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Λ0-NUCLEAR OPERATORS AND Λ0-NUCLEAR SPACES IN
p-ADIC ANALYSIS

A. K. KATSARAS AND C. PEREZ-GARCIA

Abstract. For a Köthe sequence space, the classes of Λ0-nuclear
spaces and spaces with the Λ0-property are introduced and studied
and the relation between them is investigated. Also, we show that,
for Λ0 6= c0, these classes of spaces are in general different from the
corresponding ones for Λ0 = c0, which have been extensively studied
in the non-archimedean literature (see, for example, [1]–[6]).

Introduction

Throughout this paper K will be a complete non-archimedean valued
field whose valuation | · | is non-trivial, and E,F, . . . will be locally convex
spaces over K. We always assume that E, F, . . . are Hausdorff.

It is well known (see [5]) that a locally convex space E is nuclear if and
only if

(1) For every Banach space F , every continuous linear map (or operator)
from E into F is compact.

Nuclear spaces are closely related to the locally convex spaces E satisfying
the following property:

(2) Every operator from E into c0 is compact (see [5]).
On the other hand, it is well known that if F is a normed space, then an

operator T from E into F is compact if and only if there exist an equicon-
tinuous sequence (fn) in E′, a bounded sequence (yn) in F , and an element
(λn) of c0 such that

T (x) =
∞
∑

n=1

λnfn(x)yn ∀x ∈ E (∗)

(an operator satisfying this condition is called a nuclear operator, see [7]).
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In [7] and [8] the authors studied several properties of operators T which
can be represented as in (*) where (λn) belongs to some Köthe sequence
space Λ0. They are called Λ0-nuclear operators.

Let us introduce for a locally convex space E the following properties:
(1′) For every Banach space F , every operator from E into F is Λ0-

nuclear.
(2′) Every operator from E into c0 is Λ0-nuclear.
In this paper we study property (1′) as related to (2′). We show that if

Λ0 6= c0, the class of spaces satisfying property (1′) (resp. (2′)) is in general
different from the corresponding one for Λ0 = c0.

In the classical case of spaces over the real or complex field, analogous
problems have been studied by several authors (see, for example, [9]–[14]).

§ 1. Preliminaries

Let E be a locally convex space over K. We will denote by cs(E) the
collection of all continuous non-archimedean seminorms on E. For p ∈
cs(E), Ep will be the associated normed space E/ ker p endowed with the
usual norm, and πp : E −→ Ep will be the canonical surjection. E is said to
be of countable type if for every p ∈ cs(E), Ep is a normed space of countable
type (i.e., Ep is the closed linear hull of a countable set). For p ∈ cs(E) and
r > 0, Bp(0, r) will be the set {x ∈ E : p(x) ≤ r}. Also, for each continuous
linear functional f ∈ E′, we define ‖f‖p = sup{|f(x)|/p(x) : x ∈ E, p(x) 6=
0}.

Next, we will recall the definition of a non-archimedean Köthe space
Λ(P ). By a Köthe set we will mean a collection P of sequences α = (αn)
of non-negative real numbers with the following properties:

(1) For each n ∈ N there exists α ∈ P with αn 6= 0.
(2) If α, α′ ∈ P , then there exists β ∈ P with α, α′ � β, where α � β

means that there exists d > 0 such that αn ≤ dβn for all n.
For α ∈ P and a sequence ξ = (ξn) in K, we define pα(ξ) = supn αn|ξn|.

The non-archimedean Köthe sequence space Λ(P ) is the space of all se-
quences ξ in K for which pα(ξ) < ∞ for all α ∈ P . On Λ(P ) we consider
the locally convex topology generated by the family {pα : α ∈ P} of non-
archimedean seminorms. Under this topology Λ(P ) is a complete Hausdorff
locally convex space over K. The set |Λ| = {|x| : x ∈ Λ(P )} is a Köthe
set. By Λ̄ we will denote the Köthe space Λ(|Λ|). Also, by Λ0 = Λ0(P ) we
will denote the closed subspace of Λ(P ) consisting of all ξ = (ξn) for which
αn|ξn| → 0 for each α = (αn) ∈ P . In case P consists of a single constant
sequence (1, 1, . . . ), we have Λ(P ) = `∞ and Λ0(P ) = c0. Also, we give the
following interesting example:

Let B = (bk
n) be an infinite matrix of strictly positive real numbers and

satisfying the conditions bk
n ≤ bk+1

n for all k, n. For each k, let α(k) =
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(bk
1 , bk

2 , . . . ). Then, P = {α(k) : k = 1, 2, . . . } is a Köthe set for which
Λ0(P ) coincides with the Köthe space K(B) = {(λn) : λn ∈ K, ∀n and
limn |λn|bk

n = 0, k = 1, 2, 3, . . . } associated with the matrix B (see [4]).
Also, the topology on Λ0(P ) for this P coincides with the normal topology
on K(B) considered in [4]. This kind of spaces play an important role in p-
adic analysis, since every non-archimedean countably normed Fréchet space
E with a Schauder basis can be identified with K(B), for some infinite
matrix B ([4], Proposition 2.4).

We will say that the Köthe set P is a power set of infinite type if (i): For
each α ∈ P we have 0 < αn ≤ αn+1 for all n, and (ii): For each α ∈ P there
exists β ∈ P with α2 � β. We will say that P is stable if for each α ∈ P
there exists β ∈ P such that supn α2n/βn < ∞ . By [7], Proposition 2.11,
P is stable if and only if Λ(P ) (or Λ0(P )) is stable. (Recall that a locally
convex space E is called stable if E ×E is topologically isomorphic to E.)

Finally, we will recall the concepts of Λ0-compactoid sets and Λ0-nuclear
operators (see [7]). For a bounded subset A of a locally convex space E,
p ∈ cs(E) and a non-negative integer n, the nth Kolmogorov diameter
δn,p(A) of A with respect to p is the infimum of all |µ|, µ ∈ K, for which there
exists a subspace F of E with dim(F ) ≤ n such that A ⊂ F +µBp(0, 1). The
set A is called Λ0-compactoid if for each p ∈ cs(E) there exists ξ = (ξn) ∈ Λ0

such that δn,p(A) ≤ |ξn+1| for all n (or equivalently αnδn−1,p(A) → 0 for
all α ∈ P ). An operator (continuous linear map) T ∈ L(E, F ) between two
locally convex spaces E,F over K is called:

(1) Λ0-nuclear if there exist an equicontinuous sequence (fn) in E′, a
bounded sequence (yn) in F , and an element (λn) of Λ0 such that

Tx =
∞
∑

n=1

λnfn(x)yn ∀x ∈ E;

(2) Λ0-compactoid if there exists a neighborhood V of zero in E such
that T (V ) is Λ0-compactoid in F ;

(3) Λ0-quasinuclear if for each q ∈ cs(F ) there exist a sequence (fn) in
E′, a p ∈ cs(E), and an element (λn) of Λ0 such that ‖fn‖p ≤ |λn| (n ∈ N)
and q(Tx) ≤ supn |fn(x)| for all x ∈ E. (For the ideal structure of these
classes of operators see [7].)

By Theorem 4.4 of [7], every Λ0-nuclear operator is Λ0-compactoid.
Also, every Λ0-compactoid operator is Λ0-quasinuclear. Indeed, if T is Λ0-
compactoid and q ∈ cs(F ), then πq ◦ T : E −→ Fq is also Λ0-compactoid
([7], Proposition 3.21) and so πq ◦T is Λ0-nuclear ([7], Theorem 4.7). Hence,
T is Λ0-quasinuclear.

It follows from Theorem 4.6 of [7] that if F is a normed space, then T is
Λ0-nuclear ⇔ T is Λ0-compactoid ⇔ T is Λ0-quasinuclear.
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In case Λ0 = c0, the concepts of Λ0-compactoid set, Λ0-compactoid op-
erator, and Λ0-nuclear operator coincide with the concepts of a compactoid
set, a compact operator, and a nuclear operator, respectively.

For further information we refer to [15] (for normed spaces) and to [16]
(for locally convex spaces).

From now on in this paper we will assume that the Köthe set P is a
power set of infinite type.

§ 2. Spaces with the Λ0-Property

Locally convex spaces E for which every T ∈ L(E, c0) is compact have
been studied by N. De Grande-De Kimpe in [2] and [3] and more recently
by T. Kiyosawa in [6].

A natural extension of this kind of spaces is given by

Definition 2.1. We say that a locally convex space E has the Λ0-pro-
perty if every T ∈ L(E, c0) is Λ0-nuclear (or, equivalently, Λ0-compactoid).

In this section, we study several properties of spaces with the Λ0-property.
In this way, we extend and complete the results previously obtained by N.
De Grande-De Kimpe and T. Kiyosawa.

Proposition 2.2.
(a) If E has the Λ0-property and M is a subspace of E such that every

T ∈ L(M, c0) has an extension T̄ ∈ L(E, c0) (e.g., when M is dense or
when M is complemented), then M has the Λ0-property.

(b) A locally convex space E has the Λ0-property if and only if its com-
pletion Ê has the Λ0-property.

(c) A quotient of a space E with the Λ0-property also has the same prop-
erty.

(d) If P is stable, then the product of a family of spaces with the Λ0-
property has the same property.

Proof. Property (a) is obvious.
(b): It follows by (a) that if Ê has the Λ0-property, then E has also the

same property.
Conversely, suppose that E has the Λ0-property. Let T ∈ L(Ê, c0) and

let T1 be the restriction of T to E. Since T1 is Λ0-compactoid, there exists
a zero-neighborhood U in E such that T1(U) is Λ0-compactoid in c0. Then
V = Ū Ê is a zero-neighborhood in Ê for which T (V ) is Λ0-compactoid in
c0, and so T is Λ0-compactoid.
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(c): Let M be a closed subspace of E and let S ∈ L(E/M, c0). If
π : E −→ E/M is the quotient map, then T = S ◦ π ∈ L(E, c0) is Λ0-
compactoid. If V is a neighborhood of zero in E such that T (V ) is Λ0-
compactoid in c0, then π(V ) is a neighborhood of zero in E/M for which
S(π(V )) = T (V ) is Λ0-compactoid in c0. Hence S is Λ0-compactoid.

(d): Let E =
∏

i Ei, where each Ei has the Λ0-property, and let T ∈
L(E, c0). Then T is bounded on a neighborhood W of zero in E. This
neighborhood can be taken in the form W =

∏

i Ui, where Ui is a zero-
neighborhood in Ei and the set J = {i ∈ I : Ui 6= Ei} is finite. Clearly,
T vanishes on the subspace

∏

i 6∈J Ei of E and so we may assume that I is
finite, i.e., E = E1 × E2 × . . . × En for some n ∈ N . For j = 1, 2, ..., n, let
πj : Ej −→ E be the canonical inclusion. Since Tj = T ◦ πj ∈ L(Ej , c0) is
Λ0-compactoid, there exists a zero-neighborhood Vj in Ej such that Tj(Vj)
is Λ0-compactoid in c0. Then, V = V1×V2×· · ·×Vn is a zero neighborhood
in E for which T (V ) = T1(V1) + . . . + Tn(Vn) is Λ0-compactoid in c0 ([7],
Proposition 3.14). Thus T is Λ0-compactoid.

Now, we fix some notation which we will use in the sequel. For each n ∈
N , there are unique k, m ∈ N such that n = (2m− 1)2k−1. In the following
lemma π1, π2 : N −→ N will be defined by π1(n) = k and π2(n) = m when
n = (2m− 1)2k−1.

Lemma 2.3. Suppose that P is countable and stable and, for each k ∈
N , let ξk = (ξk

n)n ∈ Λ0. Then there exists a sequence (λk)k of non-zero
elements of K such that (λπ1(n)ξ

π1(n)
π2(n))n ∈ Λ0.

Proof. We may assume that P = (α(k))k∈N , where α(k) ≤ α(k+1) for all
k. Since P is stable, we may also assume that for each k ∈ N there exists
0 < dk < ∞ with dk ≤ dk+1 such that supm α(k)

2k.m/α(k+1)
m ≤ dk. Choose

λk ∈ K, 0 < |λk| ≤ 1 such that pα(k+1)(λkξk) ≤ k−1d−1
k (k ∈ N). We claim

that the sequence (λk)k satisfies the requirements.
Indeed, let r ∈ N and let ε > 0 be given. Choose k0 > max{r, 1/ε}. Also,

choose ηk
n ∈ K with |ηk

n| = maxm≥n |ξk
m| (k, n ∈ N). Then, ηk = (ηk

n)n ∈ Λ0

for all k ∈ N and so there exists m0 ∈ N such that dk0α
(k0)
m |ηk

m| < ε for all
m ≥ m0 and all k ≤ k0. Let n > m02k0 . If k = π1(n) < r, then k < k0 and
hence m > m0. Thus, for k = π1(n) < r, we have

α(r)
n |λπ1(n)ξ

π1(n)
π2(n) | ≤ α(r)

n |ηk
m| ≤ α(r)

m2r |ηk
m| ≤ dk0α

(k0)
m |ηk

m| < ε.

For r ≤ k = π1(n) < k0, we have

α(r)
n ≤ α(k)

m2k ≤ dkα(k+1)
m ≤ dk0α

(k0)
m
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and, since m > m0 we obtain that

α(r)
n |λkξk

m| ≤ dk0α
(k0)
m |ξk

m| < ε.

Analogously, we can prove that if π1(n) = k ≥ k0 > r, then we have
α(r)

n |λkξk
m| < ε.

Hence, for n > m0.2k0 , we obtain α(r)
n |λπ1(n)ξ

π1(n)
π2(n) | < ε, which clearly

completes the proof.

Theorem 2.4. Let P be countable and stable. Then the locally convex
direct sum and the inductive limit of a sequence of spaces with the Λ0-
property have also the same property.

Proof. Let E =
⊕∞

k=1 Ek, where each Ek has the Λ0-property and let T ∈
L(E, c0). If Ik : Ek −→ E is the canonical inclusion, then T ◦Ik ∈ L(Ek, c0)
is Λ0-nuclear (k ∈ N). Therefore, for each k, there exist ξk = (ξk

m)m ∈ Λ0,
a sequence (yk

m)m in the unit ball of c0, and an equicontinuous sequence
(hk

m)m in E′
k such that

(T ◦ Ik)(y) =
∞
∑

m=1

ξk
mhk

m(y)yk
m (y ∈ Ek).

For each k ∈ N let qk ∈ cs(Ek) with |hk
m| ≤ qk for all m. Also, let

π1, π2 and (λk)k be as in Lemma 2.3. Then q(x) = maxk |λk|−1qk(xk)
(x = (xk)k ∈ E) defines a continuous seminorm on E. For each pair (m, k)
of positive integers, the function gk

m : E −→ K, x −→ λ−1
k hk

m(xk) is a
continuous linear map on E such that |gk

m| ≤ q for all k, m. Also, for each
x = (xk)k =

∑∞
k=1 Ik(xk) ∈ E we have

Tx =
∞
∑

k=1

∞
∑

m=1

λkξk
mgk

m(x)yk
m.

For n = (2m− 1)2k−1, set fn = gk
m ∈ E′, zn = yk

m ∈ c0, ξn = λkξk
m ∈ K.

By Lemma 2.3 (ξn)n ∈ Λ0. Further, Tx =
∑∞

n=1 ξnfn(x)zn for all x ∈ E,
and so T is Λ0-nuclear.

Finally, we observe that the inductive limit of a sequence of spaces is
linearly homeomorphic to a quotient of the corresponding direct sum.

Remark. A subspace of a space with the Λ0-property need not have
in general the same property. Indeed, let Λ0 = c0 and suppose that the
valuation on K is dense. Then, `∞ has the Λ0-property ([15], Corollary
5.19) but, clearly, c0 does not have the same property.

Examples.
1. As we will see in the next section, every Λ0-nuclear space has the

Λ0-property.
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2. If Λ0 = c0 and the valuation on K is dense, then `∞ has the Λ0-
property.

3. If P is countable and K is not spherically complete, then Λ̄ has the
Λ0-property ([8], Corollary 4.6).

4. If E is an infinite-dimensional Banach space with a basis, then E does
not have the Λ0-property. Indeed, E contains a complemented subspace
linearly homeomorphic to c0 ([15], Corollary 3.18).

For a locally convex space E over K, we will denote by Λ0{E′} the family
of all sequences (gn) in E′ for which there exist p ∈ cs(E) and (λn) ∈ Λ0
such that ‖gn‖p ≤ |λn| for all n. For a sequence w = (gn) ∈ Λ0{E′}, we
define a continuous non-archimedean seminorm pw on E by

pw(x) = sup
n
|gn(x)| (x ∈ E).

The next Theorem gives several descriptions of spaces with the Λ0-
property.

Theorem 2.5. For a locally convex space E, the following properties are
equivalent:

(i) E has the Λ0-property.
(ii) For every T ∈ L(E, c0) there exist T1 ∈ L(E, Λ0), which is Λ0-

nuclear, and T2 ∈ L(Λ0, c0) such that T = T2 ◦ T1.
(iii) If F is a locally convex space of countable type, then every T ∈

L(E, F ) is Λ0-quasinuclear.
(iv) If F is a normed space and T ∈ L(E, F ), then T is Λ0-nuclear if

and only if its range, R(T), is of countable type.
(v) Let (Tn) be an equicontinuous sequence of operators from E into a

normed space F such that R(Tn) is of countable type for all n and such that
(Tn) converges pointwise to a T ∈ L(E, F ). Then T is Λ0-nuclear.

(vi) For every equicontinuous sequence (fn) in E′, which converges point-
wise to zero, there exists w ∈ Λ0{E′} such that ‖fn‖pw ≤ 1 for all n.

(vii) For every equicontinuous sequence (fn) in E′, which converges point-
wise to zero, there exist (gn) ∈ Λ0{E′}, α ∈ P , d > 0, and an infinite matrix
(ξik) of elements of K, with limn→∞ ξin = 0 for all i and |ξin| < dαi for all
n, such that

fn(x) =
∞
∑

i=1

gi(x)ξin (x ∈ E).

If, in addition, P is stable, then properties (i) → (vii) are equivalent to:
(viii) The topology of uniform convergence on the members of Λ0{E′}

coincides with the topology τ0 of countable type which is associated with the
topology of E (see [17]).
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Proof. For the equivalence of (i) and (ii) see the proof of Theorem 4.6 in
[7].

(i) ⇒ (iii): Let F be a locally convex space of countable type. For every
p ∈ cs(F ), the associated normed space Fp is of countable type and so Fp

is linearly homeomorphic to a subspace of c0. Hence πp ◦ T : E −→ Fp is
Λ0-nuclear ([7], Theorem 4.11). Thus T is Λ0-quasinuclear.

(iii) ⇒ (iv): Observe that, since Λ0 ⊂ c0, we have that every Λ0-nuclear
operator is also nuclear, and hence its range is of countable type.

(iv)⇒ (v): Let (Tn) and T be as in (v). Since every R(Tn) is of countable
type, the closed linear hull Z of

⋃

n R(Tn) is of countable type. Also, since
Tx ∈ Z for all x ∈ E, (iv) implies that T is Λ0-nuclear.

(i) ⇔ (vi): From Theorem 4.6 of [7] it follows that a map T ∈ L(E, c0) is
Λ0-nuclear if and only if there exists w ∈ Λ0{E′} such that ‖Tx‖ ≤ pw(x)
for all x ∈ E. Now, apply Lemma 2.2 of [3] to get the conclusion.

(ii) ⇔ (vii): By Lemma 2.2 of [3] it follows that a linear map T from
Λ0 into c0 is continuous if and only if there exist an infinite matrix (ξij)
of elements of K, an α ∈ P and d > 0 such that |ξij | ≤ dαi for all i, j,
limj→∞ ξij = 0 for all i and Tx = (

∑∞
i=1 xiξij)j for all x = (xi) ∈ Λ0. Also,

by Theorem 3.3 of [8], it follows that a linear map S ∈ L(E, Λ0) is Λ0-
nuclear if and only if there exists (gn) ∈ Λ0{E′} such that Tx = (gn(x))n

for all x ∈ E. Now, the conclusion follows again by Lemma 2.2 of [3].
Finally, suppose that P is stable.
(vi) ⇔ (viii): We first observe that, since P is stable, the family of

seminorms {pw : w ∈ Λ0{E′}} is upwards directed. Also, we know that τ0

is the topology of uniform convergence on the equicontinuous sequences in
E′ which converge pointwise to zero. Now, the result follows.

Remark. If a locally convex space E has the Λ0-property, then every
T ∈ L(E, c0) is compact, since Λ0 ⊂ c0. But the converse is not true in
general.

Example. Suppose that the valuation on K is dense. It is well known
that every T ∈ L(`∞, c0) is compact. However, if Λ0 6= c0, there are opera-
tors from `∞ to c0 which are not Λ0-nuclear ([8], Corollary 3.7).

§ 3. Λ0-Nuclear Spaces

Nuclear spaces have been extensively studied in the non-archimedean
literature (see, for example, [5] for a collection of the basic properties of
these spaces). A natural extension of this kind of spaces is the following:

Definition 3.1. A locally convex space E is called Λ0-nuclear if for each
p ∈ cs(E) there exists q ∈ cs(E), p ≤ q, such that the canonical map
Φpq : Eq −→ Ep is Λ0-nuclear (or, equivalently, Λ0-compactoid).
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In this section we study the relationship between the Λ0-nuclear spaces
and the spaces with the Λ0-property considered in the previous section. We
first need some preliminary machinery.

Let m ∈ N and let ξ(1), . . . , ξ(m) be m elements of Λ0. For j = (n −
1)m + k, where 1 ≤ k ≤ m, set ξj = ξ(k)

n . If P is stable, then ξ = (ξj) ∈ Λ0
(we will denote ξ by ξ(1) ∗ ξ(2) ∗ . . . ξ(m)).

Indeed, let α ∈ P and let m1 ∈ N be such that m ≤ 2m1 . Since P is
stable, there exist β ∈ P and d > 0 such that αn.2m1 /βn ≤ d for all n.
Given ε > 0, there exists n0 ∈ N such that dβn|ξ(k)

n | < ε for k = 1, . . . , m
and n ≥ n0. If j ≥ n0m and j = (n− 1)m + k, then n ≥ n0 and so

αj |ξj | ≤ αnm|ξj | ≤ αn.2m1 |ξj | ≤ dβn|ξ(k)
n | < ε.

Lemma 3.2. Let P be stable. Then, for each positive integer m, the
function Ψm : Λm

0 −→ Λ0, Ψm(ξ(1), . . . , ξ(m)) = ξ(1) ∗ . . . ∗ ξ(m) is a linear
homeomorphism from Λm

0 onto Λ0.

Proof. It is easy to see that Ψm is a bijection. To prove the continuity
of Ψm, recall that, given α ∈ P , there exist β ∈ P and d > 0 such that
αnm ≤ dβn for all n, and so, pα(Ψm(ξ)) ≤ dmax1≤k≤m pβ(ξ(k)) for all
ξ = (ξ(1), . . . , ξ(m)) ∈ Λm

0 which proves that Ψm is continuous.
Also, Ψ−1

m is continuous. In fact, for ξ = (ξn) ∈ Λ0 we have Ψ−1
m (ξ) =

(ξ(1), . . . , ξ(m)), where ξ(k) = (ξk, ξm+k, ξ2m+k, . . . ) (k = 1, . . . , m). Also,
for each α ∈ P we get pα(ξ) ≥ max1≤k≤m pα(ξ(k)), and the result fol-
lows.

Proposition 3.3. For a locally convex space E consider the following
properties:

(i) For every Banach space F and for every T ∈ L(E, F ), there are
T1 ∈ L(E, Λ0) and T2 ∈ L(Λ0, F ) such that T = T2 ◦ T1.

(ii) E is of countable type and for every T ∈ L(E, c0) there exist T1 ∈
L(E, Λ0) and T2 ∈ L(Λ0, c0) such that T = T2 ◦ T1.

(iii) If {pi : i ∈ I} is a generating family of continuous seminorms on E,
then E is linearly homeomorphic to a subspace of the product space ΛI

0.
(iv) E is linearly homeomorphic to a subspace of ΛJ

0 for some set J .
Then, (i) ⇔ (ii) ⇒ (iii) ⇒ (iv).
If, in addition, P is stable, then properties (i) → (iv) are equivalent.

Proof. The implication (i) ⇒ (iii) can be proved analogously to (1) ⇒ (2)
in Proposition 3.7 of [18].

(i) ⇒ (ii): Since (i) implies (iii) and since Λ0 is of countable type, we
derive that E is also of countable type ([16], Proposition 4.12).

(ii) ⇒ (i): Let F be a Banach space and let T ∈ L(E, F ).
First, assume that the range, R(T ), is finite-dimensional. Then, there

exists a linear homeomorphism h from R(T ) onto a closed subspace M of



36 A. K. KATSARAS AND C. PEREZ-GARCIA

Λ0. On the other hand, since the dual of Λ0 separates the points, there
exists a continuous linear projection Q from Λ0 onto M . Hence T = T2 ◦T1,
where T1 = h ◦ T ∈ L(E, Λ0) and T2 = h−1 ◦Q ∈ L(Λ0, F ).

Now, assume that R(T ) is infinite-dimensional. Since E is of countable
type, the closure of R(T ) is an infinite-dimensional Banach space of count-
able type and so it is linearly homeomorphic to c0. Now, the conclusion
follows by (ii).

Now, assume that P is stable. Then, the implication (iv) ⇒ (i) can be
proved by using Lemma 3.2 in a similar way as (3) ⇒ (1) in Proposition 3.7
of [18].

As in Theorems 3.2 and 3.4 of [18] we obtain the following

Proposition 3.4. For a locally convex space E, consider the following
properties:

(i) E is Λ0-nuclear.
(ii) For every locally convex space F , every T ∈ L(E,F ) is Λ0-quasinu-

clear.
(iii) For every Banach space F , every T ∈ L(E,F ) is Λ0-nuclear.
(iv) For every p ∈ cs(E) there exists w ∈ Λ0{E′} such that p ≤ pw.
(v) The topology of E coincides with the topology of uniform convergence

on the members of Λ0{E′}.
Then (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) ⇒ (v).
If, in addition, P is stable, then properties (i) → (v) are equivalent.

It is well known (see, for example, [5], Proposition 5.4) that a locally
convex space E is nuclear if and only if E is of countable type and every
T ∈ L(E, c0) is compact. Now, using Propositions 3.3 and 3.4 we get the
following descriptions of Λ0-nuclear spaces.

Theorem 3.5. For a locally convex space E, consider the following prop-
erties:

(i) E is Λ0-nuclear.
(ii) For every Banach space F and every T ∈ L(E,F ), there exists T1 ∈

L(E, Λ0) Λ0-nuclear and T2 ∈ L(Λ0, F ) such that T = T2 ◦ T1.
(iii) E has the Λ0-property and it is linearly homeomorphic to a subspace

of ΛI
0 for some set I.

(iv) E is of countable type and has the Λ0-property.
(v) E is linearly homeomorphic to a subspace of some product ΛI

0 and
every T ∈ L(E, Λ0) is Λ0-quasinuclear.

Then (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) ⇒ (v).
If, in addition, P is stable, then properties (i) → (v) are equivalent.
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Proof. By using Proposition 3.4, the implication (i) ⇒ (ii) can be proved
as in Theorem 4.6 of [7].

(ii) ⇒ (iii): It follows from Proposition 4.5 of [7] and Proposition 3.3.
(iii) ⇒ (iv): It is obvious (recall that Λ0 is of countable type).
(iv) ⇒ (i): Let F be a Banach space and let T ∈ L(E, F ). Since E

is of countable type, we have that the closure of R(T ) is a Banach space
of countable type, and so it is linearly homeomorphic to a subspace of c0.
By (iv) and Theorem 4.11 of [7] we derive that T is Λ0-nuclear. Now, the
conclusion follows by Proposition 3.4.(i) ⇔ (iii).

(iii) ⇒ (v): It is a direct consequence of Theorem 2.5.(i) ⇒(iii).
Finally, if P is stable, the implication (v) ⇒ (iii) follows from Proposition

4.5 of [7] and our Proposition 3.3.

Putting together Proposition 2.2, Theorems 2.4, 3.5 and the stability
properties of spaces of countable type ([16], Proposition 4.12), we obtain
the following extension of 5.7 of [5] and Proposition 3.5 of [19].

Corollary 3.6.
(a) Every subspace of a Λ0-nuclear space is again Λ0-nuclear.
(b) A locally convex space E is Λ0-nuclear if and only if its completion

Ê is Λ0-nuclear.
(c) A quotient of a Λ0-nuclear space is also Λ0-nuclear.
(d) If P is stable, then the product of a family of Λ0-nuclear spaces is

also Λ0-nuclear.
(e) If P is countable and stable, then the locally convex direct sum and

the inductive limit of a sequence of Λ0-nuclear spaces are also Λ0-nuclear.

§ 4. Some Remarks and Examples

It is well known that if E is a nuclear space, then every bounded subset of
E is compactoid. The corresponding counterpart is also true for Λ0-nuclear
spaces.

Proposition 4.1. Each bounded subset of a Λ0-nuclear space E, is Λ0-
compactoid.

Proof. Let B be a bounded set of E and let p ∈ cs(E). Since πp : E −→ Ep

is Λ0-compactoid (Proposition 3.5), we have that πp(B) is Λ0-compactoid in
Ep. By [7], Proposition 3.10, we derive that B is Λ0-compactoid in E.

Remark. The converse of Proposition 4.1 is not true in general. For an
example see [20].

Now, we will give some examples of spaces which are, or are not, Λ0-
nuclear.
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By Proposition 3.4 and with an argument analogous to the one used in
the proof of Theorem 5.2 in [18], we can obtain the following result which
will be crucial for our purpose.

Theorem 4.2. Let Q be a Köthe set (not necessarily of infinite type).
Then the following properties are equivalent:

(i) Λ(Q) is Λ0(P )-nuclear.
(ii) Λ0(Q) is Λ0(P )-nuclear.
(iii) For each α ∈ Q there exist β ∈ Q with α � β, a permutation σ on

N , and (λn) ∈ Λ0(P ) such that ασ(n) ≤ |λn|βσ(n) for all n ∈ N .

As a direct consequence we derive the following assertion (cf. [4], Propo-
sition 3.5).

Corollary 4.3. Let K(B) be the Köthe space associated to an infinite
matrix B = (bk

n). Then K(B) is Λ0-nuclear if and only if for every k there
exist k1 > k, a permutation σ on N , and (λn) ∈ Λ0 such that bk

σ(n)/bk1
σ(n) ≤

|λn| for all n.

Remark. The criterion in 4.3 can be used to decide easily whether a
non-archimedean countably normed Fréchet space with a Schauder basis is
Λ0-nuclear (recall that a such space can be identified with some K(B)).

Observe that since Λ0 ⊂ c0, every Λ0-nuclear space is nuclear. But the
converse is not true in general. Indeed, we know (see [7], Lemma 2.3) that Λ
(or Λ0) is nuclear if and only if there exists α ∈ P with αn →∞ . However,
we have the following

Proposition 4.4. None of the spaces Λ and Λ0 is Λ0-nuclear.

Proof. Suppose that one of the spaces Λ or Λ0 is Λ0-nuclear. By Theorem
4.2, given α ∈ P , there exist β ∈ P with α � β, a permutation σ on N ,
and (λn) ∈ Λ0 such that ασ(n) ≤ |λn|βσ(n) for all n. It is easy to see that
the set N1 = {n ∈ N : n ≥ σ(n)} is infinite. For n ∈ N1 we have

α1 ≤ ασ(n) ≤ |λn|βσ(n) ≤ |λn|βn.

This contradicts the fact that (λn) ∈ Λ0.

Observe that every Λ0-nuclear space has the Λ0-property (Theorem 3.5).
But the converse is not true in general. Indeed, if P is countable and K is
not spherically complete, then Λ̄ has the Λ0-property (see the examples in
Section 2). However, with regard to the Λ0-nuclearity of Λ̄, we have

Proposition 4.5. Λ̄ is Λ0-nuclear if and only if Λ = Λ0.
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Proof. Assume that Λ = Λ0. Let ξ = (ξn) ∈ Λ and let λ ∈ K with |λ| > 1.
For each n ∈ N , choose λn ∈ K with |λn| ≤

√

|ξn| ≤ |λλn|. Then (λn) ∈ Λ0

and |ξn| ≤ |λn|.|λ2λn| for all n. By Theorem 4.2 we conclude that Λ̄ is Λ0-
nuclear.

Conversely, assume that Λ̄ is Λ0-nuclear and let ξ ∈ Λ. By Theorem
4.2, there exist y ∈ Λ, a permutation σ on N , and (λn) ∈ Λ0 such that
|ξσ(n)| ≤ |λnyσ(n)| for all n. Since λn → 0, given ε > 0 and α ∈ P , there
exits m ∈ N such that |λn|pα(y) < ε if n ≥ m. Then, for n ≥ m we have

ασ(n)|ξσ(n)| ≤ |λn|ασ(n)|yσ(n)| ≤ |λn|pα(y) < ε.

Hence, ξ ∈ Λ0.
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