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THE UNIFORM NORMING OF RETRACTIONS ON
SHORT INTERVALS FOR CERTAIN FUNCTION SPACES

G. A. KALYABIN

Abstract. For Lizorkin–Triebel spaces the family of extension oper-
ators is constructed which yield a minimal (in order) value of the norm
among all possible extensions of a given function defined initially on
the interval of an arbitrary small length.

The techniques used restrict us to the one-dimensional case and
spaces defined via differences of first order.

§ 1. Definitions and Formulation of the Main Result

Let 1 < p, q < ∞, EN,p stand for the set of all entire analytic functions
with the Fourier transform supported in [−N, N ] belonging to Lp(R1) (see
[1], 1.4); {βk}, {Nk}, k ∈ {1, 2, . . . } be two sequences of positive numbers
such that

Nk+1 ≥ λNk, λ1βk ≤ βk+1 ≤ λ2βk, λ > 1, λ2 ≥ λ1 > 1. (1)

The space L(β,N)
p,q of Lizorkin–Triebel type consists, by the definition [2],

of all functions f(x) ∈ Lp(R1) which can be represented as the sum of the
series

f(x) =
∑

fk(x); fk ∈ ENk,p, ‖{βkfk(x)}‖Lp(lq) < ∞, (2)

and the norm in L(β,N)
p,q is defined as the infimum of the last expression in

(2). If βk = 2kr, Nk = 2k then one has usual (power-scaled) spaces Lr
p,q

(see [1], 2.3, 2.5).
The function g(x) given on the interval (0, b), b > 0, belongs to the

retraction space L(β,N)
p,q (0, b) if there exists a function f(x) ∈ L(β,N)

p,q which
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coincides with g(x) on (0, b) and the corresponding norm is defined in the
usual way as

A1(g) = inf
{

‖f‖L(β,N)
p,q

: f(x) = g(x), 0 < x < b
}

. (3)

Our aim is to obtain explicit (constructive) quantities equivalent to (3)
in terms of internal properties of the original function g(x), x ∈ (0, b). Let
us, for t ∈ R, denote by ∆tg(x) the difference g(x + h) − g(x) provided
that both points x, x + h belong to (0, b) (otherwise, put ∆hg(x) = 0 ).
Introduce the averaged local oscillation (of first order) defined for h > 0 by
the formula

Ωh(g, x) :=

1
∫

−1

|∆htg(x)| dt. (4)

It is clear from the definition that

Ωh(g, x) ≥ 0; Ωh(g, x) = 0, x /∈ (0, b),
Ωh(g, x) = (b/h) Ωb(g, x), h ≥ b.

(5)

The behavior of the determining sequences {βk}, {Nk} will be reflected by
the specific function first studied in [3]

γ(b) =
(

∑

k

(βk(N−1
k + b)1/p)−p′

)−p/p′

(1/p + 1/p′ = 1). (6)

The series in (6) converges for all b > 0 and the function γ(b) increases
whereas γ(b)/b decreases. It is easy to calculate that for the spaces Lr

p,q
and 0 < b < 1 the function γ(b) is equivalent to b1−pr if 0 < r < 1/p;
(log 2/b)1−p if r = 1/p, 1 if r > 1/p.

Theorem. Let in (1) λ > λ2 (this implies r < 1 for power-scaled spaces).
The quantity A1(g) is equivalent to

A2(g) =
γ(b)1/p

b

∣

∣

∣

∣

b
∫

0

g(x)dx
∣

∣

∣

∣

+ ‖{βkΩN−1
k

(g, x)}‖Lp(lq,(0,b)) (7)

and the ratio of these two quantities is bilaterally bounded for b > 0. The
same remains valid if one changes the order of integration and takes the
modulus of g(x) in the first summand in (7).
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§ 2. Auxilary Assertions

First we shall show that the theorem is a consequence of the following
lemmas.

Lemma 1. Let a positive integer l be chosen so that λl > λ2 and let Cl

stand for the class of all functions f(x), −∞ < x < ∞, having the derivative
f (l−1)(x) which is absolutely continuous on any finite interval. The norm
in the space L(β,N)

p,q (see (1)) is equivalent to the following two quantities:

‖f‖(2)
L(β,N)

p,q
:= inf

{

∥

∥

∥

{

βk

l
∑

s=0

N−s
k |f (s)

k (x)|}‖Lp(lq,R) :

fk(x) ∈ Cl, f(x) =
∑

fk(x)
}

, (8)

‖f‖(3)
L(β,N)

p,q
:=‖f‖p + ‖{βkΩN−1

k
(f, x)}.‖Lp(lq;R) (9)

These equivalences have been established in [3], [4] (see also [2]).

Lemma 2. For any b > 0 and any function f ∈ L(β,N)
p,q the inequality

γ(b)1/p

b

b
∫

0

|f(x)|dx ≤ c1 ‖f‖L(β,N)
p,q

(10)

holds, and there exists a function fb(x) ∈ L(β,N)
p,q such that

fb(x) = 1, ∀x ∈ (0, b); ‖fb‖L(β,N)
p,q

≤ c2γ(b)1/p, (11)

where γ(b) is defined in (3) and c1 > 0, c2 > 0 do not depend on b.

These estimates have been established in [5] (see also [2], Theorem 5.4).

Lemma 3. If λ > λ2 and
∫ b
0 g(x)dx = 0 then there exists a function

f(x), x ∈ R such that f(x) = g(x) for all x ∈ (0, b) and the estimate

‖f‖L(β,N)
p,q

≤ c0‖{βkΩN−1
k

(g, x)}‖Lp(lq;(0,b)) (12)

holds, where the constant c0 depends neither on g nor on b.

This lemma is the central part of our discussion; its proof is given in the
next section.

Now let us suppose that this assertion has already been proved. Consider
an arbitrary function g(x) defined on (0, b), which we shall represent as

g(x) = B + g1(x); B :=
1
b

b
∫

0

g(x)dx; g1(x) := g(x)−B. (13)
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By construction,
∫ b
0 g1(x)dx = 0 and from Lemma 3 implies (see (9)) that

there exists f1(x) such that f1(x) = g1(x), x ∈ (0, b) and

‖f1‖L(β,N)
p,q

≤ c0‖{βkΩN−1
k

(g1, x)}‖Lp(lq ;(0,b)) =

= c0‖{βkΩN−1
k

(g, x)}‖Lp(lq ;(0,b)) (14)

because one has identically ∆hg1(x) = ∆hg(x).
On the other hand, according to (8) there exists f2(x) which equals B

on (0, b) such that

‖f2‖L(β,N)
p,q

≤ c|B|γ1/p(b). (15)

Then for f(x) = f1(x) + f2(x) one has the estimate

‖f‖L(β,N)
p,q

≤ c
(

|B|γ1/p(b) + ‖{βkΩN−1
k

(g, x)}‖Lp(lq;(0,b))
)

(16)

and because f(x) = g(x), ∀x ∈ (0, b) we conclude that A1(g) ≤ cA2(g).
Conversely, let us take arbitrary ϕ(x) ∈ L(β,N)

p,q which coincides with g(x),
0 < x < b. According to Lemma 2 one has

‖{βkΩN−1
k

(g, x)}‖Lp(lq;(0,b)) ≤

≤ ‖{βkΩN−1
k

(ϕ, x)}‖Lp(lq ;R) ≤ c‖ϕ(x)‖L(β,N)
p,q

. (17)

From Lemma 3 it follows that

γ(b)1/p

b

b
∫

0

|g(x)|dx ≤ c2‖ϕ‖L(β,N)
p,q

(18)

and by combining these two inequalities we come finally to the estimates

A1(g) ≥ ‖ϕ(x)‖L(β,N)
p,q

≥ c0A2(g) (19)

which in connection with the inverse estimate yield A1(g) � A2(g).

§ 3. Proof of Lemma 3

Step 1. Let us introduce a function

ρ : R1 → [0, b]; x → ρ(x) := min { |x− 2mb| : m ∈ Z }, (20)

i.e., ρ(x) denotes the minimal distance between the point x ∈ R1 and the
points of the mesh {2mb}, m ∈ Z. Now consider a function G(x) := g(ρ(x))
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which extends g(x) onto the whole axis. By construction, it immediately
follows that

G(−x) ≡ G(x); G(x + 2b) ≡ G(x),
x+2b
∫

x

G(y) dy = 2

b
∫

0

g(y) dy = 0 , ∀x ∈ R1. (21)

Here we have used the assumption that the total integral of g(x) over the
interval (0, b) equals zero. Moreover (which is the most important), by (21)
and (4) we have

Ωh(G, x) ≤ 2Ωh(g, ρ(x)) (22)

for any x ∈ R1 and 0 < h ≤ b.
Step 2. Choose a kernel function Φ(x) such that

Φ(x) ∈ C∞0 , suppΦ ⊂ (−1, 1),
∫

Φ(x) dx = 1. (23)

Here and in the sequel the integration without indication of the lower and
upper limits extend onto the whole axis.

Introduce the family of averaged functions

G(x, h) :=
∫

Φ(t)G(x + ht) dt = h−1
∫

Φ((y − x)/h) G(y) dy. (24)

Using (23) and (4) we obtain the estimate

|G(x, h)−G(x)| = |
∫

Φ(t) (G(x + ht)−G(x)) dt| ≤ c0Ωh(G, x) (25)

and thus G(x, h) → G(x), h → +0 for almost all x.
Similarily for the derivatives of these function we have

|G′x(x, h)| = h−2|
∫

Φ1((y − x)/h) G(y) dy | =

= h−1|
∫

Φ1(t) (G(x + ht)−G(x)) dt | ≤ c0h−1Ωh(G, x). (26)

Here we have used the notation Φ1(t) = −(dΦ(t)/ dt), taking into account
that the integral over the whole axis of the function Φ1(t) equals 0.

Step 3. Denote by m = mb the greatest k for which N−1
k ≥ b so that

N−1
m ≥ b, N−1

m+1 < b. In case N−1
1 < b (this would only mean that the

interval (0, b) is not “small”) we put simply m = 0. Denote by Ñk the
numbers Nk, k > m, Ñm := b−1.
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Introduce the sequence of functions

Gk(x) ≡ 0, k < m, Gm(x) := G(x, b),

Gk(x) := G(x, Ñ−1
k )−G(x, Ñ−1

k−1), k > m.
(27)

(Please note the difference between the cases k = m and k > m!) These
functions belong to C∞, are 2b− periodic, and their integrals over any
interval of the length 2b equal zero. Therefore (recall that we deal with
the real-valued functions) on the interval (−2b, 0) there exist points xk such
that Gk(xk) = 0, k ≥ m.

For the functions Gk(x) it follows from (25),(26) that

Ñ−1
k |G′k(x)|+ |Gk(x)| ≤ c0(ΩÑ−1

k
(G, x) + ΩÑ−1

k−1
(G, x)), k > m;

b|G′m(x)| ≤ c0Ωb(G, x).
(28)

As for the function Gm(x) we shall use the fact that Gm(xm) = 0 at some
point xm ∈ (−2b, 0). This implies that for any x ∈ (−2b, 4b)

|Gm(x)| =
∣

∣

∣

∣

x
∫

xk

G′m(y) dy
∣

∣

∣

∣

≤ c0b−1

4b
∫

−2b

Ωb(G, y) dy (29)

and consequently

‖Gm(x)‖Lp(−2b,4b) ≤ c0‖Ωb(G, x)‖Lp(−2b,4b). (30)

Note that only now we need the condition that the integral of g(x) is zero.

Step 4. Let us consider the sequence of functions defined on the whole
axis

fk(x) := Gk(x), x ∈ (xk, xk + 4b);

fk(x) := 0, x ≤ xk or x ≥ xk + 4b.
(31)

These functions are absolutely continuous because Gk(xk) = 0, they coin-
cide with Gk(x) for 0 ≤ x ≤ b because [0, b] ⊂ (xk, xk + 4b), and for all x
except two points xk and xk + 4b the estimates

|fk(x)| ≤ |Gk(x)|, |f ′k(x)| ≤ |G′k(x)| (32)

hold (except two points xk and xk + 4b where the derivativesf ′k(x) may not
exist). Therefore from (27) it follows that

N−1
k |f ′k(x)|+ |fk(x)| ≤ c0(ΩN−1

k
(G, x) + ΩÑ−1

k−1
(G, x)) (33)
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for k < m and x ∈ (−2b, 4b). By construction, the left-hand side equals 0
outside (−2b, 4b). Thus, taking also into account estimate (22), we obtain

∥

∥

∥

(
∑

k>m

(βk(N−1
k |f ′k(x)|+ |fk(x)|))q

)1/q∥
∥

∥

Lp(R1)
≤

≤ c0

∥

∥

∥

(
∑

k>m

(βk(ΩN−1
k

(G, x) + ΩÑ−1
k−1

(G, x)))q
)1/q∥

∥

∥

Lp(−2b,4b)
≤

≤ c0

(

∥

∥

∥

(
∑

k>m

(βk(ΩN−1
k

(g, x))q
)1/q∥

∥

∥

Lp(0,b)
+βm‖Ωb(g, x)‖Lp(0,b)

)

. (34)

As for the case k = m, we have from estimates (28) (the second part),
(30), and (5)

N−1
m ‖f ′m(x)‖Lp(R1) +

+‖fm(x)‖Lp(R1) ≤ c0(Nmb)−1‖Ωb(G, x)‖Lp(−2b,4b) ≤
≤ c0(Nmb)−1‖Ωb(g, x)‖Lp(0,b) = c0‖ΩN−1

m
(g, x)‖Lp(0,b). (35)

By combining (34), (35), and (27), we come to the conclusion that

‖{βk(|fk(x)|+ N−1
k |f ′k(x)|)}‖Lp(lq,R1) ≤

≤ c0‖{βkΩN−1
k

(g, x)}‖Lp(lq,(0,b)). (36)

According to Lemma 1 this implies that the function

f(x) =
∞
∑

k=1

fk(x) (convergence in Lp) (37)

which, by construction (see (25), (27), (31)), coincides with g(x) on (0, b),
belongs to the space L(β,N)

p,q and estimate (12) holds.
This completes the proof of Lemma 3 and thus of the theorem.

Remark 1. The extension operator constructed in the proof of Lemma 3
uses the zeros of functions Gk(x) and is thus nonlinear. The author’s con-
jecture is that the linear operator must exist and the result of the theorem
remains valid also for differences of higher order (the number l having been
chosen as in Lemma 1).
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