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NONCONVEX DIFFERENTIAL INCLUSIONS WITH
NONLINEAR MONOTONE BOUNDARY CONDITIONS

S. A. BRYKALOV

Abstract. Existence results for problems with monotone nonlinear
boundary conditions obtained in the previous publications by the au-
thor for functional differential equations are transferred to the case of
nonconvex differential inclusions with the help of the selection theo-
rem due to A. Bressan and G. Colombo.

The existence of solutions of boundary value problems for differential in-
clusions with possibly nonconvex right-hand sides was studied in [1–6]. The
technique of continuous selections of multifunctions with decomposable val-
ues is helpful in these investigations. In particular, this technique allows us
to establish a connection between the considered differential inclusion and
a functional differential equation. Below we use this connection to transfer
some assertions, previously proved by the author for functional differen-
tial equations [7–9], to the case of differential inclusions. Thus we obtain
solvability results for problems for lower semicontinuous differential inclu-
sions with nonlinear monotone boundary conditions. We essentially employ
the selection theorem for multifunctions with decomposable values due to
Bressan and Colombo [10]. A systematic account of different aspects of the
theory of differential inclusions and the corresponding bibliography can be
found in [11–13]. For results on boundary value problems, see e.g., [14, 15]
in the case of equations and [16] in the case of convex-valued inclusions, and
the references therein.

The following notation is used below. We fix a norm in the n-dimensional
space Rn and denote it by | · |n. Let Ck with an integer k ≥ 0 denote the
space of k times continuously differentiable functions (C0 is the class of all
continuous functions). The space L1 consists of all measurable integrable
functions. Here and everywhere below we use the Lebesgue measure. CLm
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for integer m ≥ 1 contains all x(·) ∈ Cm−1 such that x(m−1)(·) is absolutely
continuous, and consequently x(m)(·) ∈ L1. We put

‖x(·) ‖CLm
1

= ‖x(·) ‖Cm−1 + ‖x(m)(·) ‖L1 .

Unless otherwise stated explicitly, we assume that all considered functional
spaces consist of functions from [a, b] to Rn. The interval [a, b] is fixed,
−∞ < a < b < +∞.

Let us recall some definitions. For a set A ⊂ [a, b] denote by χA(·)
the characteristic function of A. Thus χA(t) = 1 if t ∈ A, and χA(t) = 0
otherwise. A set K ⊂ L1 is called decomposable if for any u(·), v(·) ∈ K and
any measurable A ⊂ [a, b] the function w(t) = χA(t)u(t) + χ[a,b]\A(t)v(t)
belongs to K. A multifunction G from X to Y , where X, Y are metric
spaces, is called lower semicontinuous (l.s.c.) if for any closed E ⊂ Y the
set {x ∈ X : G(x) ⊂ E} is closed.

We begin with a description of the required selection technique in the
form convenient to us. Let us fix an arbitrary mapping h : CLm

1 → L1, an
arbitrary set V ⊂ CLm

1 , and a function Θ : [a, b] × [0,∞) → [0,∞) such
that the function Θ(·, N) is measurable for any real number N ≥ 0. Con-
sider some l.s.c. multifunction G from Cm−1 to L1 with nonempty closed
decomposable values. Assume that if y(·) ∈ G(x(·)), then the inequality

| y(t) |n≤ Θ(t, ‖x(·) ‖Cm−1) (1)

holds a.e. on [a, b].

Lemma. Assume that for any continuous g : Cm−1 → L1 which for all
x : [a, b] → Rn, x(·) ∈ Cm−1, satisfies the estimate

| g(x(·))(t) |n≤ Θ(t, ‖x(·) ‖Cm−1) (2)

a.e. on [a, b], there exists some x(·) ∈ V such that h(x(·)) = g(x(·)). Then
there exists at least one x(·) ∈ V for which h(x(·)) ∈ G(x(·)).

Remark 1. Inequalities (1), (2) can be replaced by the relations y(t) ∈
U(t, x(·)), g(x(·))(t) ∈ U(t, x(·)) respectively, where U is a fixed multifunc-
tion from [a, b]× Cm−1 to Rn with nonempty values.

Proof of Lemma consists in a direct application of the selection theorem
of A. Bressan and G. Colombo (Theorem 3 in [10]), due to which the assump-
tions on G ensure the existence of a continuous selection g0 : Cm−1 → L1,
g0(x(·)) ∈ G(x(·)). Because of (1) the mapping g0 satisfies (2). According
to the conditions of Lemma, one can find a function x(·) ∈ V such that
h(x(·)) = g0(x(·)) ∈ G(x(·)), which completes the proof.

We can apply Lemma to a concrete problem in the following way. Take
for V the set of all functions that satisfy the boundary conditions. Suppose
that we know an existence result for a boundary value problem h(x(·)) =



NONCONVEX DIFFERENTIAL INCLUSIONS 503

g(x(·)), x(·) ∈ V . Here we deal with a functional differential equation with
an arbitrary continuous mapping g which satisfies the growth restrictions.
Based on this result and the lemma, we can immediately obtain an existence
theorem for the boundary value problem h(x(·)) ∈ G(x(·)), x(·) ∈ V . That
is, we can consider a differential inclusion with the possibly nonconvex right-
hand side G satisfying the growth conditions.

In particular, the differential inclusion h(x(·)) ∈ G(x(·)) may have the
form

x(m)(t) + am−1(t)x(m−1)(t) + . . . + a0(t)x(t) ∈

∈ F (t, x(t), . . . , x(m−1)(t)), t ∈ [a, b], (3)

where a0(t), . . . , am−1(t) are n×n matrices, F is defined on [a, b]×Rmn and
its values are closed sets in Rn. In that case h(x(·))(t) coincides with the
left-hand side of (3), and G(x(·)) is the set of all measurable selections of the
multifunction t → F (t, x(t), . . . , x(m−1)(t)). Conditions on F can be given
that ensure the necessary properties of the corresponding multifunction G;
see Proposition 2.1 in [17]. Namely, in addition to the upper estimate that
guarantees (1), one should impose on F properties of measurability and of
lower semicontinuity in the arguments x(t), . . . , x(m−1)(t). In particular,
these assumptions hold for Hausdorff continuous F .

Now, let us apply the above reasoning to the case of nonlinear monotone
boundary conditions. Consider a boundary value problem

x(m)(·) ∈ G(x(·)); (4)

Bki(x
(k)
i (·), x(·)) = 0, k = 0, . . . ,m− 1, i = 1, . . . , n. (5)

Here x : [a, b] → Rn, x(·) ∈ CLm
1 is the unknown function. By x(k)

i (·) we
denote the coordinate number i of the derivative x(k)(·). The multifunc-
tion G from Cm−1 to L1 is lower semicontinuous and has nonempty closed
decomposable values. For some fixed integrable function ξ(t) ≥ 0, for any
x(·) ∈ Cm−1 and y(·) ∈ G(x(·)), the inequality

| y(t) |n≤ ξ(t) (6)

holds a.e. on [a, b]. The mappings Bki : C0 × CLm
1 → R are continuous.

(Here C0 = C0([a, b],R) is the space of scalar functions, whereas the other
employed functional spaces have values in Rn.)

Theorem 1. Let the nonlinear functionals Bki be monotone with respect
to the first argument in the following sense. For any u(·), v(·), z(·), if
u(t) ≤ v(t) for all t ∈ [a, b], then Bki(u(·), z(·)) ≤ Bki(v(·), z(·)). Fix
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nondecreasing functions Ωki : [0,∞) → [0,∞). For any indices k, i and
function z(·), let there exist some u(·) such that Bki(u(·), z(·)) = 0 and

‖u(·) ‖C0 ≤ Ωki(‖ z(k+1)(·) ‖CLm−k−1
1

) (7)

(for k = m− 1 we take CL0
1 = L1). Then problem (4), (5) has at least one

solution.

Remark 2. In fact, a more general assertion is valid. For any fixed u(·),
z(·), let the function Bki(u(·)+ c, z(·)) be nondecreasing with respect to the
real argument c. Fix mappings Υki : [0,∞) × [0,∞) → [0,∞) which are
nondecreasing in each of their two arguments. For any k, i, u(·), z(·), let
there exist a number c such that the equality Bki(u(·)+ c, z(·)) = 0 and the
estimate

| c |≤ Υki(‖u(·) ‖C0 , ‖ z(k+1)(·) ‖CLm−k−1
1

)

hold. Then problem (4), (5) has at least one solution.
It is easy to check that the requirement for monotonicity of Bki(u(·) +

c, z(·)) with respect to the number c is weaker than the assumption of mono-
tonicity of Bki(u(·), z(·)) with respect to the function u(·).

Remark 3. In the assumptions of Theorem 1, let the functions Ωki(M) =
pkiM + qki be linear. Then estimate (6) can be replaced by the following
weaker requirement. For some fixed integrable ζ(t) ≥ 0 and nondecreasing
Φ : [0,∞) → [0,∞) such that

lim inf
M→∞

M−1Φ(M) = 0 (8)

for any x(·) ∈ Cm−1 and y(·) ∈ G(x(·)), the inequality

| y(t) |n≤ ζ(t) + Φ(‖x(·) ‖Cm−1) (9)

holds a.e. on [a, b].
In connection with Remark 3, let us specify a simple case in which func-

tions Ωki can be chosen not only linear, but even constant. This is the case
where the mappings Bki(u(·), z(·)) = Bki(u(·)) do not depend on the second
argument.

Proof of Theorem 1. Put

h(x(·))(t) = x(m)(t), Θ(t,N) = ξ(t)

and take for V the set of all x(·) ∈ CLm
1 that satisfy the boundary conditions

(5). The application of Lemma reduces Theorem 1 to an existence result
for the case of functional differential equations, which can be found in [7,
8].
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In the same way, Remarks 2 and 3 are reduced to existence results of [7, 8].
The only difference is that to prove Remark 3 we put Θ(t,N) = ζ(t)+Φ(N).

To demonstrate the application of Theorem 1 and Remark 3, let us em-
ploy the following boundary value problem with nonlinear integral boundary
conditions:

x(m)(·) ∈ G(x(·)); (10)
b

∫

a

ϕk(x(k)(τ))dτ = 0, k = 0, . . . , m− 1. (11)

The unknown function x(·) ∈ CLm
1 ([a, b],R) is scalar, G is a lower semicon-

tinuous multifunction from Cm−1([a, b],R) to L1([a, b],R) with nonempty
closed decomposable values. We fix an integrable function ζ(t) ≥ 0 and
numbers ε ∈ (0, 1), A ≥ 0. Assume that the estimate

| y(t) |≤ ζ(t) + A‖x(·) ‖1−ε
Cm−1

holds for any x(·) ∈ Cm−1([a, b],R), y(·) ∈ G(x(·)) and almost all t ∈ [a, b].
For any index k, the function ϕk : R → R is continuous, nondecreasing,
and takes the value zero at least at one point.

Corollary. Problem (10), (11) admits a solution.

Proof of Corollary is based on Theorem 1 and Remark 3. We take

Bk(u(·), z(·)) =

b
∫

a

ϕk(u(τ))dτ

omitting the index i in Bki as n = 1. The required continuity and mono-
tonicity in u(·) hold. To ensure that Bk(u(·), z(·)) = 0, it suffices to put
u(t) ≡ ck, where ck is a constant such that ϕk(ck) = 0. Thus in (7) the
functions Ωk ≡| ck | can be taken constant, and Remark 3 is applicable. We
assume in (9) Φ(M) = AM1−ε, which makes (8) valid. Problem (10), (11)
coincides with (4), (5) and is solvable.

In [7], [8] one can find another example of nonlinear integral boundary
conditions of form (5), which contain some odd-degree moments of the graph
of the solution and are related to the center of gravity of this graph. Now,
based on [9], we will give an example with a minimum and a maximum in
the boundary conditions.
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Consider the problem

ẍ(·) ∈ G(x(·)), (12)

min
t

x(t) = α, (13)

max
t

x(t) = β. (14)

The solution x is a scalar function belonging to the space CL2
1([a, b],R).

The numbers α, β are fixed. Conditions (13), (14) specify the minimal
and maximal values of the unknown function on the interval [a, b]. The
lower semicontinuous multifunction G from C1([a, b],R) to L1([a, b],R) has
nonempty closed decomposable values. Assume also that for fixed M ≥ 0
and any x(·), y(·), if y(·) ∈ G(x(·)), then | y(t) |≤ M a.e. on [a, b].

Theorem 2. If β − α > M
8 (b− a)2, then problem (12)–(14) is solvable.

The constant M
8 (b−a)2 in Theorem 2 is the best possible one and cannot

be replaced by a smaller one, see Remark 1 in [9].
One can derive Theorem 2 from Theorem 1 after some transformation

of conditions (13), (14). The transformation of (13), (14) was described
in detail in [9], where it was applied to the case of ordinary differential
equations. The reasoning in the case of differential inclusion (12) is quite
similar. The paper [9] also gives some properties of solutions concerned with
the points of a minimum and a maximum. Actually, in the proof in [9], two
solutions with different properties appear.
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