(H ′) = H so that H ′ is
actually a CBH–Lie group isomorphic to H via s.

6. The Fréchet–CBH–Lie Group of Unitary Elements of a
Unital Involutive ILB-Algebra

(a) Let B be any unital topological involutive algebra over K, let GL(B)
be the group of its invertible elements, and let U(B) := {u ∈ B|u∗.u =
u.u∗ = 11} be the subgroup of its unitary elements.

Lemma 8. Provided with the induced topology of B the group U(B) is a
topological group closed in B.

Proof. Let f ′ and f ′′ be the mappings from B into B respectively defined
for any v in B by

f ′(v) = v.v∗ and f ′′(v) = v∗.v.

Due to the continuity of the involution and of the multiplication, f ′ and f ′′

are continuous mappings; it follows that U(B) = f
′−1({11}) ∩ f

′′−1({11})
is closed in B. Moreover, the continuity of the multiplication in B implies
its continuity in U(B), and the continuity of the involution on B implies
the continuity of u 7→ u−1 = u∗ on U(B) so that U(B) is a topological
group.

In the particular case where B is a unital involutive Banach algebra,
GL(B) is a CBH–Banach–Lie group and it is well known that it induces on
its subgroup U(B) a Banach–Lie group structure. Unfortunately, for more
general infinite-dimensional Lie groups, due to the lack of local compactness
of the underlying space, a closed subgroup of a Lie group is not necessarily
a Lie group.

(b) Let (A,Ak k ∈ N) be the ILBA-chain of a unital involutive ILB-
algebra A, let θ be the involution on A defined by

θ(v) = −v∗, v ∈ A,

and let us consider its eigenspaces

K(A) =
{

v ∈ A|θ(v) = v
}

and P(A) =
{

v ∈ A|θ(v) = −v
}

.
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Due to the continuity of θ, K(A) and P(A) are closed subspaces of A and
we have the direct sum

A = K(A)⊗P(A).

Let us consider A with its canonical structure of Lie algebra of GL(A); for
any pair (v, w) of elements of A one has

[v, w]∗ = (v.w)∗ − (w.v)∗ = w∗.v∗ − v∗.w∗ = −[v∗, w∗].

As an obvious consequence of the above discussion, we have the following
result:

Lemma 9.
(i) [K(A),K(A)] ⊆ K(A) and K(A) is a closed Lie subalgebra of A;
(ii) [K(A),P(A)] ⊆ P(A);
(iii) [P(A),P(A)] ⊆ K(A).

Remark 1. Let us observe that [A,A] = A; by analogy with what happens
for finite-dimensional reductive Lie algebras over K, Lemma 5 shows, at
least at the algebraic level, a kind of Cartan decomposition of A with respect
to the “Cartan involution” θ.

This statement seems to be all the more justified as we shall see that
K(A) is the Lie algebra of a Lie group which appears as a generalization of
compact Lie groups of the type U(n).

Lemma 10. U(A) is a closed topological subgroup of the CBH–Lie group
GL(A) for the topology induced from that of A; moreover, the exponential
mapping Exp maps the Lie algebra K(A) into U(A).

Proof. By Lemma 8 the group U(A) is a subgroup of GL(A) which is closed
in A and then in the Lie group GL(A) which is open in A. Moreover, the
continuity of the multiplication in GL(A) implies its continuity in U(A), and
the continuity of the involution implies the continuity of u 7→ u−1 = u∗ on
U(A), and then U(A) is a closed topological subsgroup of the analytic Lie
group GL(A).

Let us observe that for any element v in A we have

(Exp v)∗ =
(

∑

n≥0

vn

n!

)∗
=

∑

n≥0

(vn)∗

n!
=

∑

n≥0

(v∗)n

n!
= Exp(v∗)

and then for any element v in K(A)

(Exp v)∗. Exp v = Exp(−v). Exp v = 11 =

= (Exp v).Exp(−v) = (Exp v).(Exp v)∗,

which proves that Exp maps K(A) into U(A).
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In the case dim(A) < ∞, Lemma 10 allows one to claim that U(A) is a Lie
subgroup of the analytic Lie group GL(A); in the infinite-dimensional case
it is not sufficient owing to the lack of local compactness of the underlying
space. Fortunately, in our context we have

Theorem 3. Let A be a unital involutive ILB algebra. The regular
Fréchet–CBH–Lie group GL(A) induces on its closed topological subgroup
U(A) a structure of regular Fréchet–CBH–Lie group with Lie algebra K(A),
the exponential mapping of which is the restriction of Exp to K(A) (which
we shall also denote by Exp). Moreover, the adjoint representation Ad of
U(A) into K(A) is given for any u in U(A) by Ad u(v) = u.v.u∗, v ∈ K(A).

Proof. (a) Let (A,Ak k ∈ N) be the ILBA-chain of the unital involutive
ILB-algebra A, and for any k in N let U(Ak) be the group of unitary el-
ements in the unital involutive Banach algebra Ak; one easily sees that
U(Ak) is a CBH–Banach–Lie subgroup of the Banach–Lie group GL(Ak)
with Lie algebra K(Ak) = {v ∈ Ak|v + v∗ = 0}; moreover, as in the proof
of Lemma 10, one proves that the exponential mapping from K(Ak) into
U(Ak) is the restriction to K(Ak) of the exponential mapping Expk from
Ak into GL(Ak).

In this context a straightforward check allows one to assert that {K(A),
K(Ak), k ∈ N} is an ILB-chain and that

U(A) = ∩
k∈N

U(Ak)

is a strong ILB–Lie group, and then a regular Fréchet–Lie subgroup of
GL(A) by Lemma 1.

(b) Let us prove that the tangent space T1(U(A)) of U(A) at 11, which is
necessarily a vector subspace of the tangent space A = T1(GL(A)) of GL(A)
at 11, is exactly K(A).

According to the general theory of a smooth infinite-dimensional manifold
modelled on a Hausdorff locally convex vector space (see, for example, [12],
§4), an element of T1(U(A)) is an equivalence class of parametrized smooth
mappings p from some open neighborhood of zero in R taking their values
in U(A) and such that p(0) = 1. As in the proof of Theorem 1, one easily
proves that it is entirely characterized by the value of dp

dt (0).
As such a path p fulfills the equalities p(t).p(t)∗ = 1 and dp∗

dt (t) =
(dp

dt (t)
)∗

for all t, one obtains

0 =
d
dt

(p.p∗)(t) =
dp
dt

(t)p(t)∗ + p(t).
(dp

dt
(t)

)∗

for all parameters t so that for t = 0

dp
dt

(0) +
(dp

dt
(0)

)∗
= 0,



REGULAR FRÉCHET–LIE GROUPS OF INVERTIBLE ELEMENTS 443

which proves that dp
dt (0) lies in K(A), and then, as U(A) ⊇ Exp(K(A)), one

concludes that T1(U(A)) ∼= K(A).
The last part of the assertion follows from the fact that the adjoint rep-

resentation of U(A) is the restriction to U(A) of the adjoint restriction of
GL(A) acting on K(A) and from the fact that for any u in U(A) and any v
in K(A) : Ad u(v) = u.v.u−1 = u.v.u∗.

Remark 2. By Lemma 9, K(A) is a closed Lie subalgebra of A; it follows
from Theorem 2 that K(A) is the Lie algebra of a connected CBH–Lie
subgroup Γ of GL(A). Due to the unicity of this group one easily deduces
that Γ is necessarily the connected component U0(A) of the unit in the Lie
group U(A).
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