NON-ABELIAN COHOMOLOGY WITH COEFFICIENTS IN CROSSED BIMODULES

H. INASSARIDZE

ABSTRACT. When the coefficients are crossed bimodules, Guin's nonabelian cohomology [2], [3] is extended in dimensions 1 and 2, and a nine-term exact cohomology sequence is obtained.

We continue to study non-abelian cohomology of groups (see [1]) following Guin's approach to non-abelian cohomology [2], [3]. The pointed sets of cohomology $H^n(G, (A, \mu))$, n = 1, 2, will be defined when the group of coefficients (A, μ) is a crossed G-R-bimodule. The notion of a crossed bimodule has been introduced in [1]. $H^1(G, (A, \mu))$ is equipped with a partial product and coincides with Guin's cohomology group [3] when crossed G-modules are viewed as crossed G-G-bimodules. The pointed set of cohomology $H^2(G, (A, \mu))$ coincides with the second pointed set of cohomology defined in [1] when the coefficients are crossed modules. A coefficient short exact sequence of crossed G-R-bimodules gives rise to a nine-term exact cohomology sequence and we recover the exact cohomology sequence obtained in [1] when the coefficients are crossed modules. By analogy with the case n = 2 the definition of a pointed set of cohomology $H^n(G, (A, \mu))$ of a group G with coefficients in a crossed G-R-bimodule (A, μ) is given for all $n \geq 1$.

The notation and diagrams of [1] will be used.

Recall the definitions of a crossed *G*-*R*-bimodule and the group $Der(G, (A, \mu))$ of derivations from *G* to (A, μ) .

Let G, R and A be groups. (A, μ) is a crossed G-R-bimodule if:

1) (A, μ) is a crossed *R*-module,

- 3) the homomorphism $\mu: A \longrightarrow R$ is a homomorphism of G-groups,
- 4) ${}^{(g_r)}a = {}^{grg^{-1}}a$ for $g \in G, r \in R, a \in A$.

1072-947X/97/1100-0509\$12.50/0 \odot 1997 Plenum Publishing Corporation

²⁾ G acts on R and A,

¹⁹⁹¹ Mathematics Subject Classification. 18G50, 18G55.

 $Key\ words\ and\ phrases.$ Crossed bimodule, compactibility condition, free cotriple resolution.

⁵⁰⁹

The group $\text{Der}(G, (A, \mu))$ is defined as follows. It consists of pairs (α, r) where α is a crossed homomorphism from G to A and r is an element of R such that $\mu\alpha(x) = r^x r^{-1}$ for all $x \in G$. A product in $\text{Der}(G, (A, \mu))$ is given by $(\alpha, r)(\beta, s) = (\alpha * \beta, rs)$ where $(\alpha * \beta)(x) = {}^x\beta(x)\alpha(x), x \in G$. For any $a \in A$ and $(\alpha, r) \in \text{Der}(G, (A, \mu))$ the following equality holds:

$$\alpha(x)^{xr}a = {}^{rx}a\,\alpha(x) \quad \text{for all} \quad x \in G.$$

Definition 1. Let (A, μ) be a crossed G-R-bimodule. It will be said that a crossed homomorphism $\alpha : G \longrightarrow A$ satisfies condition (j) (resp. condition (j')) if for $c \in H^0(G, R)$ (resp. if for $c \in H^0(G, R)$ such that there is $b \in A$ with $\mu(b) = c$) there exists $a \in A$ such that ${}^c\alpha(x) = a^{-1}\alpha(x) {}^xa$ for $x \in G$ and $\mu(a) = 1$. It will be said that an element (α, r) of $\text{Der}(G, (A, \mu))$ satisfies condition (j) (resp. condition (j')) if α satisfies this condition.

It is obvious that any element of the form $(\alpha, 1)$ satisfies condition (j'). If (A, μ) is a crossed *G*-*R*-bimodule induced by a surjective homomorphism $f : G \longrightarrow R$, then every element $(\alpha, r) \in \text{Der}(G, (A, \mu))$ such that $\alpha(\ker f) = 1$ satisfies condition (j). In effect, for $c \in Z(R) = H^0(G, R)$ we have $z_x dx = xd$, $x \in G$, with f(d) = c and $z_x \in \ker f$. Thus, $\alpha(z_x)^{z_x}\alpha(dx) = \alpha(xd)$, whence $\alpha(d)^c \alpha(x) = \alpha(x)^x \alpha(d)$ and $\mu \alpha(d) = r f(d) r^{-1} f(d)^{-1} = 1$.

Note that if $(\alpha, r) \sim (\alpha', r')$ (see below) and (α, r) satisfies condition (j) then (α', r') satisfies condition (j) too when $H^0(G, R) \subset Z(R)$. In effect, we have $\alpha'(x) = b^{-1}\alpha(x)^{x}b$, $r' = \mu(b)^{-1}rt$ and ${}^c\alpha(x) = a^{-1}\alpha(x)^{x}a$, $\mu(a) = 1$, where $c, t \in H^0(G, R) \subset Z(R)$. Thus

$${}^{c}\alpha'(x) = {}^{c}b^{-1}{}^{c}\alpha(x){}^{cx}b = {}^{c}b^{-1}{}^{a-1}\alpha(x){}^{x}a{}^{cx}b =$$

= ${}^{c}b^{-1}a^{-1}\alpha(x){}^{x}(a{}^{c}b) = {}^{c}b^{-1}a^{-1}b{}^{\alpha'}(x){}^{x}b^{-1}{}^{x}(a{}^{c}b) =$
= ${}^{c}b^{-1}ba^{-1}\alpha'(x){}^{x}(ab^{-1}{}^{c}b)$

with $\mu(a b^{-1 c} b)^{-1} = (\mu(a) \mu(b^{-1}) \mu(c^{-1}))^{-1} = \mu(c^{-1}) \mu(b) = c \mu(b)^{-1} c^{-1} \mu(b) = 1.$

It is clear that if $f: (A, \mu) \longrightarrow (B, \lambda)$ is a homomorphism of crossed *G*-*R*-bimodules and $(\alpha, r) \in \text{Der}(G, (A, \mu))$ satisfies condition (j), then $(f\alpha, r)$ satisfies condition (j).

Let (A, μ) be a crossed *G-R*-bimodule. In the group $Der(G, (A, \mu))$ we introduce a relation ~ defined as follows:

$$(\alpha, r) \sim (\beta, s) \Longleftrightarrow \begin{cases} \exists a \in A : \beta(x) = a^{-1}\alpha(x)^{x}a, \\ s = \mu(a)^{-1}r \mod H^{0}(G, R) \end{cases}$$

Later we shall need the following assertion:

If (A, μ) is a precrossed *G*-*R*-bimodule the equality

$$^{rx}a = {}^{xr}a \tag{1}$$

holds for any $x \in G$, $a \in A$, $r \in H^0(G, R)$.

In effect, we have

$$r^{x}a = xx^{-1}r^{x}a = x(x^{-1}r)a = x^{r}a$$

Proposition 2. The relation \sim is an equivalence. Assume $H^0(G, R)$ is a normal subgroup of R; then the group $Der(G, (A, \mu))$ induces on $Der(G, (A, \mu))/\sim$ a partial product defined by

$$[(\alpha,1)][(\beta,s)] = [(\alpha * \beta,s)]$$

if $[(\beta, s)]$ contains an element satisfying condition (j'), and by

$$[(\alpha, r)][(\beta, s)] = [(\alpha * \beta, rs)]$$

if $[(\beta, s)]$ contains an element satisfying condition (j).

Proof. If $(\alpha, r) \sim (\alpha', r')$, i.e., $\alpha'(x) = a^{-1}\alpha(x)^{-x}a$, $x \in G$, and $r' = \mu(a)^{-1}rz$, $z \in H^0(G, R)$, then $\alpha(x) = a \alpha(x)^{-x}a^{-1}$ and $r = \mu(a)r'z^{-1}$, $z^{-1} \in H^0(G, R)$. Thus, $(\alpha', r') \sim (\alpha, r)$.

If $(\alpha, r) \sim (\alpha', r')$ and $(\alpha', r') \sim (\alpha'', r'')$ we have

$$\begin{aligned} \alpha'(x) &= a^{-1} \alpha(x)^{x} a, \quad r' = \mu(a)^{-1} r z, \\ \alpha''(x) &= b^{-1} \alpha'(x)^{x} b, \quad r'' = \mu(b)^{-1} r' z', \end{aligned}$$

where $z, z' \in H^0(G, R)$. This implies $(\alpha, r) \sim (\alpha'', r'')$ and the relation \sim is an equivalence.

It is clear that if $(\alpha, r) \in Der(G, (A, \mu))$ and $c \in H^0(G, R)$ then $(\alpha, r) \sim (\alpha, rc)$.

We have yet to show the correctness of the partial product.

Let $(\alpha, 1) \sim (\alpha', 1)$, $(\beta, s) \sim (\beta', s')$ and (β, s) satisfy condition (j'). We will prove that $(\alpha, 1)(\beta, s) \sim (\alpha', 1)(\beta', s')$. One has

$$\alpha'(x) = a^{-1}\alpha(x)^{x}a, \quad x \in G,$$

 $1 = \mu(a)^{-1}z, \quad z \in H^{0}(G, R).$

and

$$\beta'(x) = b^{-1}\beta(x)^{x}b, \quad x \in G, s' = \mu(b)^{-1}sz', \quad z' \in H^{0}(G, R).$$

Then $\beta'(x)\alpha'(x) = b^{-1}\beta(x) x ba^{-1}\alpha(x) a = b^{-1}\beta(x)a^{-1}\alpha(x) a x b = b^{-1}a^{-1}$ $\mu^{(a)}\beta(x)\alpha(x) a x b = b^{-1}a^{-1}d^{-1}\beta(x)\alpha(x) (ab) and s' = \mu(b)^{-1}\mu(a)^{-1}zsz' = \mu(b^{-1}a^{-1}d^{-1})sz''z' where \beta(x) = d^{-1}\beta(x) d, \mu(d) = 1 and z'' \in H^0(G, R).$ Therefore $(\alpha, 1)(\beta, s) \sim (\alpha', 1)(\beta', s').$

It is clear that the set of all elements of the form $[(\alpha, 1)]$ forms an abelian group under this product.

Finally, we will prove that if $(\alpha, r) \sim (\alpha', r')$, $(\beta, s) \sim (\beta', s')$ and (β, s) satisfies condition (j) then $(\alpha, r)(\beta, s) \sim (\alpha', r')(\beta', s')$ and we check Guin's proof [3] in our case.

We first prove that

$$(\alpha, r)(\beta, s) \sim (\alpha, rc)(\beta, s)$$

for $c \in H^0(G, R)$.

Using condition (j) and equality (1) of [3] one gets

$${}^{rc}\beta(x)\alpha(x) = {}^{r}(a^{-1}\beta(x){}^{x}a)\alpha(x) = {}^{r}a^{-1}{}^{r}\beta(x){}^{rx}a\alpha(x) =$$
$$= {}^{r}a^{-1}{}^{r}\beta(x)\alpha(x){}^{rx}a.$$

Since $\mu(ra)^{-1} = (r\mu(a)r^{-1})^{-1} = 1$, one has $rcs = \mu(ra)^{-1}rsc'$ with $c' \in H^0(G, R)$. Therefore, $(\alpha, r)(\beta, s) \sim (\alpha, rc)(\beta, s)$.

Further, we have

$$\alpha'(x) = b^{-1}\alpha(x)^{x}b, \quad r' = \mu(b)^{-1}rz,$$

and $\beta'(x) = d^{-1}\beta(x) x d$, $s' = \mu(d)^{-1}st$ with $z, t \in H^0(G, R)$. Put

$$(\alpha, rz)(\beta, s) = (\gamma, rzs),$$

where $\gamma(x) = {}^{rz}\beta(x)\alpha(x), x \in G$, and $(\alpha', r')(\beta', s') = (\gamma', r's')$, where $\gamma'(x) = {}^{r'}\beta'(x)\alpha'(x), x \in G$.

We will show that

$$(\alpha, rz)(\beta, s) \sim (\alpha', r')(\beta', s').$$

Using (1) and equality (1) of [1] one has

$$\gamma'(x) = {}^{r'}(d^{-1}\beta(x) {}^{x}d) {}^{b^{-1}}\alpha(x) {}^{x}b =$$

= ${}^{\mu(b)^{-1}r \cdot z} d^{-1} {}^{\mu(b)^{-1}r z} \beta(x) {}^{\mu(b)^{-1}r z x} d {}^{b^{-1}}\alpha(x) {}^{x}b =$
= ${}^{b^{-1}r \cdot z} d^{-1} {}^{r z} \beta(x) {}^{r \cdot x}({}^{z}d) \alpha(x) {}^{x}b = {}^{b^{-1}r \cdot z} d^{-1} {}^{r \cdot z} \beta(x) \alpha(x) {}^{xr z} d {}^{x}b$

and $\mu({}^{r\cdot z}db)^{-1} = \mu(b)^{-1}rz\,\mu(d)^{-1}z^{-1}r^{-1} = r's't^{-1}z^{-1}r^{-1}, r's' = \mu({}^{r\cdot z}db)^{-1}rzst$ with $t \in H^0(G, R)$.

Therefore $(\alpha, rz)(\beta, s) \sim (\alpha', r')(\beta', s')$, whence $(\alpha, r)(\beta, s) \sim (\alpha', r')(\beta', s')$. \Box

Definition 3. Let (A, μ) be a crossed G-R-bimodule. One denotes by $H^1(G, (A, \mu))$ the quotient set $\text{Der}(G, (A, \mu))/\sim$ equipped with the aforementioned partial product and it will be called the first set of cohomology of G with coefficients in the crossed G-R-bimodule (A, μ) .

If (A, μ) is a crossed *G*-module viewed as a crossed *G*-*G*-bimodule then $H^0(G, G) = Z(G)$ and for $(\alpha, g) \in \text{Der}_G(G, A) = \text{Der}(G, (A, \mu))$ and $c \in Z(G)$ the equality $\alpha(cx) = \alpha(xc), x \in G$, implies

$$\alpha(c)^{c}\alpha(x) = \alpha(x)^{x}\alpha(c),$$

whence ${}^{c}\alpha(x) = \alpha(c)^{-1}\alpha(x) {}^{x}\alpha(c)$ and $\mu(\alpha(c)) = gcg^{-1}c^{-1} = 1$. Therefore every element of $\text{Der}_{G}(G, A)$ satisfies condition (j). It follows that if (A, μ) is a crossed *G*-module we recover the group $H^{1}(G, A)$ defined by Guin [3].

It is clear that the map $H^1(G, A) \longrightarrow H^1(G, (A, 1))$ given by $[\alpha] \longmapsto [(\alpha, 1)]$ is an isomorphism where (A, 1) is a crossed *G-R*-bimodule.

Proposition 4. Let (A, μ) be a crossed G-R-bimodule and assume $H^0(G, R)$ is a normal subgroup of R. If (α, r) and (β, s) satisfy condition (j) then $(\alpha, r)(\beta, s)$ and $(\alpha, r)^{-1}$ satisfy condition (j).

Proof. Let $c \in H^0(G, R)$. Then ${}^c\alpha(x) = b^{-1}\alpha(x) {}^xb$ and $\mu(b) = 1$. Since $H^0(G, R)$ is a normal subgroup of R, there is $c' \in H^0(G, R)$ such that cr = rc'. For c' we have ${}^{c'}\beta(x) = d^{-1}\beta(x) {}^xd$ and $\mu(d) = 1$. Put $(\alpha, r)(\beta, s) = (\gamma, rs)$. Then

$${}^{c}\gamma(x) = {}^{cr}\beta(x) {}^{c}\alpha(x) = {}^{r}d^{-1} {}^{r}\beta(x) {}^{rx}d {}^{b-1}\alpha(x) {}^{x}b =$$
$$= {}^{r}d^{-1}b^{-1} {}^{r}\beta(x)\alpha(x) {}^{x}(b {}^{r}d)$$

with $\mu(b^r d) = \mu(b) r \mu(d) r^{-1} = 1$. Thus, (γ, rs) satisfies condition (j). Put $(\alpha, r)^{-1} = (\overline{\alpha}, r^{-1})$ where $\overline{\alpha}(x) = r^{-1} \alpha(x)^{-1}$, $x \in G$. If $c \in H^0(G, R)$ one has

$${}^{c}\overline{\alpha}(x) = {}^{cr^{-1}}\alpha(x)^{-1} = {}^{r^{-1}c'}\alpha(x)^{-1} = {}^{r^{-1}}({}^{x}a^{-1}\alpha(x)^{-1}a),$$

where $cr^{-1} = r^{-1}c', c' \in H^0(G, R)$ and $c'\alpha(x) = a^{-1}\alpha(x)^{-1} a, \mu(a) = 1$. Hence

$${}^{c}\overline{\alpha}(x) = {}^{r^{-1}x} a^{-1 r^{-1}} \alpha(x)^{-1 r^{-1}} a = {}^{r^{-1}} \alpha(x)^{-1 x r^{-1}} a^{-1 r^{-1}} a =$$
$$= {}^{r^{-1}} a^{r^{-1}} \alpha(x)^{-1 x} ({}^{r^{-1}} a^{-1})$$

with $\mu(r^{-1}a^{-1}) = r^{-1}\mu(a^{-1})r = 1.$

Therefore, $(\overline{\alpha}, r^{-1})$ satisfies condition (j). \Box

Corollary 5. The subset of $H^1(G, (A, \mu))$ of all equivalence classes containing an element with condition (j) forms a group if $H^0(G, R)$ is a normal subgroup of R.

Proposition 6. Let (A, μ) be a crossed G-R-bimodule such that $H^0(G, R)$ is a normal subgroup of R. If there is a map $\eta : H^0(G, R) \longrightarrow Z(G)$ such that Im η acts trivially on R and $\eta^{(r)}a = {}^ra$, $a \in A$, then $H^1(G, (A, \mu))$ is a group.

Proof. We have to show that every element $(\alpha, r) \in \text{Der}(G, (A, \mu))$ satisfies condition (j). If $c \in H^0(G, R)$ take $\eta(c) = d \in Z(G)$. Then $\alpha(dx) = \alpha(xd)$ and $\alpha(d) \ ^d\alpha(x) = \alpha(x) \ ^x\alpha(d)$. Thus $\ ^c\alpha(x) = \alpha(d)^{-1}\alpha(x) \ ^x\alpha(d)$ and $\mu\alpha(d) = r \ ^d r^{-1} = rr^{-1} = 1$. \Box

Corollary 7. Let (A, μ) be either a crossed G-R-bimodule such that $H^0(G, R)$ is a normal subgroup of R trivially acting on A or induced by a surjective homomorphism $f: G \longrightarrow R$ such that f(Z(G)) = Z(R). Then $H^1(G, (A, \mu))$ is a group.

Proof. In the first case take η as the trivial map. In the second case take a map $\eta: Z(R) \longrightarrow Z(G)$ such that $f\eta = 1_{Z(R)}$. \Box

If $f: (A, \mu) \longrightarrow (B, \lambda)$ is a homomorphism of crossed *G-R*-bimodules then f induces a natural map

$$f^1: H^1(G, (A, \mu)) \longrightarrow H^1(G, (B, \lambda))$$

which is a homomorphism in the following sense:

if xy is defined for $x, y \in H^1(G, (A, \mu))$ then $f^1(x)f^1(y)$ is defined and $f^1(xy) = f^1(x)f^1(y)$.

The above defined action of G on $Der(G, (A, \mu))$ induces an action of G on $H^1(G, (A, \mu))$ given by

$${}^{g}[(\alpha, r)] = [{}^{g}(\alpha, r)], \quad g \in G$$

We have to show that if $(\alpha, r) \sim (\alpha', r')$ then ${}^g(\alpha, r) \sim {}^g(\alpha', r')$. In effect, since

 $\alpha'(x) = a^{-1}\alpha(x)^x a, \quad x \in G,$

this implies

$$\alpha'({}^{g^{-1}}x) = a^{-1}\alpha({}^{g^{-1}}x){}^{g^{-1}xg}a, \quad x \in G.$$

Thus

$${}^{g}\alpha'({}^{g^{-1}}x) = {}^{g}a^{-1}{}^{g}\alpha({}^{g^{-1}}x){}^{xg}a, \quad x \in G.$$

We also have $r' = \mu(a)^{-1}rz$, $z \in H^0(G, R)$, whence ${}^g r' = {}^g \mu(a^{-1}) {}^g r {}^g z = \mu({}^g a)^{-1} {}^g r {}^g z$. Therefore ${}^g(\alpha, r) \sim {}^g(\alpha', r')$.

In what follows if f is a map from a group G to a group G' then f^{-1} : G \longrightarrow G' denotes a map given by $f^{-1}(x) = f(x)^{-1}$.

Let (A, μ) be a crossed *G*-*R*-bimodule. The definition of $H^2(G, (A, \mu))$ is similar to the case of (A, μ) being a crossed *G*-module (see [1]).

Consider diagram (4) of [1] and the group $\text{Der}(M, (A, \mu))$ where (A, μ) is viewed as a crossed M-R-bimodule induced by τl_0 and a crossed F-R-bimodule induced by τ . Let $\widetilde{Z}^1(M, (A, \mu))$ be the subset of $\text{Der}(M, (A, \mu))$ consisting of elements of the form $(\alpha, 1)$.

Define, on $\widetilde{Z}^1(M, (A, \mu))$, relation

$$(\alpha', 1) \sim (\alpha, 1) \Longleftrightarrow (\beta, h) \in \operatorname{Der}(F, (A, \mu))$$

such that

$$(\alpha', 1) = (\beta l_0, h)(\alpha, 1)(\beta l_1, h)^{-1}$$

in the group $Der(M, (A, \mu))$.

Definition 8. Let (A, μ) be a crossed G-R-bimodule. The relation ~ is an equivalence. Denote by $H^2(G,(A,\mu))$ the quotient set $\widetilde{Z}^1(M,(A,\mu))$ / ~. It will be called the second set of cohomology of G with coefficients in the crossed G-R-bimodule (A, μ) .

It can be proved (as for a crossed *G*-module (A, μ) (see Proposition 8 [1])) that $\widetilde{Z^1}(M, (A, \mu)) / \sim$ is independent of diagram (4) of [1] and is unique up to bijection.

Let (A, μ) be a crossed *G*-*R*-bimodule. Then there is a canonical map

$$\vartheta': H^2(G, \ker \mu) \longrightarrow H^2(G, (A, \mu))$$

defined by the composite

$$[E] \stackrel{\vartheta^{-1}}{\longmapsto} [\alpha] \longmapsto [(\alpha, 1)].$$

This map is surjective and was defined when (A, μ) is a crossed *G*-module [3].

Proposition 9. Let (A, μ) be a crossed G-R-bimodule. There is an action of G on $H^2(G, (A, \mu))$ such that Z(G) acts trivially. If R acts on G and satisfies the compatibility condition (3) of [1] then there is also an action of R on $H^2(G, (A, \mu))$.

Proof. The action of G on $H^2(G, (A, \mu))$ is defined exactly in the same manner as for a crossed G-module (A, μ) (see Proposition 12 [1]). The action of R is defined similarly. Namely, we have an action of R on M_G given by

$${}^{r}(|g_{1}|^{\epsilon}\cdots|g_{n}|^{\epsilon},|g_{1}'|^{\epsilon}\cdots|g_{m}'|^{\epsilon})=(|{}^{r}g_{1}|^{\epsilon}\cdots|{}^{r}g_{n}|^{\epsilon},|{}^{r}g_{1}'|^{\epsilon}\cdots|{}^{r}g_{m}'|^{\epsilon})$$

and one gets an action of R on $Der(M_G, (A, \mu))$ defined by

$${}^{r}(\alpha, s) = (\widetilde{\alpha}, {}^{r}s),$$

where $\widetilde{\alpha}(m) = {}^{r}\alpha({}^{r^{-1}}m), r \in R, m \in M_{G}$. Define ${}^{r}[(\alpha, 1)] = [{}^{r}(\alpha, 1)], r \in R$. If $(\alpha, 1) \sim (\alpha', 1)$ it is easy to see that ${}^{r}(\alpha, 1) \sim {}^{r}(\alpha', 1)$. \Box

Let (A, μ) be a crossed *G*-*R*-bimodule. Using (1) it can easily be shown that there is an action of $H^0(G, R)$ on $H^2(G, \ker \mu)$ given by

$${}^{r}[\alpha] = [{}^{r}\alpha], \quad r \in H^{0}(G, R),$$

where $\alpha : M_G \longrightarrow \ker \mu$ is a crossed homomorphism under the action of G on A (see diagram (5) of [1]) such that $\alpha(\Delta) = 1$.

If this action of $H^0(G, R)$ is trivial and $\text{Der}(F_G, (A, \mu)) = \text{IDer}(F_G, (A, \mu))$ then the map

$$\vartheta': H^2(G, \ker \mu) \longrightarrow H^2(G, (A, \mu))$$

is a bijection.

Let

$$1 \longrightarrow (A,1) \xrightarrow{\varphi} (B,\mu) \xrightarrow{\psi} (C,\lambda) \longrightarrow 1$$
 (2)

be an exact sequence of crossed G-R-bimodules. If the action of $H^0(G, R)$ on $H^2(G, A)$ is trivial then there is an action of $H^1(G, (C, \lambda))$ on $H^2(G, A)$ given by

$$[(\alpha,r)][\gamma] = [^r\gamma]$$

We have to show that ${}^r\gamma$ is a crossed homomorphism and the correctness of the action.

Consider the diagram

There is a crossed homomorphism $\beta: F_G \longrightarrow B$ such that $\psi \beta = \alpha \tau_G$. Take the product

$$(\beta l_0, r)(\varphi \gamma, 1)(\beta l_0, r)^{-1} = (\widetilde{\gamma}, 1)$$

in the group $\operatorname{Der}(M_G, (B, \mu))$. Then $\widetilde{\gamma}(x) = \beta(x)^{-1} {}^r \varphi \gamma(x) \beta(x) = {}^r \varphi \gamma(x), x \in M$. Therefore ${}^r \gamma : M_G \longrightarrow A$ is a crossed homomorphism such that ${}^r \gamma(\Delta) = 1$.

If
$$(\alpha', r') \in [(\alpha, r)] \in H^1(G, (C, \lambda))$$
, i.e., $(\alpha, r) \sim (\alpha', r')$, then
 $\alpha'(x) = c^{-1}\alpha(x)^x c$ and $r' = \lambda(c)^{-1}rt$,

where $t \in H^0(G, R)$. It follows that

$$\varphi(^{r'}\gamma(x)) = {}^{r'}\varphi\gamma(x) = {}^{\lambda(c)^{-1}rt}\varphi\gamma(x) = {}^{\mu(b)^{-1}rt}\varphi\gamma(x) =$$
$$= b^{-1 r \cdot t}\varphi\gamma(x) b = {}^{r \cdot t}\varphi\gamma(x) = \varphi({}^{r \cdot t}\gamma(x)), \quad x \in M_G,$$

where $\psi(b) = c$.

Hence we have

$$[^{r'}\gamma] = [^{rt}\gamma] = [^r\gamma]$$

proving the correctness of the action.

Using diagram (3) for the exact sequence (2) one defines a connecting map

$$\delta^1 : H^1(G, (C, \lambda)) \longrightarrow H^2(G, A)$$

as follows.

For $[(\alpha, r)] \in H^1(G, (C, \lambda))$ take a crossed homomorphism $\beta : F_G \longrightarrow B$ such that $\psi\beta = \alpha \tau_G$. Thus there is a crossed homomorphism $\gamma : M_G \longrightarrow A$ such that

$$\varphi \gamma = (\beta l_1)^{-1} \beta l_0.$$

It is clear that $\gamma(\Delta) = 1$. Define

$$\delta^1([(\alpha, r)]) = [\gamma].$$

We must prove the correctness of δ^1 . If $\beta' : F_G \longrightarrow B$ with $\psi\beta' = \alpha\tau$, then $\psi\beta' = \psi\beta$. Thus there is a crossed homomorphism $\sigma : F_G \longrightarrow A$ such that $\beta' = \beta\varphi\sigma$. Then we have

$$\begin{split} \varphi\gamma' &= (\beta'l_1)^{-1} \beta'l_0 = (\beta\varphi\sigma)l_1^{-1} (\beta\varphi\sigma)l_0 = \varphi\sigma l_1^{-1} \beta l_1^{-1} \beta l_0 \varphi\sigma l_0 = \\ &= \beta l_1^{-1} \beta l_0 \varphi\sigma l_1^{-1} \varphi\sigma l_0 = \varphi(\gamma\sigma l_1^{-1} \sigma l_0). \end{split}$$

Hence $[\gamma'] = [\gamma]$.

If $(\alpha, r) \sim (\alpha', r')$ then

$$\alpha'(y) = c^{-1}\alpha(y)^{y}c, \quad c \in C, \quad y \in M,$$

$$r' = \lambda(c)^{-1}rt, \quad t \in H^{0}(G, R).$$

Take $\beta': F_G \longrightarrow B$ such that

$$\beta'(x) = b^{-1}\beta(x)^{x}b$$

with $\psi(b) = c$ where $\psi\beta = \alpha\tau$. Then $(\beta' l_1^{-1}\beta' l_0)(y) = \beta'(x_2)^{-1}\beta'(x_1)$ where $y = (x_1, x_2) \in M_G$. Hence $\varphi\gamma'(y) = (\beta' l_1^{-1}\beta' l_0)(y) = (b^{-1}\beta(x_2)^{-1}b^{-1}\beta(x_1)^{x_1}b = x_2b^{-1}\beta(x_2)^{-1}\beta(x_1)^{x_1}b = \beta(x_2)^{-1}\beta(x_1) = \varphi\gamma(y)$. Whence $\gamma' = \gamma$.

For any exact sequence (2) of crossed *G*-*R*-bimodules there is also an action of $\text{Der}(F_0, (C, \lambda))$ on $H^3(G, A)$ defined as follows:

$$^{(\alpha,r)}[f] = [^r f],$$

where $f: F_2 \longrightarrow A$ is a crossed homomorphism with $\prod_{i=0}^{3} (fl_i^2 \tau_3)^{\epsilon} = 1$ where $\epsilon = (-1)^i$ (see diagram (7) of [1]) and $(\alpha, r) \in \text{Der}(F_0, (C, \lambda))$. The correctness of this action is proved similarly to the case of a short exact sequence of crossed *G*-modules (see [1]).

If either the aforementioned action of $Der(F_0, (C, \lambda))$ on $H^3(G, A)$ is trivial or $Der(F_0, (C, \lambda)) = IDer(F_0, (C, \lambda))$ and $H^0(G, R)$ acts trivially on $H^2(G, \ker \lambda)$, then a connecting map

$$\delta^2 : H^2(G, (C, \lambda)) \longrightarrow H^3(G, A)$$

is defined by

$$\delta^2([(\alpha, 1)]) = [\gamma], \quad (\alpha, 1) \in \operatorname{Der}(M_0, (C, \lambda)),$$

where $\varphi \gamma = \overline{\beta} \tau_2$ with $\overline{\beta} = \prod_{i=0}^2 (\beta l_i^1)^{\epsilon}$, $\epsilon = (-1)^i$, and $\psi \beta = \alpha \tau_1$ (see diagram (7) of [1]). The correctness of δ^2 is proved similarly to the case of crossed *G*-modules [1], and if (2) is an exact sequence of crossed *G*-modules we recover the above-defined connecting map $\delta^2 : H^2(G, C) \longrightarrow H^3(G, A)$.

Theorem 10. Let (2) be an exact sequence of crossed G-R-bimodules. Then there is an exact sequence

$$\begin{split} 1 &\longrightarrow H^0(G, A) \xrightarrow{\varphi^0} H^0(G, B) \xrightarrow{\psi^0} H^0(G, C) \xrightarrow{\delta^0} \\ \xrightarrow{\delta^0} &H^1(G, A) \xrightarrow{\varphi^1} H^1(G, (B, \mu)) \xrightarrow{\psi^1} H^1(G, (C, \lambda)) \xrightarrow{\delta^1} H^2(G, A) \xrightarrow{\varphi^2} \\ &\xrightarrow{\varphi^2} H^2(G, (B, \mu)) \xrightarrow{\psi^2} H^2(G, (C, \lambda)), \end{split}$$

where φ^0 , ψ^0 , δ^0 , φ^1 are homomorphisms. If $H^0(G, R)$ is a normal subgroup of R, then ψ^1 and δ^1 are also homomorphisms. If in addition $H^0(G, R)$ acts trivially on $H^2(G, A)$, then δ^1 is a crossed homomorphism under the action of $H^1(G, (C, \lambda))$ on $H^2(G, A)$ induced by the action of R on A. Moreover, if either the action of $\text{Der}(F_0, (C, \lambda))$ on $H^3(G, A)$ is trivial (in particular if R acts trivially on A) or $\text{Der}(F_0, (C, \lambda)) = \text{IDer}(F_0, (C, \lambda))$ and $H^0(G, R)$ acts trivially on $H^2(G, \ker \lambda)$ then the sequence

$$H^2(G, (B, \mu)) \xrightarrow{\psi^2} H^2(G, (C, \lambda)) \xrightarrow{\delta^2} H^3(G, A)$$

 $is \ exact.$

Proof. The exactness of the sequence

$$1 \longrightarrow H^0(G, A) \xrightarrow{\varphi^0} H^0(G, B) \xrightarrow{\psi^0} H^0(G, C) \xrightarrow{\delta^0} H^1(G, A)$$

is known [4].

If $c \in H^0(G, C)$ then $\delta^0(c) = [\alpha]$ with $\alpha(x) = \varphi^{-1}(b^{-1 x}b)$, $x \in G$ and $\psi(b) = c$. It follows that $(\alpha_0, 1) \sim (\varphi \alpha, 1)$ where α_0 is the trivial map, since

$$\varphi \alpha(x) = b^{-1} \alpha_0 {}^x b, \quad x \in G,$$

and $\mu(b) \in H^0(G, R)$ because $\mu(b) = \lambda \psi(b) = \lambda(c)$ and ${}^x\lambda(c) = \lambda({}^xc) = \lambda(c)$, $x \in G$. Therefore $\operatorname{Im} \delta^0 \subset \ker \varphi^1$.

Let $[\alpha] \in H^1(G, A)$ such that $(\alpha_0, 1) \sim (\varphi \alpha, 1)$. Then $\varphi \alpha(x) = b^{-1 x} b$, $x \in G$ and $\mu(b) \in H^0(G, R)$. We have $\psi(b^{-1 x} b) = \psi \varphi \alpha(x) = 1$. Thus $\psi(b) = \psi(xb) = {}^x\psi(b)$, whence $\psi(b) \in H^0(G, C)$. It is clear that $\delta^0(\psi(b)) = [\alpha]$. Therefore ker $\varphi^1 \subset \operatorname{Im} \delta^0$.

Clearly, $\psi^1 \varphi^1$ is the trivial map. Let $[(\alpha, r)] \in H^1(G, (B, \mu))$ such that $(\alpha_0, 1) \sim (\varphi \alpha, 1)$. Then $\psi \alpha(x) = c^{-1 x} c, c \in C$, and $r = \lambda(c)^{-1} t, t \in H^0(G, R)$. Let $\psi(b) = c$. Then $\mu(b) = \lambda(c)$ and $r = \mu(b)^{-1} t$. Take $\tilde{\alpha}(x) = c^{-1 x} c$.

 $b \alpha(x) {}^{x} b^{-1}, x \in G$. Since $\psi \widetilde{\alpha}(x) = 1, x \in G$, one has $\varphi^{-1} \widetilde{\alpha} : G \longrightarrow A$ and $(\alpha, r) \sim (\widetilde{\alpha}, 1)$. Therefore $\varphi^{1}([\varphi^{-1} \widetilde{\alpha}]) = [(\alpha, r)]$.

Let $[(\alpha, r)] \in H^1(G, (B, \mu))$. Then $\psi^1([(\alpha, r)]) = [(\psi\alpha, r)]$. Consider diagram (5) of [1] and take $\alpha \tau_G : F_G \longrightarrow B$. Then $\varphi\gamma = (\alpha\tau_G l_1)^{-1}\alpha\tau_G l_0$ and $\delta^1\psi^1([(\alpha, r)]) = [\gamma]$. But $\gamma = \alpha_0$ is the trivial map, since $\alpha\tau_G l_0 = \alpha\tau_G l_1$. Therefore Im $\psi^1 \subset \ker \delta^1$.

Let $[(\alpha, r)] \in H^1(G, (C, \lambda))$ such that $\delta^1([(\alpha, r)]) = 1$. If $\beta : F_G \longrightarrow B$ is a crossed homomorphism such that $\psi\beta = \alpha\tau_G$ then $\delta^1([(\alpha, r)]) = [\gamma]$, where $\varphi\gamma = (\beta l_1)^{-1}\beta l_0$. Thus there is a crossed homomorphism $\eta: F_G \longrightarrow A$ such that $\gamma = (\eta l_1)^{-1}\eta l_0$. Hence we have

$$(\beta l_1)^{-1}\beta l_0 = (\varphi \eta l_1)^{-1}\varphi \eta l_0, \quad (\varphi \eta^{-1}\beta) l_0 = (\varphi \eta^{-1}\beta) l_1.$$

Thus there is a crossed homomorphism $\overline{\alpha} : G \longrightarrow B$ such that $(\varphi \eta)^{-1}\beta = \overline{\alpha}\tau_G$. We have $\mu\beta(x) = \lambda\psi\beta(x) = \lambda\alpha\tau_G(x) = r^{\tau_G(x)}r^{-1}$, whence $(\beta, r) \in \text{Der}(F_G, (B, \mu))$ and $(\overline{\alpha}, r) \in \text{Der}(G, (B, \mu))$. Evidently, $\psi^1([(\overline{\alpha}, r)]) = [(\alpha, r)]$.

The rest of the proof repeats with minor modifications the proof of the exactness of the cohomology sequence for a coefficient short exact sequence of crossed *G*-modules (see Theorems 13 and 15 of [1]). \Box

It is clear that when (2) is an exact sequence of crossed *G*-modules, Theorem 10 implies Theorems 13 and 15 of [1].

By analogy with the case n = 1 we propose the following definition of the pointed set of cohomology $H^{n+1}(G, (A, \mu))$ of a group G with coefficients in a crossed G-R-bimodule (A, μ) (in particular, in crossed G-modules) for all $n \geq 1$.

Let (A, μ) be a crossed *G*-*R*-bimodule. Consider diagram (7) of [1] and the group $\operatorname{Der}(F_n, (A, \mu)), n \geq 1$, where (A, μ) is viewed as a crossed F_n -*R*-bimodule induced by $\tau_0 \partial_0^1 \partial_0^2 \cdots \partial_0^{n-1} \partial_0^n$ with $\partial_0^i = l_0^{i-1} \tau_i, i = 1, \ldots, n$. Denote by $\widetilde{Z^1}(F_n, (A, \mu))$ the subset of $\operatorname{Der}(F_n, (A, \mu))$ consisting of all elements of the form $(\alpha, 1)$ satisfying the condition

$$\prod_{j=0}^{n+1} (\alpha \partial_j^{n+1})^{\epsilon} = 1, \quad \epsilon = (-1)^i.$$

Note that since $\mu\alpha(x) = 1, x \in F_n$, we have $\alpha(F_n) \subset Z(A)$. In $\widetilde{Z}^1(F_n, (A, \mu))$ we introduce a relation \sim as follows: $(\alpha', 1) \sim (\alpha, 1)$ if there is an element $(\beta, h) \in \text{Der}(F_{n-1}, (A, \mu))$ such that

$$\alpha'(x) = {}^{h}\alpha(x) \prod_{i=0}^{n} (\beta \partial_{i}^{n}(x))^{\epsilon}, \quad x \in F_{n},$$
(4)

where $\epsilon = (-1)^i$. Since the homomorphism $\tau_0 \partial_{i_n}^1 \partial_{i_{n-1}}^2 \cdots \partial_{i_2}^{n-1} \partial_{i_1}^n$ does not depend on the sequence $(i_1, i_2, \dots, i_{n-1}, i_n)$, we have

$$\beta \partial_j^n(x) (\beta \partial_l^n(x))^{-1} = (\beta \partial_l^n(x))^{-1} \beta \partial_j^n(x) \in \ker \mu, \quad x \in F_n,$$

for j even and l odd. It follows that the product $\prod_{i=0}^{n} (\beta \partial_i^n(x))^{\epsilon}$ in (4) does not depend on the order of the factors. Note that if n is even then $\beta(F_n) \subset \ker \mu \subset Z(A)$.

Similarly to the case n = 1 it can be shown that the relation \sim is an equivalence, the quotient set $\widetilde{Z}^1(F_n, (A, \mu)) / \sim$ is independent of diagram (7) of [1] (for instance, we can take the free cotriple resolution of the group G), and there is a surjective map

$$\vartheta_n': H^{n+1}(G, \ker \mu) \longrightarrow \widetilde{Z^1}(F_n, (A, \mu))/\sim, \quad n \geq 1,$$

given by $[\alpha] \mapsto [(\alpha, 1)]$ which is bijective if (A, μ) is a crossed *G*-*G*-bimodule and either μ is the trivial map or n is even.

Definition 11. Let (A, μ) be a crossed G-R-bimodule. Define

$$H^{n+1}(G,(A,\mu)) = \widetilde{Z^1}(F_n,(A,\mu))/\sim, \quad n \ge 1.$$

It is clear that for n = 1 we recover the second set of cohomology of G with coefficients in (A, μ) .

Remark 1. Using the above-defined cohomology with coefficients in crossed bimodules it is possible to define a cohomology $H^n(G, A)$, $n \leq 2$, of a group G with coefficients in a G-group A.

Consider the quotient group $\overline{A} = A/Z(A)$ and define an action of \overline{A} on A and an action of G on \overline{A} as follows:

$${}^{[a']}a = {}^{a'}a, \quad a, a' \in A,$$
$${}^{g}[a] = {}^{[g}a], \quad g \in G, \quad a \in A.$$

Let $\mu_A : A \longrightarrow \overline{A}$ be the canonical homomorphism. Then (A, μ_A) is a crossed *G*-*A*-bimodule and we define

$$H^{n}(G, A) = H^{n}(G, (A, \mu_{A})), \quad n \le 2.$$

For n = 1 this cohomology differs from the pointed set of cohomology defined in [4]. If

$$1 \longrightarrow A \xrightarrow{\varphi} B \xrightarrow{\psi} C \longrightarrow 1$$

is a central extension of G-groups then ψ induces an isomorphism ϑ : $B/Z(B) \xrightarrow{\approx} C/\psi(Z(B))$ and one gets a short exact sequence of crossed $G-\overline{B}$ -bimodules

$$1 \longrightarrow (A,1) \xrightarrow{\varphi} (B,\mu_B) \xrightarrow{\psi} (C,\overline{\mu}_C) \longrightarrow 1,$$

where $\overline{\mu}_C$ is the composite of the canonical map $\tau : C \longrightarrow C/\psi(Z(B))$ and the isomorphism ϑ^{-1} . Since \overline{B} acts trivially on A, from Theorem 10 immediately follows the exact cohomology sequence

$$\begin{split} 1 &\longrightarrow H^0(G, A) \xrightarrow{\varphi^0} H^0(G, B) \xrightarrow{\psi^0} H^0(G, C) \xrightarrow{\delta^0} H^1(G, A) \xrightarrow{\varphi^1} \\ \xrightarrow{\varphi^1} H^1(G, B) \xrightarrow{\psi^1} H^1(G, (C, \overline{\mu}_C)) \xrightarrow{\delta^1} H^2(G, A) \xrightarrow{\varphi^2} H^2(G, B) \xrightarrow{\psi^2} \\ \xrightarrow{\psi^2} H^2(G, (C, \overline{\mu}_C)) \xrightarrow{\delta^2} H^3(G, A). \end{split}$$

Remark 2. As for the case n = 2 (see Remark of [1]) it is possible to give an alternative more non-abelian definition of the third cohomology $\overline{H}^{3}(G, (A, \mu))$ of G with coefficients in a crossed G-R-bimodule (A, μ) . To this end consider the commutative diagram

where $F(G) = F_G$, $F^2(G) = F(F(G))$, τ_G and $\tau_{F(G)}$ are canonical surjections, η_G is induced by $F(\tau_G)$, and (M_G, l_0, l_1) , (Q_G, q_0, q_1) , $(M_G^1, \varphi_0, \varphi_1)$ are the simplicial kernels of τ_G , $\tau_{F(G)}$ and η_G , respectively. It is clear that (A, μ) is a crossed Q_G -G-bimodule induced by $\tau_G l_0 \eta_G$. Let $\widetilde{Der}(Q_G, (A, \mu))$ be the subgroup of $\operatorname{Der}(Q_G, (A, \mu))$ consisting of elements (β, g) such that $\beta(\Delta_Q) = 1$, where $\Delta_Q = \{(x, x), x \in F^2(G)\}$. Consider the set $\widetilde{Z^1}(M_G^1, (A, \mu))$ of all crossed homomorphisms $\alpha : M_G^1 \longrightarrow A$ with $\alpha(\Delta) = 1$ where $\Delta = \{(y, y), y \in Q_G\}$ and M_G^1 acts on A via $\tau_G l_0 \eta_G \varphi_0$. Introduce, in $\widetilde{Z^1}(M_G^1, (A, \mu))$, a relation of equivalence as follows:

$$\alpha' \sim \alpha \quad \text{if} \quad \exists (\beta, g) \in \text{Der}(Q_G, (A, \mu))$$

such that $\alpha'(x) = \beta \varphi_1(x)^{-1} \alpha(x) \ \beta \varphi_0(x), x \in M_G^1$. Define $\overline{H^3}(G, (A, \mu)) = \widetilde{Z^1}(M_G^1, (A, \mu)) / \sim$. Then $\overline{H^3}(G, (A, \mu))$ is a covariant functor from the category of crossed *G*-*R*-bimodules to the category of pointed sets. It can be proved that $\overline{H^3}(G, (A, 1))$ is isomorphic to the classical third cohomology group $H^3(G, A)$ if *A* is a *G*-module.

Acknowledgement

The research described in this publication was made possible in part by Grant MXH200 from the International Science Foundation and by INTAS Grant No 93-2618.

References

1. H. Inassaridze, Non-abelian cohomology of groups. *Georgian Math. J.* 4(1997), No. 4, 313–332.

2. D. Guin, Cohomologie et homologie non abeliennes des groupes. C. R. Acad. Sci. Paris **301**(1985), Serie l,No. 7, 337–340.

3. D. Guin, Cohomologie et homologie non abeliennes des groupes. J. Pure Appl. Algebra **50**(1988) 109–137.

4. J.-P. Serre, Cohomologie galoisienne. Lecture Notes in Math. 5, Springer, Berlin, 1964.

(Received 02.06.1995)

Author's address:

A. Razmadze Mathematical Institute Georgian Academy of Sciences1, M. Aleksidze St., Tbilisi 380093 Georgia