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TWO-DIMENSIONAL STEADY-STATE OSCILLATION
PROBLEMS OF ANISOTROPIC ELASTICITY

D. NATROSHVILI

Abstract. The paper deals with the two-dimensional exterior bound-
ary value problems of the steady-state oscillation theory for anisotro-
pic elastic bodies. By means of the limiting absorption principle the
fundamental matrix of the oscillation equations is constructed and
the generalized radiation conditions of Sommerfeld–Kupradze type
are established. Uniqueness theorems of the basic and mixed type
boundary value problems are proved.

1. Introduction

In the paper we treat the uniqueness theorems of basic and mixed type
exterior boundary value problems (BVPs) for equations of two-dimensional
steady-state elastic oscillations of anisotropic bodies. In this case questions
regarding the correctness of BVPs have not been investigated so far. Here
any analogy with the isotropic case is completely violated, since the ge-
ometry of the characteristic surface becomes highly complicated and the
fundamental matrix cannot be written explicitly in terms of elementary
functions. This in turn creates another difficulty in obtaining asymptotic
estimates.

As is well known, even for the metaharmonic equation

∆v(x) + k2v(x) = 0, k2 > 0, x ∈ R2, (1.1)

the decay condition at infinity v(x) = O(|x|−1/2) as |x| → +∞ is not
sufficient to establish the uniqueness of solutions. The strengthening of the
condition by increasing its decay order results in such a solution being a zero
function and therefore the nonhomogeneous BVPs become unsolvable. To
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obtain the uniqueness, some additional restrictions have to be imposed on
solutions at infinity. They were found by A. Sommerfeld [1] for Eq. (1.1):

v(x) = o(1),
∂v(x)
∂|x|

± ik v(x) = o(|x|−1/2). (1.2)

Sommerfeld’s principle was applied to derive rigorous proofs of the unique-
ness and existence theorems of solutions of the exterior BVPs for metahar-
monic and n-metaharmonic equations [2–8].

The exterior BVPs of steady-state oscillations for isotropic elastic bod-
ies were studied by V. Kupradze [9,10]. The uniqueness theorems for the
equation

µ∆u(x) + (λ + µ) grad div u(x) + ρω2u(x) = 0, ω > 0, x ∈ R2, (1.3)

were proved in the class of vectors u = (u1, u2)> representable as the sum
of two metaharmonic vectors u1 and u2 satisfying the radiation conditions
(1.2) with the parameters k2

1 = ρω2(λ + 2µ)−1 and k2
2 = ρω2µ−1.

Classes of functions and vectors, in which the exterior BVPs for Eqs.
(1.1) and (1.3) have unique solutions, can be selected by other currently
available methods such as Ignatovsky’s principle of limiting absorption,
Tikhonov’s principle of limiting amplitude, and Mandelstam’s energy prin-
ciple [11–14].

Quite a number of authors have dealt with similar questions for gen-
eral scalar elliptic and hypoelliptic equations (with constant and variable
coefficients). Applying the limiting absorption principle, D. Eidus [15] stud-
ied a second-order elliptic equation whose principal part coincides with the
Laplacian at infinity. B. Vainberg [16, 17] studied general higher-order hy-
poelliptic operators of two variables and obtained a wide set of conditions
at infinity ensuring the uniqueness of solutions for equations over the whole
plane. The results were further extended to scalar equations with many in-
dependent variables [18–22]. Coercive BVPs for elliptic equations in infinite
domains with a compact boundary and the limiting absorption and limiting
amplitude principles were studied in [23, 24] by means of the functional
methods. Some particular results concerning the uniqueness of solutions
to Dirichlet and Neumann type exterior BVPs of anisotropic elasticity are
obtained in [25, 26].

In the present paper, the limiting absorption principle is used to con-
struct the fundamental matrix of oscillation equations in the most general
anisotropic case and to establish generalized radiation conditions of the
Sommerfeld–Kupradze type. Special functional classes are introduced, in
which the basic and mixed exterior BVPs of steady-state oscillations have
unique solutions for an arbitrary value of the oscillation parameter.
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2. Preliminaries

Denote by R2 the two-dimensional Euclidean space. Let Ω+ ⊂ R2 be
a compact domain with a smooth boundary Ω+ = S and Ω− = R2\Ω+;
Ω+ = Ω+∪S. Nonhomogeneous equations of steady-state oscillations of the
elasticity theory for anisotropic bodies can be written in the matrix form
[11]

C(D, ω)u(x) ≡ C(D)u(x) + ω2u(x) = F (x), x ∈ ω, (2.1)

where u = (u1, u2)> is a complex displacement vector, ω > 0 is an oscil-
lation parameter (frequency), F describes external (bulk) forces, Ω stands
for either Ω± or R2,

C(ξ) =‖ Ckp(ξ) ‖2×2=‖ ckjpqξjξq ‖2×2,

C11(ξ) ≡ L(ξ) = A11ξ2
1 + 2A13ξ1ξ2 + A33ξ2

2 ,

C12(ξ) = C21(ξ) ≡ M(ξ) = A13ξ2
1 + (A12 + A33)ξ1ξ2 + A23ξ2

2 ,

C22(ξ) ≡ N(ξ) = A33ξ2
1 + 2A23ξ1ξ2 + A22ξ2

2 ,

(2.2)

D = ∇ = (D1, D2), Dj = ∂/∂xj , A11 = c1111, A12 = A21 = c1122, A13 =
A31 = c1112, A22 = c2222, A23 = A32 = c2122 and A33 = c1212 are the elastic
constants, which from the physical standpoint satisfy the usual symmetry
assumption ckjpq = cpqkj = cjkpq; here and in what follows the superscript
> denotes transposition, while summation over repeated indices is meant
from 1 to 2 (unless stated otherwise). Without loss of generality, the density
of the elastic medium under consideration can be assumed to be equal to
unity.

The components of the strain tensor ekj = ejk = 2−1(Dkuj + Djuk) and
the stress tensor τkj are connected by means of the Hooke’s law

τkj = ckjpqepq, k, j = 1, 2. (2.3)

Let τ = (τ11, τ22, τ12)> and e = (e11, e22, 2e12)>. Then Eq. (2.3) reduces
to τ = Ae with A = ‖Akj‖3×3.

The potential energy density for the real strain components is calculated
by the formula

2W = τkjekj = Ae · e (2.4)

which from the mechanical viewpoint is assumed to be a positive-definite
quadratic form in the variables ekj = ejk. This implies that A is a positive-
definite matrix, i.e., A11 > 0, A11A22−A2

12 > 0, det A > 0. Obviously, form
(2.4) is positive definite for the complex variables ekj = ejk as well (for two
complex vectors u and v, the scalar product u · v is defined as ukv̄k).
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The above results give rise to [27]

∀ξ ∈ R2 : det C(ξ) ≥ δ0|ξ|4, L(ξ) ≥ δ0|ξ|2, N(ξ) ≥ δ0|ξ|2,
C(ξ)ζ · ζ = Ckj(ξ)ζk ζ̄j ≥ δ0|ξ|2|ζ|2,

where δ0 is some positive number depending on the elastic moduli and
ζ = (ζ1, ζ2)> is an arbitrary complex vector.

The operator

T (D, n) = ‖Tkp(D, n)‖2×2, Tkp(D,n) = ckjpqnjDq, (2.5)

is called the stress operator and the vector Tu, with components τkjnj =
[T (D, n)u]k = ckjpqnjDqup, is called the stress vector acting on a part of
the line with the unit normal n = (n1, n2)>. From (2.2) and (2.5) we obtain

T11(ξ, η) = T11(η, ξ) = 1
2 [η1D1L(ξ) + η2D2L(ξ)],

T21(ξ, η) + T12(ξ, η) = η1D1M(ξ) + η2D2M(ξ),

T22(ξ, η) = T22(η, ξ) = 1
2 [η1D1N(ξ) + η2D2N(ξ)].

3. Fundamental Matrices

Let us consider the matrix differential equation in the space of slowly
increasing generalized functions (tempered distributions) [28]

[C(D) + ω2I]Γ(x, ω) = δ(x)I, (3.1)

where I = ‖δkj‖2×2 is the unit matrix and δ(·) is Dirac’s distribution.
Our aim is to construct the fundamental matrix Γ(x, ω) with entries

maximally decreasing at infinity.
To this end, applying the generalized Fourier transform to (3.1), we get

[ω2I − C(ξ)]Γ̂(ξ, ω) = I, (3.2)

with Γ̂(ξ, ω) = Fx→ξ[Γ(x, ω)].
For summable functions the Fourier operators Fx→ξ and F−1

ξ→x are de-
fined as follows:

Fx→ξ[f ] =
∫

R2
f(x) exp(ixξ)dx, F−1

ξ→x[g] =
1

4π2

∫

R2
g(ξ) exp(−ixξ)dξ.

We introduce the notation

Φ(ξ, ω)=det[ω2I−C(ξ)]=L(ξ)N(ξ)−M2(ξ)−ω2[L(ξ)+N(ξ)]+ω4. (3.3)

Passing over to the polar coordinates

ξ1 = ρ cos ϕ, ξ2 = ρ sin ϕ, ρ = |ξ| ≥ 0, 0 ≤ ϕ ≤ 2π, (3.4)
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we easily get

Φ(ξ, ω) = Φ(η)ρ4 − ω2[L(η) + N(η)]ρ2 + ω4 = Φ(η)(ρ2 − ρ2
1)(ρ

2 − ρ2
2) =

= Φ(η)[ρ2 − ω2k2
1(ϕ)][ρ2 − ω2k2

2(ϕ)], (3.5)

where η = ξ|ξ|−1 = (cos ϕ, sin ϕ),

Φ(η) = det C(η) = L(η)N(η)−M2(η) > 0, ρj = ωkj(ϕ), j = 1, 2, (3.6)

and ωkj are positive solutions of the equation Φ(ξ, ω) = 0 with respect to ρ

k2
j (ϕ)=

1
2Φ(η)

{L(η)+N(η)+(−1)j
√

[L(η)−N(η)]2+4M2(η)}>0. (3.7)

Obviously, the function Φ(ξ, ω) vanishes on the lines Sj defined by the
equations ρ = ωkj(ϕ), j = 1, 2. From now on it will be assumed that

I0. ∇Φ(ξ, ω) 6= 0, ξ ∈ Sj , j = 1, 2; (3.8)
II0. The curvatures of the lines S1 and S2 differ from zero for all ϕ ∈

[0, 2π].
It follows from the above conditions that the real zeros of the polynomial

Φ(ξ, ω) form two closed, non-intersecting, convex lines. For arbitrary x ∈
R2\{0} there exist exactly two points on each Sj , where the external unit
normal vector is parallel to the vector x. At one of these points, called
ξj ∈ Sj , the vectors n(ξj) and x are of the same direction, while at the
other one, called ξ̃j , they are of the opposite directions. The evenness of
the function Φ(ξ, ω) in ξ implies that ξ̃j = −ξj . It is clear also that if the
polar angle ϕj corresponds to the point ξj , then π + ϕj corresponds to the
point ξ̃j .

For arbitrary ω > 0 there exist positive constants δ1 and δ2 such that

0 < δ1 ≤ k1(ϕ) < k2(ϕ) ≤ δ2 < ∞, 0 ≤ ϕ ≤ 2π. (3.9)

From (3.6) and the evenness of the functions L, M , and N we get kj(ϕ) =
kj(ϕ + π), i.e., kj(ϕ) is a π-periodic function.

As the reciprocal matrix [ω2I −C(ξ)]−1 does not exist for all ξ ∈ R2, we
have to regularize the distribution Γ̂ defined by (3.2). We will do this by
means of the limiting absorption principle.

Consider the pseudo-oscillation equation

C(D, τε)Γ(x, τε) ≡ [C(D) + τ2
ε I]Γ(x, τε) = δ(x)I, (3.10)

where τε = ω + iε, ε ∈ (−ε1, ε1), ε1 > 0, ε 6= 0; Γ(x, τε) is a fundamental
matrix with entries from the space of tempered distributions. Therefore
(3.10) is equivalent to

[τ2
ε I − C(ξ)]Γ̂(ξ, τε) = I. (3.11)
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Note that

Φ(ξ, τε)=det[τ2
ε I−C(ξ)]=Φ(η)[ρ2−τ2

ε k2
1(ϕ)][ρ2−τ2

ε k2
2(ϕ)] (3.12)

and by (3.7) the reciprocal matrix [τ2
ε I − C(ξ)]−1 exists for all ξ ∈ R2 and

ε 6= 0. From (3.11) we get

Γ̂(ξ, τε) = [τ2
ε I − C(ξ)]−1 = [Φ(ξ, τε)]−1C∗(ξ, τε) ∈ L2(R2), (3.13)

with

C∗(ξ, τε) =
∥

∥

∥

∥

τ2
ε −N(ξ), M(ξ)
M(ξ), τ2

ε − L(ξ)

∥

∥

∥

∥

. (3.14)

Thus

Γ(x, τε) = F−1
ξ→x[Γ̂(ξ, τε)] =

1
4π2

∫

R2
Φ−1(ξ, τε)C∗(ξ, τε)e−ixξdξ. (3.15)

Lemma 1. The entries of the matrix Γ(x, τε) belong to the class
C∞(R2\{0}) and, together with all of their derivatives, decrease more rapid-
ly than any negative power of |x| as |x| → +∞.

Proof. The correctness of the lemma follows from the relations

|x|2mDα
x Γkj(x, τε) = F−1

ξ→x[(−iξ)α(−∆)mΓ̂kj(ξ, τε)],

|(−iξ)α(−∆)mΓ̂kj(ξ, τε)| < c(ε)(1 + |ξ|)−m−2+|α|, c(ε) > 0,

where ∆ = D2
1 + D2

2 is the Laplace operator, α = (α1, α2) is an arbitrary
multi-index, and |α| = α1 + α2.

Formally, Eqs. (3.1) and (3.10) coincide when ε = 0. Therefore we have
to investigate the limit of (3.15) as ε → 0.

First we introduce the function

h ∈ C∞(R2), h(ξ) = 1 for |ξ| < C0, h(ξ) = 0 for |ξ| > 2C0, (3.16)

with C0 > 2δ2ω (see (3.9)) and represent Γ(x, τε) as

Γ(x, τε) = Γ1(x, τε) + Γ2(x, τε),

where

Γ1(x, τε) = F−1
ξ→x[(1− h(ξ))Γ̂(ξ, τε)],

Γ2(x, τε) = F−1
ξ→x[h(ξ)Γ̂(ξ, τε)].

(3.17)

Lemma 2. The entries of the matrix Γ1(x, τε) are uniformly continuous
functions in τε for |x| ≥ δ0 > 0 and together with all of their derivatives
decrease more rapidly than any negative power of |x| as |x| → +∞.
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Proof. It is easy to see by (3.13) and (3.14) that

Γ̂(ξ, τε)− Γ̂(ξ, τ) = (τ2
ε − τ2)[Q1(ξ, τ)−Q2(ξ, τε, τ)] (3.18)

for |ξ| > C0 > 2δ2ω, where

Q1(ξ, τ)=Φ−1(ξ, τ)I =Φ−1(ξ, 0){1+[Φ(ξ, 0)−Φ(ξ, τ)]Φ−1(ξ, τ)}I,

Q2(ξ, τε, τ)=Φ−1(ξ, τε)Φ−1(ξ, τ){τ2
ε +τ2−L(ξ)−N(ξ)}C∗(ξ, τε).

(3.19)

Lemma 2 now follows from (3.16), (3.17), and the relations (1 − h)Qj ∈
L1(R2), j = 1, 2.

Lemma 3. The estimates

|Dα[Γ1
kj(x, τε)− Γ1

kj(x, ω)]| ≤ εC1ν|α|(x),

|Dα[Γ1
kj(x, τε)− Γ1

kj(x, 0)]| ≤ C1ν|α|(x), |α| = 0, 1, 2, 3,

hold for 0 < |x| < δ0 < 1/2 (i.e., in the vicinity of x = 0); here C1 is some
positive constant independent of ε, ε ∈ (−ε1, ε1) and

ν0(x) = ν1(x) = 1, ν2(x) = ln |x|−1, ν3(x) = |x|−1. (3.20)

Proof. Lemma 3 follows from (3.18), (3.19), and Lemma 2.17 of [29].

Lemma 4. The entries of the matrix Γ1(x, 0) together with all of their
derivatives decrease more rapidly than any negative power of |x| as |x| →
+∞ and in the vicinity of x = 0 the estimates Γ1

kj(x, 0) = O(ln |x|),
DαΓ1

kj(x, 0) = O(|x|−|α|) hold for an arbitrary multi-index α with |α| ≥ 1.

Proof. The first part of Lemma 4 can be proved similarly to Lemma 1. As
to the second assertion, it follows from the representations

Γ1
kj(x, 0)=F−1

ξ→x[χ1(ξ)(1−h(ξ))Γ̂kj(ξ, 0)]+F−1
ξ→x[χ2(ξ)Γ̂kj(ξ, 0)], (3.21)

DpΓ1
kj(x, 0) = F−1

ξ→x[−iξp(1− h(ξ))Γ̂kj(ξ, 0)] =

= F−1
ξ→x[iξph(ξ)Γ̂kj(ξ, 0)] + F−1

ξ→x[−iξpΓ̂kj(ξ, 0)], (3.22)

where Γ̂(ξ, 0) = [C(ξ)]−1, χ1 and χ2 are the characteristic functions of the
domains |ξ| ≤ 2C0 and |ξ| > 2C0, respectively, with C0 from (3.16).

In fact, the first summands of (3.21) and (3.22) are the analytic functions
of x. The second summand of (3.21) is O(ln |x|) [29, Lemma 2.17], while
the second summand of (3.22) is a homogeneous function of degree −1 [28,
p. 30].

The above lemmas readily imply
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Lemma 5. The limit

lim
ε→0

Γ1(x, τε) = Γ1(x, ω) =
1

4π2

∫

R2
[1− h(ξ)]Φ−1(ξ, ω)C∗(ξ, ω)e−ixξdξ

exists for arbitrary x ∈ R2\{0}. The entries of Γ1(x, ω) together with all
of their derivatives decrease more rapidly than any negative power of |x| as
|x| → +∞ and in the vicinity of the origin the relations

Γ1
kj(x, ω) = O(ln |x|), DαΓ1

kj(x, ω) = O(|x|−|α|), |α| ≥ 1

hold for an arbitrary multi-index α.

Let us now investigate the matrix Γ2(x, τε). It is easy to verify that the
entries of the matrix

Γ2(x, τε) =
1

4π2

∫

R2
h(ξ)Φ−1(ξ, τε)C∗(ξ, τε)e−ixξdξ (3.23)

are analytic functions of x and together with all of their derivatives decrease
more rapidly than any negative power of |x| as |x| → +∞ for arbitrary ε 6= 0,
since Φ(ξ, τε) 6= 0, ξ ∈ R2.

In what follows we will show that there exist one-sided limits of (3.23)
as ε → 0±.

First let ε ∈ (0, ε1) with 0 < ε1 < 1
3ω. Then (see (3.9) and (3.16))

|τεkj(ϕ)| < 4
3ωδ2 < 2

3C0.

Next, let

x1 = r cos ψ, x2 = r sin ψ, r = |x| ≥ 0, ψ ∈ [0, 2π]. (3.24)

Then by (3.23)

Γ2(x, τε)=
1

4π2

∫ 2π

0

∫ 2C0

0
h(ξ)Φ−1(ξ, τε)C∗(ξ, τε)e−iρr cos(ϕ−ψ)ρdρdϕ. (3.25)

We introduce the complex ρ-plane ρ = ρ′ + iρ′′. By (3.12) zeros of the
function Φ(ξ, τε) with respect to ρ are ±τεkj(ϕ) and obviously they belong
to the first and third quarters of the complex ρ-plane. Therefore by (3.16)
and the analyticity of the integrand in (3.25) in the vicinity of the points
ρ1 = ωk1(ϕ) and ρ2 = ωk2(ϕ), we have the following representation

Γ2(x, τε) =
1

4π2

∫ 2π

0

∫

l−
h(ξ)Φ−1(ξ, τε)C∗(ξ, τε)e−iρr cos(ϕ−ψ)ρdρdϕ, (3.26)

where l− = [0, ρ1 − δ] ∪ Σ−1,δ ∪ [ρ1 + δ, ρ2 − δ] ∪ Σ−2,δ ∪ [ρ2 + δ, C0], 0 < δ <
min{ρ1, 2−1(ρ2−ρ1)}, and Σ−j,δ is the lower semicircle (centered at the point
ρj , with radius δ) oriented counterclockwise.
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Obviously, the limit of (3.26) exists when ε → 0+. We introduce the
notation

Γ2(x, ω, 1) = lim
ε→0+

Γ2(x, τε) =

=
1

4π2

∫ 2π

0

∫

l−
h(ξ)Φ−1(ξ, ω)C∗(ξ, ω)e−iρr cos(ϕ−ψ)ρdρdϕ. (3.27)

Similarly to the above, we get

Γ2(x, ω, 2) = lim
ε→0−

Γ2(x, τε) =

=
1

4π2

∫ 2π

0

∫

l+
h(ξ)Φ−1(ξ, ω)C∗(ξ, ω)e−iρr cos(ϕ−ψ)ρdρdϕ, (3.28)

where l+ is the mirror image of l− (Σ−j,δ is to be replaced by the clockwise
oriented upper semicircle Σ+

j,δ).
Formulas (3.5), (3.6), (3.7), (3.27), and (3.28) imply

Γ2(x, ω, m)=
1

4π2

∫ 2π

0
{v.p.

∫ 2C0

0
h(ξ)Φ−1(ξ, ω)C∗(ξ, ω)e−iρr cos(ϕ−ψ)ρdρ+

+(−1)m
2

∑

j=1

iπ(−1)j Ψ(ρj , ϕ; r, ψ)
ρ1 − ρ2

}dϕ,

where the interior integral is understood in the principal value sense and

Ψ(ρ, ϕ; r, ψ) =
e−iρr cos(ϕ−ψ)

Φ(η)(ρ + ρ1)(ρ + ρ2)
C∗(ξ, ω) =

=
(ρ− ρ1)(ρ− ρ2)

Φ(ξ, ω)
C∗(ξ, ω)e−ixξρ.

Denoting

L̃(ϕ) = L(η), M̃(ϕ) = M(η), Ñ(ϕ) = N(η), (3.29)

it is easy to show that

2
∑

j=1

(−1)j Ψ(ρj , ϕ; r, ψ)
ρ1 − ρ2

= −
2

∑

j=1

{[Φ′ρ(ξ, ω)]−1C∗(ξ, ω)e−ixξρ}ξ∈Sj =

= −
2

∑

j=1

(−1)je−iρjr cos(ϕ−ψ)

2[(L̃− Ñ)2 + 4M̃2]1/2
C̃j(ϕ), (3.30)

where

C̃j(ϕ) =
∥

∥

∥

∥

1− Ñ(ϕ)k2
j (ϕ), M̃(ϕ)k2

j (ϕ)
M̃(ϕ)k2

j (ϕ), 1− L̃(ϕ)k2
j (ϕ)

∥

∥

∥

∥

. (3.31)
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With regard to these relations we have

Γ2(x, ω, m) =
1

4π2

∫ 2π

0
{v.p.

∫ 2C0

0

h(ξ)
Φ(ξ, ω)

C∗(ξ, ω)e−iξxρdρ}dϕ +

+
i(−1)m+1

4π

∫ 2π

0

2
∑

j=1

(−1)je−iωkj(ϕ)r cos(ϕ−ψ)

2[(L̃− Ñ)2 + 4M̃2]1/2
C∗j (ϕ)dϕ, m = 1, 2. (3.32)

The investigation of the asymptotic behavior of Γ2(x, ω,m) as |x| →
+∞ requires more detailed analytical and structural information about the
curves Sj , j = 1, 2. Namely, note that if x ∈ R2\{0} and ϕj is the polar
angle corresponding to the point ξj ∈ Sj , then ϕ̃j = ϕj + π corresponds to
the point ξ̃j ∈ Sj . The curvature κ of the curve Sj , defined by the equation
ρ = ωkj(ϕ), is calculated by the formula

κ = [ρ2 + 2(ρ′)2 − ρρ′′][ρ2 + (ρ′)2]−3/2 > 0, 0 ≤ ϕ < 2π. (3.33)

It is obvious that ϕj and ϕ̃j are the stationary points of the function

g(ϕ) = r−1(x1ξ1 + x2ξ2) = ρ cos(ϕ− ψ) = ωkj(ϕ) cos(ϕ− ψ), ξ ∈ Sj .

The relation

g′′ϕϕ(ϕ) = ω cos(ϕ− ψ)k−1
j (ϕ)[k2

j (ϕ) + (k′j(ϕ))2]κ(ϕ) 6= 0

for ϕ = ϕj or ϕ = ϕ̃j , implies that ϕ and ϕ̃j are non-degenerate stationary
points [30].

Further, for the exterior unit normal n(ξ) to Sj we have cos(ϕj − ψ) =
(n(ξj)·ξj |ξj |−1) > 0, cos(ϕ̃j−ψ) = −(n(ξj)·ξ̃j |ξ̃j |−1) < 0, and consequently
g′′ϕϕ(ϕj) > 0, g′′ϕϕ(ϕ̃j) < 0. From (3.7) and the inequalities

(−1)jΦ′ρ(ξ, ω) > 0, ξ ∈ Sj , j = 1, 2, (3.34)

it follows that the exterior unit normal n(ξ) to Sj can be represented as
n(ξ) = (−1)j |∇Φ(ξ, ω)|−1∇Φ(ξ, ω), ξ ∈ Sj . Note that

|∇Φ(ξ, ω)| = 2Φ(η)|ρ2
1 − ρ2

2|[ρ2
j + (ρ′j)

2]1/2, ξ ∈ Sj . (3.35)

Let us introduce the generalized v.p.-integral (see [30], Ch.3. §4)

v.p.
∫

R2

f(ξ)
Φ(ξ, ω)

dξ = lim
ε→0+

∫

|Φ(ξ,ω)|>ε

f(ξ)
Φ(ξ, ω)

dξ.

This integral exists if f ∈ C∞(R2) and supp f is compact (cf. [30]).
Applying the properties of singular integrals on smooth curves and in-

equality (3.8), we can rewrite the matrix Γ2(x, ω, m) as

Γ2(x, ω, m) = Ψ1(x) + Ψ2
m(x), (3.36)
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where

Ψ1(x) = v.p.
1

4π2

∫

R2
h(ξ)Φ−1(ξ, ω)C∗(ξ, ω)e−ixξdξ,

Ψ2
m(x) = (−1)m+1 i

4π

∫ 2π

0

2
∑

j=1

(−1)je−irωkj(ϕ) cos(ϕ−ψ)

2[(L̃− Ñ)2 + 4M̃2]1/2
C̃j(ϕ) dϕ

= (−1)m+1 i
4π

∫ 2π

0

2
∑

j=1

{[Φ′ρ(ξ, ω)]−1C∗(ξ, ω)e−ixξ}Sj ρjdϕ.

(3.37)

Due to the relation dSj = [(ρ′j)
2 + ρ2

j ]
1/2 dϕ and (3.35)

ρjdϕ
[Φ′ρ(ξ, ω)]Sj

=
ρj dSj

[(ρ′j)2 + ρ2
j ]1/2[2Φ(η)ρj(−1)j(ρ2

2 − ρ2
1)]

=
(−1)j dSj

{|∇Φ(ξ, ω)|}Sj

.

Therefore

Ψ2
m(x) = (−1)m+1 1

4π

2
∑

j=1

(−1)j
∫

Sj

C∗(ξ, ω)e−ixξ

|∇Φ(ξ, ω)|
dSj . (3.38)

We can get an equivalent representation of Ψ2
m by means of special dif-

ferential forms on Sj .
Note that if Sj is an (n − 1)-dimensional level manifold defined by the

equation P (ξ1, · · · , ξn) = 0, with P ∈ C∞ and ∇P (ξ) 6= 0, ξ ∈ Sj , then the
Laray–Gelfand differential form ΩP reads [30] as

ΩP =
n

∑

k=1

(−1)k−1|∇P |−2 ∂P
∂ξk

dξ1 ∧ · · · ∧ dξk−1 ∧ dξk+1 ∧ · · · d̂ξn. (3.39)

Let ν = (ν1, · · · , νn) be the positive normal vector defining the orienta-
tion of Sj . The measure on Sj , corresponding to the differential form (3.39)
and chosen orientation, is given by the formula [35]

[ΩP ] =
n

∑

k=1

(−1)k−1|∇P |−2 ∂P
∂ξk

(−1)k−1νkdSj = |∇P |−2 ∂P
∂ν

dSj =

= |∇P |−2(εj∇P |∇P |−1,∇P ) = εj |∇P |−1dSj , (3.40)

where εj = sgn(ν · ∇P ), i.e., εj = 1 if the positive normal ν and the vector
∇P have the same directions on Sj , and εj = −1 if they have the opposite
directions.

Due to (3.40)

(−1)j
∫

Sj

f(ξ)
|∇P (ξ)|

dSj = (−1)jεj

∫

Sj

f(ξ)ΩP .
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Let us choose a positive normal on Sj by the equation ν = |∇P |−1∇P,
i.e., εj = 1.

Making use of these results for P (ξ) ≡ Φ(ξ, ω) (n = 2, εj = 1, j = 1, 2),
from (3.38) we have

Ψ2
m(x) = (−1)m+1 i

4π

2
∑

j=1

(−1)j
∫

Sj

C∗(ξ, ω)e−ixξΩΦ(ξ,ω). (3.41)

The asymptotic behavior of such integrals for large |x| is studied by many
authors (see [23, 30, 33, 34]). Due to Theorems 1, 2 and Remark 1 of [33]
and Theorem 4.4 of [30] integrals (3.37) and (3.41) admit the following
representation (|x| = r → +∞):

Ψ1(x)=
−i
4π

2
∑

j=1

(−1)j [bj(x)− b̃j(x)] + O(r−3/2), (3.42)

Ψ2
m(x)=(−1)m+1 i

4π

2
∑

j=1

(−1)j{bj(x)+b̃j(x)}+O(r−3/2), (3.43)

where the points ξj , ξ̃j ∈ Sj correspond to the point x, n(ξ) is the exterior
unit normal at ξ ∈ Sj , bj and b̃j denote the principal contributions corre-
sponding to the non-degenerate stationary points ξj and ξ̃j , respectively, in
the asymptotic expansion (as |x| → +∞) of the integral

Bj(x) =
∫

Sj

C∗(ξ, ω)e−ixξΩΦ(ξ,ω) =
∫

Sj

C∗(ξ, ω)e−ixξ

|∇Φ(ξ, ω)|
dSj =

=
∫ 2π

0

e−irωkj(ϕ) cos(ϕ−ψ)

2[(L̃− Ñ)2 + 4M̃2]1/2
C̃j(ϕ) dϕ

and read as follows:

bj(x) = b̃j(x) =
(

2π
r

)1/2 e−iπ/4

[κ(ξj)]1/2

e−ixξj

|∇Φ(ξj , ω)|
C∗(ξj , ω); (3.44)

here κ(ξ) is the curvature of Sj at the point ξ (see (4.9)).
Taking into consideration that ξ̃j = −ξj , κ(ξ̃j) = κ(ξj), |∇Φ(ξ̃j , ω)| =

|∇Φ(ξj , ω)|, C∗(ξ̃j , ω) = C∗(ξj , ω) and denoting

Qj(x) =
(

2π
r

)1/2 C∗(ξj , ω)
[κ(ξj)]1/2|∇Φ(ξj , ω)|

,

from (3.44) we get

bj(x) = Qj(x)e−iπ/4e−ixξj
, b̃j(x) = Qj(x)eiπ/4eixξj

.
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Therefore (3.36), (3.42), and (3.43) imply

Γ2(x, ω, 1)=
2

∑

j=1

i
2π

(−1)jQj(x)eiπ/4eixξj
+O(|x|−3/2), (3.45)

Γ2(x, ω, 2)=
2

∑

j=1

i
2π

(−1)j+1Qj(x)e−iπ/4e−ixξj
+O(|x|−3/2). (3.46)

Thus we have proved

Lemma 6. The entries of the matrix Γ2(x, ω,m) defined by equalities
(3.27), (3.28) are C∞-smooth functions with respect to x on R2. For suffi-
ciently large |x| the asymptotic formulas (3.45) and (3.46) hold. The conver-
gence in (3.27) and (3.28) is uniform with respect to the parameter x ∈ R2.

Lemmas 2-6 imply

Theorem 7. If conditions I0 and II0 are satisfied, then
(i) the limits

lim
(−1)m+1ε→0+

Γ(x, τε) = Γ(x, ω, m), ∀x ∈ R2\{0},

exist, where τε = ω + iε, Γ(x, τε) is defined by (3.15); the above limits exist
uniformly with respect to the variable x for |x| ≥ δ > 0 with some positive
δ;

(ii) Γ(x, ω, m) (m = 1, 2) are the fundamental matrices of the operator
C(D, ω) and

Γ(x, ω,m) = F−1
ξ→x{[1− h(ξ)][ω2I − C(ξ)]−1}+

+
1

4π2 v.p.
∫

R2
h(ξ)[ω2I − C(ξ)]−1e−iξx dξ +

+ (−1)m+1 i
8π

∫ 2π

0

2
∑

j=1

(−1)je−iωrkj(ϕ) cos(ϕ−ψ)

[(L̃− Ñ)2 + 4M̃2]1/2
C̃j(ϕ) dϕ;

Γ(x, ω, m) = Γ(−x, ω, m) = [Γ(x, ω, m)]>

(3.47)

(see (3.7), (3.16), (3.29), (3.31), (3.32));
(iii) in the vicinity of the origin (0 < |x| < 1/2) the inequalities

|Dα[Γ(x, ω, m)− Γ(x)]| < cν|α|(x), |α| = 0, 1, 2, 3,

|Dα[Γ(x, τε)− Γ(x, ω, m)| < |ε|cν|α|(x), (−1)m+1ε > 0,

hold, where ν|α| is defined by (3.20) and Γ(x) is the fundamental matrix of
the statics operator C(D): Γ(x) = F−1

ξ→x[C−1(−iξ)] (cf. [31]);
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iv) for sufficienty large |x| (|x| → +∞)

Γ(x, ω, 1) =
2

∑

j=1

|x|−1/2R1j(x)eixξj
+ O(|x|−3/2),

Γ(x, ω, 2) =
2

∑

j=1

|x|−1/2R2j(x)e−ixξj
+ O(|x|−3/2),

where the point ξj ∈ Sj corresponds to x,

R1j(x) = R2j(x) = (−1)j i√
2π

eiπ/4
√

κ(ξj)|∇Φ(ξj , ω)|
C∗(ξj , ω).

Corollary 8. If y ∈ Ω0, where Ω0 is a bounded subset of R2, then
(for |x| → +∞)

Dα
x Dβ

y Γ(x−y, ω, 1)=
2

∑

j=1

|x|−1/2R1j(x)(iξj)α(−iξj)βei(x−y)ξj
+O(|x|−3/2),

Dα
x Dβ

y Γ(x−y, ω, 2)=
2

∑

j=1

|x|−1/2R2j(x)(−iξj)α(iξj)βei(y−x)ξj
+O(|x|−3/2),

where ξj ∈ Sj corresponds to x, and α and β are arbitrary multi-indices.

4. Radiation Conditions and the Formulation of the Basic
Boundary Value Problems. Integral Representations of

Solutions

Let us introduce the following classes (cf. [16-19]).
A function (vector, matrix) u belongs to the class SKm(Ω), m = 1, 2, if

it (each component of the vector, each element of the matrix) is C1-smooth
in the vicinity of infinity and for sufficiently large |x| the relations

u(x) =
2

∑

j=1

u(j)(x), u(j)(x) = O(|x|−1/2),

∂u(j)(x)
∂xp

+ i(−1)mξj
pu

(j)(x) = O(|x|−3/2), j, p = 1, 2, (4.1)

hold, where the point ξj ∈ Sj corresponds to the radius-vector x (see Sect.3);
here Ω = Ω− or Ω = R2; (no summation over j in (4.1)).

These conditions are generalized Sommerfeld–Kupradze type radiation
conditions in anisotropic elasticity (cf. [1,2,3]).
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It is easy to verify that the entries of the matrix Γ(x, ω,m) constructed in
the previous section satisfy conditions (4.1) and consequently Γ(·, ω, m) ∈
SKm(R2\{0}).

Now we can formulate the basic BVPs for Eq. (2.1).
Problem for the whole plane (PLm-Problem):

Find a regular vector u ∈ C2(R2) satisfying Eq. (2.1) in R2 and radiation
conditions (4.1) at infinity, i.e., u ∈ C2(R2) ∩ SKm(R2).

Exterior boundary value problems (I)−m – (IV )−m:
Find a regular vector u ∈ C1(Ω−)∩C2(Ω−) satisfying Eq. (2.1) in Ω−, the
radiation conditions at infinity (u ∈ SKm(Ω−)) and one of the following
boundary conditions on ∂Ω−:

Problem (I)−m : [u]− = f ;

Problem (II)−m : [Tu]− = f ;

Problem (III)−m : [(n · u)]− = f1, [(t · Tu)]− = f2;

Problem (IV)−m : [(t · u)]− = f1, [(n · Tu)]− = f2;

here n(x) and t(x) are the exterior unit normal vector and the unit tangent
vector at x ∈ ∂Ω−, respectively; [·]± denote one-sided (from Ω±) limits on
∂Ω±.

Similarly, one can formulate the interior BVPs for a bounded domain Ω+

(obviously, in this case the classes SKm are not involved in the formulation
of the BVPs).

Let u, v be regular vectors in Ω+ and u, v ∈ C2(Ω+) ∩ C1(Ω+) with
∂Ω+ ∈ C2+γ , 0 < γ ≤ 1. Applying the Green formula
∫

Ω+

[C(D, ω)u · v − u · C(D, ω)v]dx=
∫

∂Ω+

{(Tu)+(v)+ − (u)+(Tv)+}dS (4.2)

and Theorem 7, by standard arguments (cf. [32]) we easily get the following
integral representation of a regular vector in bounded domains:

u(x) =
∫

∂Ω+
{[T (Dy, n(y))Γ(y − x, ω, m)]>[u(y)]+ −

− Γ(x− y, ω, m)[T (Dy, n(y))u(y)]+} dS +

+
∫

Ω+
Γ(x− y, ω,m)C(D, ω)u(y) dy, x ∈ Ω+. (4.3)

Lemma 9. Let u ∈ C1(Ω−) ∩ C2(Ω−) ∩ SKm(Ω−), supp C(D, ω)u be a
compact domain in R2, and S = ∂Ω− ∈ C2+γ , 0 < γ ≤ 1. Then

u(x) =
∫

Ω−
Γ(x− y, ω, m)C(D, ω)u(y) dy +
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+
∫

S
{Γ(x− y, ω, m)[T (Dy, n(y))u(y)]− −

− [T (Dy, n(y))Γ(y − x, ω, m)]>[u(y)]−} dS, x ∈ Ω−. (4.4)

Proof. Let us write the integral representation formula for the bounded
domain Ω−R = Ω− ∩ BR, where BR = {x : |x| < R} with sufficiently large
R, S ⊂ BR, supp C(D, ω)u ⊂ BR, ΣR = ∂BR. Due to (4.3)

u(x)=
∫

Ω−R

Γ(x−y, ω, m)C(D, ω)u(y) dy+
∫

S
{Γ(x−y, ω, m)[Tu(y)]−−

−[T (Dy, n(y))Γ(y−x, ω, m)]>[u(y)]−} dS−
∫

ΣR

{Γ(x−y, ω,m)][Tu(y)]−

−[T (Dy, n(y))Γ(y − x, ω,m)]>[u(y)]} dΣR, x ∈ Ω−R. (4.5)

For fixed x and sufficiently large R the last summand in (4.5) is the only
term depending on R. Let us integrate Eq. (4.5) with respect to R from A
to 2A, divide the result by A, and pass to the limit as A → +∞:

u(x) =
∫

Ω−
Γ(x− y, ω, m)C(D, ω)u(y) dy +

∫

S
{Γ(x− y, ω,m)[Tu(y)]− −

−[T (Dy, n(y))Γ(y − x, ω,m)]>[u(y)]−} dS + lim
A→∞

Ψ(A), (4.6)

where Ψ consists of terms like

Ψkj(A) =
1
A

∫ 2A

A

∫

ΣR

bkj(η)gk(Rη)hj(Rη) dR dΣR, η = y|y|−1, (4.7)

with the scalar functions gk and hj satisfying the radiation conditions

gk(Rη) = O(R−1/2), ∂
∂Rgk(Rη) + i(−1)mλk(η)gk(Rη) = O(R−3/2),

hj(Rη) = O(R−1/2), ∂
∂Rhj(Rη) + i(−1)mλj(η)hj(Rη) = O(R−3/2);

(4.8)

here points ξp ∈ Sp correspond to the vector η ∈ Σ1 and

λp(η) = (η · ξp) > 0, p = 1, 2. (4.9)

From (4.7) we have (cf. [18, 32])

Ψkj(A) =
1
A

∫ 2A

A

∫

ΣR

bkj(η)
λk(η) + λj(η)

{[λk(η)gk(Rη)]hj(Rη) +

+ gk(Rη)[λj(η)hj(Rη)]} dR dΣR =

=
1
A

∫ 2A

A

∫ 2π

0

i(−1)m+1bkj(η)
λk(η) + λj(η)

{ ∂
∂Rgk(Rη)hj(Rη) +

+ gk(Rη) ∂
∂Rhj(Rη) + O(R−2)}R dR dϕ =
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=
1
A

∫ 2π

0

i(−1)m+1bkj(η)
λk(η)+λj(η)

{

∫ 2A

A

∂
∂R [gk(Rη)hj(Rη)]R dR

}

dϕ+

+O(A−1)=
1
A

∫ 2π

0

i(−1)m+1bkj(η)
λk(η) + λj(η)

{[Rgk(Rη)hj(Rη)]2A
A −

−
∫ 2A

A
gk(Rη)hj(Rη) dR} dϕ + O(A−1) = O(A−1).

Therefore limA→+∞Ψ(A) = 0 and representation (4.4) holds.

Corollary 10.
(i) Let the conditions of Lemma 9 be fulfilled. Then

lim
R→+∞

∫

ΣR

{[T (Dy, n(y))Γ(y − x, ω, m)]>[u(y)]−

−Γ(x− y, ω,m)[Tu(y)]} dΣR = 0, x ∈ Ω−; (4.10)

(ii) The homogeneous PLm-problem has only the trivial solution.

Corollary 11. Let F be a given vector function on R2 with compact
support, i.e., diam supp F < ∞ and F ∈ C0,γ(R2), 0 < γ ≤ 1. Then the
corresponding non-homogeneous PLm-problem is uniquely solvable and the
solution can be represented by the convolution

u(x) = [Γ(·, ω, m) ∗ F ](x) =
∫

R2
Γ(x− y, ω, m)F (y) dy.

5. Uniqueness Theorems for the Exterior BVPs

Lemma 12. Let u be a solution of the homogeneous exterior BVP (K)−m,
K = I, · · · , IV (F = 0, f = 0). Then u(x) = O(|x|−3/2), as |x| → +∞.

Proof. For definitness, let m = 1. Due to Theorem 7 and Corollary 8 we
have the asymptotic representations at infinity

Γ(x− y, ω, 1) =
2

∑

j=1

r−1/2C∗(ξj , ω)ψj(ξj , y)eixξj
+ O(r−3/2), (5.1)

[T (Dy, n(y))Γ(y − x, ω, 1)]> = −[T (Dx, n(y))Γ(x− y, ω, 1)]> =

=
2

∑

j=1

r−1/2C∗(ξj , ω)[T (iξj , n(y))]>ψj(ξj , y)eixξj
+ O(r−3/2), (5.2)

where ψj is a scalar function and C∗ is defined by (3.14).
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Applying formulas (5.1), (5.2) and integral representation (4.4) for any
u ∈ C1(Ω−) ∩ C2(Ω−) ∩ SK1(Ω−) with compact supp C(D,ω)u, we get

u(x) =
2

∑

j=1

r−1/2C∗(ξj , ω)Aj(ξj)eixξj
+ O(r−3/2), (5.3)

where the vector Aj = (Aj1, Aj2)> is uniquely defined by the vector u
and does not depend on |x| (in what follows we do not need the explicit
expressions of Ajk and ψj).

Equation (5.3) implies

Tu(x)= ir−1/2
2

∑

j=1

T (ξj , n(x))C∗(ξj , ω)Aj(ξj)eixξj
+O(r−3/2). (5.4)

We need the following property of C∗: the vectors

V 1(ξ, ω) = (C∗11(ξ, ω), C∗21(ξ, ω))> = (ω2 −N(ξ),M(ξ))>,

V 2(ξ, ω) = (C∗12(ξ, ω), C∗22(ξ, ω))> = (M(ξ), ω2 − L(ξ))>,
(5.5)

are linearly dependent for all ξ ∈ S1 ∪ S2, since det C∗(ξ, ω) = Φ(ξ, ω) =
0, ξ ∈ S1 ∪ S2. Therefore V 2(ξ, ω) = a(ξ)V 1(ξ, ω), ξ ∈ S1 ∪ S2, with
a(ξ) = [ω2 − L(ξ)][M(ξ)]−1 = [M(ξ)][ω2 −N(ξ)]−1.

Due to (5.3), (5.4), and (5.5)

u(x) =
2

∑

j=1

r−1/2V 1(ξj , ω)νj(ξj)eixξj
+ O(r−3/2), (5.6)

Tu(x) =
2

∑

j=1

ir−1/2T (ξj , n(x))V 1(ξj , ω)νj(ξj)eixξj
+ O(r−3/2), (5.7)

where νj(ξj) = Aj1(ξj) + a(ξj)Aj2(ξj), j = 1, 2.
Let now u be a solution of the homogeneous exterior BVP (K−

1 ) and
write the Green formula (4.2) for u, v = u and Ω+ = Ω−R = Ω− ∩ BR;
taking into account the homogeneity of the problem, we have

∫

ΣR

{T (Dx, η)u(x) · u(x)− u(x) · T (Dx, η)u(x)} dΣR = 0, η =
x
|x|

. (5.8)

From the convexity of curves Sj it follows that, if ξj ∈ Sj corresponds to
η, then (ξ1 − ξ2, η) 6= 0; cosequently (see (4.9))

λ1(η) 6= λ2(η), η ∈ Σ1. (5.9)
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Condition (5.9) enables us to carry out calculations and arguments sim-
ilar to those involved in the proof of Lemma 9. After integration of Eq.
(5.8) from A to 2A with respect to R and division by A we get

1
A

∫ 2A

A

∫

ΣR

{[T (Dx, η)u(x)]k[uk(x)]− [uk(x)][T (Dx, η)u(x)]k} dR dΣR = 0.

Hence by (5.6) and (5.7)

2i Im
{

1
A

∫ 2A

A

∫

ΣR

2
∑

p,j=1

i
R

(T (ξj , η)V 1(ξ, ω) · V 1(ξp, ω))×

×νj(ξj)eixξj
νp(ξp)e−ixξp

dR dΣR + O(A−1)
}

= 0. (5.10)

In (5.10) we have summands of the form

Ψ∗kj(A) =
1
A

∫ 2A

A

∫

ΣR

bkj(η)gk(Rη)hj(Rη) dR dΣR,

where gk and hj satisfy radiation conditions (4.8).
With the help of (5.9) we can prove (see the corresponding arguments and

manipulations in the proof of Lemma 9) that for different indices (k 6= j)

Ψ∗kj(A) = O(A−1). (5.11)

Thus (5.10) and (5.11) imply

1
A

∫ 2A

A

∫ 2π

0

2
∑

j=1

{[T (ξj , η)V 1(ξj , ω) · V 1(ξj , ω)]|νj(ξj)|2} dR dϕ = O(A−1).

Passing to the limit as A → +∞, from the latter equation we have

2
∑

j=1

∫ 2π

0
G(ξj , η)|νj(ξj)|2 dϕ = 0, (5.12)

where ξj ∈ Sj corresponds to η, G(ξ, η) = (T (ξ, η)V 1(ξ, ω) · V 1(ξ, ω). In
what follows we will prove that G(ξj , η) is a positive function. To this end,
note that [M(ξj)]2 = [ω2 − L(ξj)][ω2 − N(ξj)] for ξj ∈ Sj and rewrite
G(ξj , η) in the form (see (2.2))

G(ξj , η) = [ω2 −N(ξj)]{T11(ξj , η)[ω2 −N(ξj)]

+[T12(ξj , η) + T21(ξj , η)]M(ξj) + T22(ξj , η)[ω2 − L(ξj)]}. (5.13)

Applying Eqs. (2.6) and

DjΦ(ξ, ω) = −{[ω2 −N(ξ)]DjL(ξ) + [ω2 − L(ξ)]DjN(ξ) + 2M(ξ)DjM(ξ)}
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in (5.13), we get G(ξj , η) = − 1
2 [ω2−N(ξj)](n(ξj)·∇Φ(ξj , ω)), since n(ξj) =

η, where n(ξj) is the outward unit normal at ξj ∈ Sj . From the latter
equation by (3.34) we have

G(ξj , η) = (−1)j+12−1[ω2 −N(ξj)]|∇Φ(ξj , ω)|, ξj ∈ Sj . (5.14)

Obviously, for ξ ∈ Sj (j = 1, 2):

ω2 −N(ξ) = ω2 − ω2kj(ϕ)N(ζ) = ω2[1− kj(ϕ)N(ζ)], ζ = |ξ|−1ξ.

Let us fix some ϕ ∈ [0, 2π] and consider

[1− k1(ϕ)N(ζ)][1− k2(ϕ)N(ζ)] = 1− [k1(ϕ) + k2(ϕ)]N(ζ) +

+k1(ϕ)k2(ϕ)N2(ζ) = −M2(ζ)[L(ζ)N(ζ)−M2(ζ)]−1.

Due to (3.6) we deduce

[1− k1(ϕ)N(ζ)][1− k2(ϕ)N(ζ)] < 0 (5.15)

for all ϕ ∈ [0, 2π] except for solutions of the equation M(ζ) = M(cos ϕ, sin ϕ)
= 0. Now the inequalities k1(ϕ) < k2(ϕ) and N(ζ) > 0 together with (5.15)
imply 1− k1(ϕ)N(ζ) > 0, 1− k2(ϕ)N(ζ) < 0, almost everywhere on [0, 2π],
i.e., (−1)j+1[ω2 −N(ξ)] > 0, ξ ∈ Sj , j = 1, 2. Therefore by (5.14)

G(ξj , η) = 2−1|ω2 −N(ξj)| |∇Φ(ξj , ω)| > 0, ξj ∈ Sj . (5.16)

Consequently, from (5.12) and (5.16) it follows that νj(ξj) = 0, which to-
gether with (5.6) proves Lemma 13.

Corollary 13. Let u be a solution of the homogeneous exterior BVP
(K)−m (K = I, · · · , IV ), m = 1 or m = 2. Then

u ∈ SK1(Ω−) ∩ SK2(Ω−). (5.17)

Theorem 14. The exterior homogeneous BVP (K)−m (K = I, · · · , IV )
has only the trivial solution.

Proof. First let us note that a solution of homogeneous equation (2.1) is an
analytic vector-function of two real variables x1 and x2 in Ω−, since C(D, ω)
is an elliptic operator.

Let u be a solution of the homogeneous BVP (K)−m. Denote by ΣR a
circumference with center at the origin O ∈ Ω+ and radius R > 0 such that
the corresponding circle BR contains the curve S = ∂Ω±. It is obvious that
the vector u admits an extension from Ω−\BR = R2\BR onto the whole
plane R2 preserving the C∞-smoothness. Let v be one of such extensions:
v ∈ C∞(R2), v|Ω−\BR = u|Ω−\BR and denote

F (x) = C(D, ω)v(x), x ∈ R2. (5.18)
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It is obvious that v is a solution of PLm-Problem (5.18) with compact
supp F ⊂ BR and according to Corollary 13 v ∈ SK1(R2)∩SK2(R2), since
u satisfies condition (5.17).

Due to Corollary 11 we have two representations for v:

v(x) = [Γ(·, ω, 1) ∗ F ](x), v(x) = [Γ(·, ω, 2) ∗ F ](x). (5.19)

Equalities (5.19) imply v̂(ξ)=Γ̂(ξ, ω, 1)F̂ (ξ)=Γ̂(ξ, ω, 2)F̂ (ξ), i.e.,

[Γ̂(ξ, ω, 1)− Γ̂(ξ, ω, 2)]F̂ (ξ) = 0, (5.20)

where F̂ (ξ) is an analytic vector of two complex variables ξ1, ξ2 and satisfies
specific conditions at infinity, since it is the Fourier transform of the vector
F with compact support (see [28]).

Note that by (3.47)

Γ(x, ω, 1)− Γ(x, ω, 2) =
2

∑

j=1

∫

Sj

Dj(ξ)e−ixξ dSj ,

where

Dj(ξ) =
i

4π
(−1)j(n(ξ) · ξ)

ω2[(L−N)2 + 4M2]1/2 C∗(ξ, ω), ξ ∈ Sj .

Theorem 7 implies that Γ(·, ω,m), m = 1, 2, are regular functionals on
the space of rapidly decreasing functions S(R2) (see [28]) and we have (for
arbitrary g = (g1, g2)> ∈ S(R2))

〈[Γ(x, ω, 1)− Γ(x, ω, 2)], g(x)〉 =
∫

R2
[Γ(x, ω, 1)− Γ(x, ω, 2)]g(x) dx =

=
2

∑

j=1

∫

Sj

Dj(ξ)ĝ(ξ) dSj = 〈(2π)−2[Γ̂(ξ, ω, 1)− Γ̂(ξ, ω, 2)], ĝ(ξ)〉, (5.21)

and consequently Γ̂(·, ω, 1)− Γ̂(·, ω, 2) is concentrated on S1 ∪ S2, i.e.,

supp [Γ̂(ξ, ω, 1)− Γ̂(ξ, ω, 2)] = S1 ∪ S2.

Now (5.20) together with (5.21) yields

〈[Γ̂(ξ, ω, 1)− Γ̂(ξ, ω, 2)]F̂ , ĝ〉 = 4π2
2

∑

j=1

∫

Sj

Dj
pq(ξ)F̂q(ξ)ĝp(ξ) dSj = 0,

i.e.,

C∗(ξ, ω)F̂ (ξ) = 0, ξ ∈ Sj , j = 1, 2. (5.22)
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From the analyticity of F̂ (ξ), Eq. (5.22), and condition (3.8) it follows
that (cf. [18])

C∗(ξ, ω)F̂ (ξ) = Φ(ξ, ω)Ĥ(ξ), ξ ∈ R2, (5.23)

where Ĥ(ξ) is the analytic vector of two complex variables ξ1, ξ2 and
satisfies at infinity the same estimates as F̂ ; therefore Ĥ(ξ) is also the
Fourier transform of some vector H(x) with compact support and, evidently,
H ∈ SKm(R2). By (5.18)

F̂ (ξ) = C(−iξ, ω)v̂(ξ), (5.24)

where C(−iξ, ω) = Iω2 − C(ξ). Note that

C∗(ξ, ω)C(−iξ, ω) = C(−iξ, ω)C∗(ξ, ω) = Φ(ξ, ω)I. (5.25)

Substituting (5.24) into (5.23), with regard to (5.25) we get

C(−iξ, ω)C∗(ξ, ω)[v̂(ξ)− Ĥ(ξ)] = 0

and by the inverse Fourier transform

C(D, ω)[C∗(D) + ω2I][v(x)−H(x)] = 0,

where

C∗(D) =
∥

∥

∥

∥

N(D) −M(D)
−M(D) L(D)

∥

∥

∥

∥

.

Since [C∗(D) + ω2I][v(x) −H(x)] belongs to the class SKm(R2), it va-
nishes by Corollary 10. Therefore

∥

∥

∥

∥

N(D) + ω2 M(D)
M(D) L(D) + ω2

∥

∥

∥

∥

(

v1 −H1
H2 − v2

)

= 0, x ∈ R2.

Applying again Corollary 10, we have v(x) − H(x) = 0, x ∈ R2. Thus
the vector v(x) has a compact support. But then the same is valid for the
vector u and consequently by analyticity u(x) = 0, x ∈ Ω−.
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7. F. Rellich, Über das asymptotische Verhalten der Lösungen von ∆u+
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