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ON THREE-DIMENSIONAL DYNAMIC PROBLEMS OF
GENERALIZED THERMOELASTICITY

T. BURCHULADZE AND D. BURCHULADZE

Abstract. Lord–Shulman’s system of partial differential equations
of generalized thermoelasticity [1] is considered, in which the finite
velocity of heat propagation is taken into account by introducing a
relaxation time constant. General aspects of the theory of boundary
value and initial-boundary value problems and representation of so-
lutions by series and quadratures are considered using the method of
a potential.

As one knows, in the classical theory of thermoelasticity the velocity
of heat propagation is assumed to be infinitely large. However, in study-
ing dynamic thermal stresses in deformable solid bodies, when the inertia
terms in the equations of motion cannot be neglected, one must take into
account that heat propagates not with an infinite but with a finite velocity;
a heat flow arises in the body not instantly but is characterized by a finite
relaxation time. Presently, there are at least two different generalizations of
the classical theory of thermoelasticity: the first of them, Green–Lindsay’s
generalization [1] is based on using two heat relaxation time constants; the
other one, Lord–Shulman’s generalization [2] admits only one relaxation
time constant. Both generalizations were developed as an attempt at ex-
plaining the paradox of the classical case that the heat propagation velocity
is an infinite value.

In this paper, based on [3], we develop a general theory of solvability,
as well as of construction of approximate and effective solutions of dynamic
problems for the conjugate system of differential equations of thermoelastic-
ity proposed by Lord and Shulman (L−S theory). Green–Lindsay’s theory
(G− L-theory) is developed in [4, 5].
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Note that the use of relaxation time constants much complicates the
basic systems of differential equations and essentially changes the type of
equations.

Interesting historical information and bibliography on these issues can be
found in [6], [7–11], [12].

1. Notation and Definitions

The following notation is introduced:
Rn is an n-dimensional Euclidean space;
Ox1x2x3 is the Cartesian system in R3;
x = (xk), y = (yk), . . . (k = 1, 3) are the points of R3;
|x− y| = [

∑3
k=1(xk − yk)2]1/2 denotes the distance between x and y;

D ⊂ R3 is a finite domain, S ≡ ∂D ∈ L1(α0),
α0 > 0 (Lyapunov surface) [13];
D ≡ D ∪ S;
D− ≡ R3\D is an infinite domain;
Z∞ ≡ {(x, t) : x ∈ D, t ∈ [0,∞[} is a cylinder in R4, t is time, S∞ ≡

{(x, t) : x ∈ S, t ∈ [0,∞[} is the lateral surface of Z∞;
n(y) = (nk(y)), k = 1, 3, is the unit normal vector at the point y ∈ S

directed outside D;
dx = dx1dx2dx3 is an element of volume, dyS is an element of the area

of S at the point y ∈ S;
δjk is Kronecker’s symbol;
i =

√
−1 is the imaginary unit;

∆ ≡ ∆( ∂
∂x ) is a three-dimensional Laplace operator;

v(x, t) = (v1, v2, v3) = ‖vk‖3×1 is a displacement vector (a one-column
matrix);

v4(x, t) is a temperature variation;
T as a superscript denotes transposition;
σjk(x, t) are components of elastic stresses;
εjk(x, t) are strain components;
A( ∂

∂x ) ≡ ‖µδjk∆( ∂
∂x )+(λ+µ) ∂2

∂xj∂xk
‖3×3 is the matrix differential Lamé

operator;
T ( ∂

∂x , n) ≡ ‖µδjk
∂

∂n(x) +λnj(x) ∂
∂xk

+µnk(x) ∂
∂xj

‖3×3 is the matrix ope-
rator of elastic stresses;

an m-dimensional vector f = (f1, . . . , fm) = ‖fk‖m×1 (real- or complex-
valued) with norm |f | = [

∑m
j=1 |fj |2]1/2 is treated as a m × 1 one-column

matrix;
the matrix product is obtained by multiplying a row by a column;

if A = ‖Akj‖m×m is a m × m matrix, then
k
A = ‖Ajk‖m×1 is the

k-th vector-column of the matrix A and we will occasionally write A =
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‖
1
A, . . . ,

m
A‖ = {

1
A, . . . ,

m
A}; obvioulsly, if A and B are m×m matrices and ϕ

is a m× 1 matrix (vector), then

AB =
{

A
1
B, . . . , A

m
B

}

, Aϕ =
m

∑

k=1

k
Aϕk,

ABϕ =
∥

∥

∑

(r,j)

AkrBrjϕj
∥

∥

m×1, (ABT )T ϕ =
∥

∥

∑

(r,j)

AjrBkrϕj
∥

∥

m×1;

(f · ϕ) = fT ϕ =
m

∑

k=1

fkϕk; I = ‖δjk‖m×m is the unit matrix.

Lord–Shulman’s fundamental system of equations and relations of a field
for homogeneous isotropic linear thermoelasticity proposed is written as
follows [1], [12], [15]:

1. A strain and displacement relation

εjk(x, t) =
1
2

(∂vj(x, t)
∂xk

+
∂vk(x, t)

∂xj

)

, j, k = 1, 3,

2. An equation of motion

3
∑

j=1

∂σjk(x, t)
∂xj

+ Xk(x, t) = ρ
∂2vk(x, t)

∂t2
, k = 1, 3,

3. An energy equation

− div q(x, t) + r(x, t) = Cε
∂v4

∂t
+ (3λ + 2µ)αΘ0

∂
∂t

div v,

4. Duhamel–Neuman’s law

σjk(x, t) = 2µεjk(x, t) +
[

λdiv v − (3λ + 2µ)αv4
]

δjk, j, k = 1, 3,

5. A generalized heat conductivity equation

q(x, t) + τt
∂q(x, t)

∂t
= −k grad v4(x, t),

where τt > 0 is the relaxation time constant.
In the above formulas q(x, t) = (q1, q2, q3) is the heat flow vector, r(x, t)

is the heat source; X1, X1, X3 are the given functions; ρ, λ and µ, α, k
and Cε denote respectively the density, Lamé moduli, thermal expansion
coefficient, conductivity and specific heat capacity for zero deformation;
Θ0 is the fixed uniform reference temperature (natural state temperature).
These constants satisfy the natural restrictions [1], [12], [15]:

ρ > 0, k > 0, Cε > 0, α > 0, 3λ + 2µ > 0, Θ0 > 0, τt > 0 (1)
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In the classical case τt = 0.
For v, v4 the above defining relations 1–5 give the basic dynamic system

of partial differential equations of generalized thermoelasticity (L–S theory)

A
( ∂

∂x

)

v(x, t)− γ grad v4(x, t) = ρ
∂2v
∂t2

−X(x, t),

∆v4(x, t) =
1
κ

∂v4

∂t
+

τt

κ
∂2v4

∂t2
+ η

∂
∂t

div v +

+ ητt
∂2

∂t2
div v −X4(x, t),

(2)

where

γ = (3λ + 2µ)α, η =
γΘ0

k
,

1
κ =

Cε

k
; ,

X = (X1, X2, X3), X4 =
r
k

.

For the stress components we have

σjk(x, t) = (λ div v − γv4)δjk + µ
( ∂vj

∂xk
+

∂vk

∂xj

)

, j, k = 1, 3. (3)

We will consider two possible cases of dependence of vk(x, t), k = 1, 4, on
the time t:

I. vk(x, t) = Re[e−iptuk(x, p)] are stationary oscillations with frequency
p > 0;

II. vk(x, t) = 1
2πi

∫ σ+i∞
σ−i∞ eζtuk(x, ζ)dζ, ζ = σ + iq, σ > 0, is the represen-

tation by the Laplace–Mellin’s integral (the general classical case).
One can easily see that in both cases system (2)0 (homogeneous) can be

reduced to the form (with respect to uk(x, ω))

A
( ∂

∂x

)

u(x, ω)− γ grad u4(x, ω) + ρω2u(x, ω) = 0,

∆u4(x, ω) +
iω
κt

u4(x, ω) + iωηt div u(x, ω) = 0,
(4)

where

u = (u1, u2, u3) = ‖uk‖3×1,
1
κt

=
1
κ (1− iωτt),

ηt = η(1− iωτt).
(5)

Note that ω = p > 0 in case I and ω = iζ = −q + iσ in case II.
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2. Energy Identities and Green Formulae

Let V = (v, v4) = ‖vk‖4×1 be an arbitrary regular solution of the homo-
geneous dynamic system (2)0:

V,
∂V
∂t

∈ C1(Z∞) ∩ C2(Z∞).

We introduce the notation

lt ≡ 1 + τt
∂
∂t

, vt ≡ ltv, v4t ≡ ltv4. (6)

Rewrite system (2)0 as

A
( ∂

∂x

)

vt − γ grad v4t = ρ
∂2vt

∂t2
,

∆v4 =
1
κ

∂v4t

∂t
+ η

∂
∂t

div vt.
(7)

Multiplying (7)1 by ∂vT
t

∂t gives

∂vT
t

∂t

[

A
( ∂

∂x

)

vt − γ grad v4t

]

= ρ
∂vT

t

∂t
∂2vt

∂t2
=

ρ
2

∂
∂t

∣

∣

∣

∂vt

∂t

∣

∣

∣

2
. (8)

The following identity holds [13], [14]:
∫

D

{

∂vT
t

∂t
[

Avt − γ grad v4t
]

+ E
(∂vt

∂t
, vt

)

− γv4t div
∂vt

∂t

}

dx =

=
∫

S

∂vT
t

∂t
(Tvt − γnv4t) dS, (9)

where E(v, u) the well-known bilinear form of the theory of elasticity,

E(v, u) =
3λ + 2µ

3
div v div u +

µ
2

∑

(p6=q)

(∂vp

∂xq
+

∂vq

∂xp

)(∂up

∂xq
+

∂uq

∂xp

)

+

+
µ
3

∑

(p,q)

( ∂vp

∂xp
− ∂vq

∂xq

)(∂up

∂xp
− ∂uq

∂xq

)

.

It is easy to verify that E(∂vt
∂t , vt) = 1

2
∂
∂tE(vt, vt) and by virtue of (8)

formula (9) takes the form

d
dt

∫

D

[

ρ
2

∣

∣

∣

∂vt

∂t

∣

∣

∣

2
+

1
2
E(vt, vt)

]

dx− γ
∫

D

v4t div
∂vt

∂t
dx =
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=
∫

S

∂vT
t

∂t
HVt dS, (10)

where

HVt = Tvt − γnv4t.

After multiplying (7)2 by v4t, integrating with respect to D and applying
the Green formula to the Laplace operator we obtain

−γ
∫

D

v4t
∂
∂t

div vt dx =
γ
ηκ

∫

D

v4t
∂v4t

∂t
dt− γ

η

∫

D

v4t∆v4 dx =

=
γ

2κη
d
dt

∫

D

(v4t)2 dx +
γ
η

∫

D

[

grad v4t
]T

grad v4 dx−

−γ
η

∫

S

v4t
∂v4

∂n
dS. (11)

By taking the identity

[

grad v4t
]T

grad v4 = | grad v4|2 +
τt

2
∂
∂t
| grad v4|2

into account and substituting (11) into (10) we finally have

d
dt

∫

D

[

ρ
2

∣

∣

∣

∂vt

∂t

∣

∣

∣

2
+

1
2

E(vt, vt) +
γ

2κη
v2
4t +

+
γτt

2η
| grad v4|2

]

dx +
γ
η

∫

D

| grad v4|2 dx =

=
∫

S

[

∂vT
t

∂t
HVt +

γ
η

v4t
∂v4

∂n

]

dS ≡ MS(V ). (12)

Introducing the notation

J(t) =
1
2

∫

D

[

ρ
∣

∣

∣

∂vt

∂t

∣

∣

∣

2
+ E(vt, vt) +

γ
κη

v2
4t +

γτt

η
| grad v4|2

]

dx. (13)

we rewrite (12) as

dJ(t)
dt

+
γ
η

∫

D

| grad v4|2 dx = MS(V ). (14)
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Note that formula (14) holds for the infinite domain D− ≡ R3\D as well
provided that the vector V (x, t) satisfies the following condition at infinity:

∣

∣

∣

∣

∂|α|V
∂xα1

1 ∂xα2
2 ∂xα3

3 ∂tα4

∣

∣

∣

∣

≤ const ·eσ0t

1 + |x|1+|α|
, |α| = 0, 3, σ0 ≥ 0,

where α = (α1, α2, α3, α4) is the multi-index, |α| =
∑4

k=1 αk.
Let u ∈ C1(D) ∩ C2(D), v ∈ C1(D), u4 ∈ C1(D), A( ∂

∂x )u ∈ L1(D),
S ∈ L1(α0), α0 > 0. Then the identity [14]

∫

D

[

vT (Au− γ grad u4) + E(v, u)− γu4 div v
]

dx =
∫

S

vT HU dS (15)

holds. In particular, if U = (u, u4) is a regular solution of system (4) and
U = (u, u4) is the comple-conjugate vector, then by simple transformations,
from (15) and (14)0 we obtain

∫

D

[

− ρω2|u|2 + E(u, u) +
γ

iω ηt
| gradu4|2 +

γ
κtηt

|u4|2
]

dx =

=
∫

S

[

uT HU +
γ

iω ηt
u4

∂u4

∂n

]

dS. (16)

Let ω = p > 0 be the real parameter. In (16) we pass over to the complex-
conjugate expression and subtract the result from (16); taking into account
that Im E(u, u) = 0,

γ
iωηt

− γ
−iωηt

=
γ

iω|ηt|2
2Re ηt =

2γη
iω|ηt|2

,

γ
κtηt

− γ
κtηt

=
γ

|κt|2|ηt|2
2i Im(κtηt) = 0,

we obtain

2γη
iω|ηt|2

∫

D

| gradu4|2 dx =
∫

S

{

[

uT HU − uT HU
]

+

+
γ

iωηt
u4

∂u4

∂n
+

γ
iωηt

u4
∂u4

∂n

}

dS. (17)

Let now ω = iζ = −q + iσ, σ > 0, which means that we are considering the
case of pseudo-oscillations. This case is an auxiliary means in studying the
general nonstationary problem. Formula (16) takes the form

∫

D

[

− ρζ2|u|2 + E(u, u) +
γ

ζ ηt
| grad u4|2 +

γ
κtηt

|u4|2
]

dx = NS(U) ≡
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≡
∫

S

[

uT HU +
γ

ζ ηt
u4

∂u4

∂n

]

dS, (18)

where
1
κt

=
1
κ (1 + τtζ), ηt = η(1 + τtζ).

Denote by (18) the complex-conjugate expression and obtain the sum
ζNS(U)+ζNS(U); since ζζ2+ζζ

2
= 2σ|ζ|2, ζ+ζ = 2σ, γ

ηt
+ γ

ηt
= 2γη(1+στt)

|ηt|2 ,
ζγ
κtηt

+ ζγ
κtηt

= 2γσ
κη , we finally have

∫

D

[

2σ|ζ|2ρ|u|2 + 2σE(u, u) +
2γη(1 + στt)

|ηt|2
| grad u4|2 +

2γσ
κη

|u4|2
]

dx =

= ζNS(U) + ζNS(U). (19)

Another generalized Green formula is helpful in investigating boundary
value and initial-boundary problems by the method of a potential. To this
end, we introduce the differential (matrix) operators

L
( ∂

∂x

)

≡

∥

∥

∥

∥

∥

∥

∥

∥

∥

A
( ∂

∂x

)

3×3

, −γ gradx 3×1

0 1×3, ∆

∥

∥

∥

∥

∥

∥

∥

∥

∥

4×4

,

L0
( ∂

∂x
,

∂
∂t

)

≡

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

ρδjk
∂2

∂t2 3×3

, 0 3×1

η
∂
∂t

(lt gradx)
1×3

, 1
κ lt ∂

∂t

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

4×4

,

L
( ∂

∂x
,

∂
∂t

)

≡ L
( ∂

∂x

)

− L0
( ∂

∂x
,

∂
∂t

)

.

Obviously, the basic nonstationary homogeneous system (2)0 can be rewrit-
ten as (V = (v, v4))

L
( ∂

∂x
,

∂
∂t

)

V (x, t) = 0,

while system (4) as (U = (u, u4))

L
( ∂

∂x
,−iω

)

U = 0.
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Clearly,

L0
( ∂

∂x
,−iω

)

≡

∥

∥

∥

∥

∥

∥

∥

∥

−ρδjkω2

3×3
, 0 3×1

−iωηt gradx 1×3
, iω

κt

∥

∥

∥

∥

∥

∥

∥

∥

4×4

,

L0
( ∂

∂x
, ζ

)

≡

∥

∥

∥

∥

∥

∥

∥

∥

ρδjkζ2

3×3
, 0 3×1

ηζlζ gradx
1×3

, ζ
κ lζ

∥

∥

∥

∥

∥

∥

∥

∥

4×4

, lζ = 1 + τtζ.

Let ˜L( ∂
∂x ,−iω) be the (Lagrange-)conjugate operator of L( ∂

∂x ,−iω),

˜L
( ∂

∂x
,−iω

)

≡

∥

∥

∥

∥

∥

∥

∥

∥

∥

A
( ∂

∂x

)

+ ρδjkω2

3×3

, −iωηt gradx 3×1

γ gradx 1×3
, ∆ + iω

κt

∥

∥

∥

∥

∥

∥

∥

∥

∥

4×4

,

For the regular in D vectors U = (u, u4) and ˜U = (ũ, ũ4) simple transfor-
mations give

UT
˜L
( ∂

∂x
,−iω

)

˜U − ˜UT L
( ∂

∂x
,−ω

)

U =

=
[

uT A
( ∂

∂x

)

ũ− ũT A
( ∂

∂x

)

u
]

+

+
[

u4∆ũ4 − ũ4∆u4
]

+ γ div(u4ũT )− iωηt div(ũ4uT ).

Therefore, by the (Gauss–Ostrogradski’s) divergence formula we finally
obtain

∫

D

[

UT
˜L
( ∂

∂x
,−iω

)

˜U − ˜UT L
( ∂

∂x
,−iω

)

U
]

dx =

=
∫

S

[

UT
˜R˜U − ˜UT RU

]

dS, (20)

where

RU ≡
(

HU,
∂u4

∂n

)

, ˜RU ≡
(

˜HU,
∂u4

∂n

)

,

HU ≡ Tu− γnu4, ˜HU ≡ Tu− iωηtnu4.
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Let further

PU ≡ (HU,−u4), ˜PU ≡ ( ˜HU,−u4), QU ≡
(

u,
∂u4

∂n

)

.

Now formula (20) can be represented as
∫

D

[

UT
˜L
( ∂

∂x
,−iω

)

˜U − ˜UT L
( ∂

∂x
,−iω

)

U
]

dx =

=
∫

S

[

(QU)T
˜P ˜U − (Q˜U)TPU

]

dS. (21)

3. Decomposition of a Regular Solution. The Properties of
Characteristic λ-parameters

In this section we will prove several theorems and lemmas to be essentially
used in constructing the general theory of solvability of boundary value
problems.

Theorem 1. In the domain D ⊂ R3 any solution U = (u, u4) of the
homogeneous system (4) of the class U ∈ C2(D) belongs to the class U ∈
C∞(D) and admits a representation

U = (u, u4) =
(

u(1) + u(2), u4
)

, rotu(1) = 0, div u(2) = 0,

(∆ + λ2
1)(∆ + λ2

2)
(

u(1)

u4

)

= 0, (∆ + λ2
3)u

(2) = 0, λ2
3 =

ρω2

µ
,

(22)

while the characteristic constants λ2
k(ω), k = 1, 2, are the roots of the

quadratic equation

z2 −
[

ρ0ω2(1 + εt) +
iω
κ (1 + ε)

]

z +
[

ω4 ρ0

κ τt +
iω
κ ρ0ω2

]

= 0, (23)

where

ρ0 = ρ(λ + 2µ)−1, εt =
τt

κρ0
(1 + ε), ε =

κγη
λ + 2µ

(ε � 1).

Proof. The fact that the vector U belongs to the class C∞(D) is established
by means of the formula for a general representation of a regular solution
of system (4) using the matrix of fundamental solutions of the considered
differential operator of generalized elastothermoelasticity (see [14], [15]).

Since ∆ ≡ grad div− rot rot, formula (4) implies

u = u(1) + u(2),

u(1) = grad
(

− λ + 2µ
ρω2 div u +

γ
ρω2 u4

)

, u(2) = rot
( µ

ρω2 rotu
)

. (24)
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Obviously, rot u(1) = 0, div u(2) = 0.
Taking into account the value λ2

3, we find from (24) that

(∆ + λ2
3)u

(2) = 0.

We have

(λ + 2µ)∆div u(1) + ρω2 div u(1) − γ∆u4 = 0. (25)

By putting the value

div u ≡ div u(1) = − 1
iωηt

∆u4 −
1
κtηt

u4

from eq. (4)2 into (25) we obtain

(∆ + λ2
1)(∆ + λ2

2)u4 = 0. (26)

Hence it easily follows that (∆ + λ2
1)(∆ + λ2

2) div u(1) = 0 and by (24) we
finally obtain

(∆ + λ2
1)(∆ + λ2

2)u
(1) = 0.

Theorem 2. If the vector-functions v(k)(x) = ‖v(k)
j ‖3×1, u(2)(x) =

‖u(2)
j ‖3×1 and the scalar functions vk(x), k = 1, 2, are regular solutions

of the equations

(∆ + λ2
k)

(

v(k)

vk

)

= 0, k = 1, 2, (∆ + λ2
3)u

(2) = 0, div u(2) = 0,

and are related through the formula

v(k)(x) = γ
[

ρω2 − λ2
k(λ + 2µ)

]−1
grad vk, k = 1, 2,

then the vector

U(x) =
(

u(1)(x) + u(2)(x), u4(x)
)

,

u(1)(x) = v(1)(x) + v(2)(x), u4(x) = v1(x) + v2(x),

is a regular solution of system (4).

Proof. By using the conditions of the theorem and performing some simple
calculations we obtain

A
( ∂

∂x

)

u− γ gradu4 + ρω2u =

= µ∆u + (λ + µ) grad div u− γ gradu4 + ρω2u =
[

µ∆u(2) + ρω2u(2)] +

+
[

(λ + 2µ)∆(v1 + v(2)) + ρω2(v(1) + v(2))− γ grad(v1 + v2)
]

=

=
{

[

ρω2 − (λ + 2µ)λ2
1

]

v(1) − γ grad v1

}

+
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+
{

[

ρω2 − (λ + 2µ)λ2
2

]

v(2) − γ grad v2

}

= 0.

Similarly, we have

∆u4 +
iω
κt

u4 + iωηt div u =

= ∆(v1 + v2) +
iω
κt

(v1 + v2) + iωηt div(v(1) + v(2)) =

=
[

( iω
κt
− λ2

1

)

v1 + iωηt div v(1)
]

+
[

( iω
κt
− λ2

2

)

v2 + iωηt div v(2)
]

=

=
[ iω
κt
− λ2

1 −
γλ2

1iωηt

ρω2 − λ2
1(λ + 2µ)

]

v1 +
[ iω
κt
− λ2

2 −
γλ2

2iωηt

ρω2 − λ2
2(λ + 2µ)

]

v2 =

=
2

∑

k=1

vk

ρω2 − λ2
k(λ + 2µ)

[

iω
κt

ρω2 − iω
κt

(λ + 2µ)λ2
k −

−λ2
kρω2 + λ4

k(λ + 2µ)− γλ2
kiωηt

]

=

=
2

∑

k=1

vk

ρω2 − λ2
k(λ + 2µ)

{

iω
κt

ρω2 + λ4
k(λ + 2µ)−

−λ2
k

[ iω
κt

(λ + 2µ) + ρω2 + iωγηt

]

}

=

=
2

∑

k=1

vk

ρω2 − λ2
k(λ + 2µ)

[

iω
κt

ρω2 + λ4
k(λ + 2µ)− λ2

k(λ + 2µ)(λ2
1 + λ2

2)
]

=

=
2

∑

k=1

vk

ρω2 − λ2
k(λ + 2µ)

[ iω
κt

ρω2 − (λ + 2µ)λ2
1λ

2
2

]

≡ 0.

Note that the parameter ε = κγη
λ+2µ is a physical constant and for most

real bodies ε � 1 [16]. When ε = 0, the deformation and temperature
fields get completely separated and we then have a separate (not conjugate)
theory by virtue of which (23) implies

λ2
1 =

iω
κ +

ω2τt

κ , λ2
2 =

ρω2

λ + 2µ
, λ2

3 =
ρω2

µ
.

Clearly, this case is of no particular interest for us as the investigation
of boundary value problems actually reduces to problems of the classical
theory of elasticity and thermal conductivity taken separately. In what
follows it will therefore be assumed that ε > 0.

In investigating boundary value problems for system (2) and (4) much
importance is attached to the parameters λk(ω) depending on the coeffi-
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cients of the initial systems of differential equations by formula (23). These
properties are described by the following lemmas.

Lemma 1. If ω = p > 0, ε > 0 (stationary oscillation), then λ2
1 and λ2

2
are complex numbers.

Proof. If we assume that the opposite is true, then eq. (23) should have the
real root z = α, which in turn gives

α =
ρ0ω2

1 + ε
, α2 − ρ0ω2(1 + εt)α + ω4 ρ0

κ τt = 0.

Hence we readily obtain the contradiction ε = 0. Note that if the relations

τt =
κρ

λ + 2µ
· 1− ε
(1 + ε)2

, ω =
1
κ (1 + ε)

√

ρ2
0(1 + εt)2 − 4ρ0τt

κ

,

are not fulfilled simultaneously (which will be assumed in what follows),
then λ2

1 6= λ2
2.

Thus, for stationary oscillations, λ1 and λ2 are the complex numbers
admitting two signs, and therefore without loss of generality it can always
be assumed that Im λk > 0, k = 1, 2.

Lemma 2. If ε > 0, ω = iζ = −q + iσ, σ > 0, then in the complex
half-plane

Πσ∗0 =
{

ζ : Re ζ > σ∗0
}

where

σ∗0 = max{σε, 0}, σε =
ρ0κ[2− (1 + εt)(1 + ε)]
[ρ0κ + τt(ε− 1)]2 + 4ετ2

t

the parameters λk, k = 1, 3, possess the properties:
1. Imλk > 0;
2. λ1 6= λ2 6= λ3;
3. λk = λk(ζ) are the analytic functions ζ which admit estimates λk(ζ) =

O(|ζ|) as ζ →∞.

Proof. For λ3(ζ) =
√

ρ
µ · iζ these properties are obvious in the half-plane

Re ζ > 0. We will show that they are valid for λ1(ζ) and λ2(ζ) as well.
By (23) we have

z1,2 = −ρ0(1 + εt)ζ + (1 + ε)/κ
2

±
√

d, (∗)

where

zk =
λ2

k

ζ
, d =

1
4
[

ρ0(1 + εt)ζ + (1 + ε)/κ
]2 − ρ0

κ (1 + τtζ)ζ.
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One can readily see that the zeros of the discriminant d(ζ) are

ζ1,2 = σε ± i

√

|d1|
1
κ2 [ρ0κ + τt(ε− 1)]2 + 4ετ2

t
,

where

d1 =
[ρ0

κ (1 + εt)(1 + ε)− 2ρ0

κ

]

− (1 + ε)2

κ2

[

ρ2
0(1 + εt)2 −

4ρ0

κ τt

]

=

= −4ρ2
0

κ2 ε < 0.

Hence it is clear that if Re ζ > σ∗0 , then the radical in (∗) cannot
have branching points (d 6= 0) and, after making an appropriate choice of
branches, one can regard zk(ζ), k = 1, 2, as analytic functions of ζ, z1 6= z2,
zk(ζ) = O(|ζ|). Therefore λ2

k(ζ) = zk(ζ)ζ are the analytic functions of ζ
and λ2

k(ζ) = O(|ζ|2), and, since zk 6= 0, ζ 6= 0, it can be assumed that
λk(ζ) are the analytic functions of ζ and λk(ζ) = O(|ζ|), k = 1, 2. Finally,
zk(ζ), k = 1, 2, as analytic functions of ζ in the half-plane Πσ∗0 , cannot
coincide with expressions of form |ak|2ζ, which are not analytic functions
of ζ. Therefore in the half-plane Πσ∗0 λ2

k(ζ) are either complex- or real-
valued negative numbers [4] and it can always be assumed that Imk(ζ) > 0,
k = 1, 2.

The investigation of boundary value problems rests essentially on the
above theorems and lemmas.

4. Uniqueness Theorems. Fundamental Solutions and Principal
Potentials

Like in the classical case [13], [14], the constructed mathematical methods
enable one to perform a complete mathematical analysis of boundary value
problems in all cases: stationary oscillations, pseudo-oscillations and general
dynamics.

We will briefly discuss the solution uniqueness. By virtue of Theorem 1
and Lemma 1 we introduce

Definition 1. A regular in the infinite domain D− ≡ R3\D solution
U = (u(1)+u(2), u4) of the homogeneous oscillation equation (4) (ω = p > 0)
satisfies the thermoelastic radiation condition at infinity if the following
asymptotic estimates hold:

(

u(1)(x)
u4(x)

)

= O(|x|−1),
∂

∂xk

(

u(1)(x)
u4(x)

)

= O(|x|−2), k = 1, 3,

u(2)(x) = O(|x|−1),
∂u(2)(x)

∂|x|
− iλ3u(2)(x) = o(|x|−1),

(27)
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where ∂
∂|x| is the derivative along the radius-vector of the point x.

Theorem 3. A regular in D− vector U = (u, u4) ∈ C1(D
−

) ∩C2(D−),
which is a solution of the homogeneous oscillation system (4) (ω = p > 0)
satisfying at infinity the radiation condition and admissible homogeneous
conditions on S [14], is identically zero in D−.

The proof immediately follows from identity (17) written for the domain
DR ≡ D− ∩ {x : R3 : |x| < R}, where R is an arbitrary sufficiently large
real number (see [14], pp. 242–243). The uniqueness theorems do not hold
for the internal oscillation problems (for the finite domain D) because of the
emergence of a discrete eigenfrequency spectrum in some boundary value
problems of a metaharmonic equation. Such an investigation is carried
out similarly to the case of classical thermoelasticity assuming that in all
homogeneous internal problems u4(x) ≡ const [13], [14].

Theorem 4. A regular in D vector U ∈ C1(D) ∩C2(D), which is a so-
lution of the homogeneous pseudo-oscillation system (4) (ω = iζ, Re ζ > 0)
satisfying one of the admissible homogeneous boundary conditions on S, is
identically zero.

The proof immediately follows from identity (19) (see [14], p.245). Note
that Theorem 4 remains valid for the infinite domain D− as well (external
problems) if the solution U = (u, u4) satisfies at infinity the asymptotic
conditions

U = O(|x|−1),
∂U
∂xk

= O(|x|−2), k = 1, 3. (28)

Theorem 5. A regular in the cylinder Z∞ vector V = (v, v4) ∈ C1(Z∞)
∩ C2(Z∞), which is a solution of the homogeneous nonstationary system
(2)0 satisfying the homogeneous initial conditions V |t=0 = ∂V

∂t |t=0 = 0 and
the corresponding admissible homogeneous boundary conditions on S∞, is
identically zero.

Proof. (14) implies MS(V ) ≡ 0 by virtute of the boundary condition J ′(t)
≤ 0. Therefore J(t) is a nonincreasing function t ≥ 0. On the other hand,
one easily obtains J(0) = 0 and therefore J(t) ≤ 0 for t ≥ 0. But by (13)
J(t) ≥ 0, i.e., J(t) = 0, which in turn gives vt(x, t) = 0, v4t(x, t) = 0,
t ≥ 0, x ∈ D. Thus we finally have ∀x ∈ D, t ≥ 0 : τt

∂V
∂t + V = 0, i.e.,

V (x, t) = C(x)e−
1

τt
t, and by virtue of the initial condition V |t=0 = 0 we

will have v = 0, v4 = 0. The theorem also holds for the external (for the
infinite domain D−) initial-boundary problems.

As is well-known, for problems (both stationary and general dynamic)
of the conjugate theory of classical thermoelasticity there presently exists a
thoroughly developed mathematical theory of solvability which is as general
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as the available theory for problems of classical elasticity. The final results
obtained in this direction are presented in [13], [14], [15].

Further investigations based on the above-presented results showed that
the same methods (the method of a potential, theory of multidimensional
singular integral equations, Fourier and Laplace–Mellin integral transfor-
mation and others) enable one to construct a general mathematical theory
of solvability of stationary and nonstationary problems also for problems
of the conjugate theory of the nonclassical theory of thermoelasticity by
Green–Lindsay (G–L theory) and Lord–Shulman (L–S theory) [3], [4], [5],
[15],

In our studies we mostly used the matrix of fundamental solutions of the
considered differential operators L( ∂

∂x ,−iω) and other singular solutions.
These solutions are constructed explicitly in terms of elementary functions,
which is especially important for obtaining effective and approximate solu-
tions.

The matrix of fundamental solutions has the form [14, 17]:

Φ(x,−iω) =
∥

∥Φjk(x,−ω)
∥

∥

4×4,

Φkj(x,−iω) =
3

∑

l=1

{

(1− δk4)(1− δj4)
( δkj

2πµ
δ3l − αl

∂2

∂xk∂xl

)

+

+βl

[

iωηtδk4(1− δj4)
∂

∂xj
− γδj4(1− δk4)

∂
∂xk

]

+ δk4δj4γl

}

eiλl|x|

|x|
,

k2
1 =

ρω2

λ + 2µ
, βl =

(−1)l(δ1l + δ2l)
2π(λ + 2µ)(λ2

2 − λ2
1)

,
3

∑

l=1

βl = 0,

γl =
(−1)l(λ2

l − k2
1)(δ1l + δ2l)

2π(λ2
2 − λ2

1)
,

3
∑

l=1

γl = 0,

αl =
(−1)l(1− iω

κt
λ−2

l )(δ1l + δ2l)

2π(λ + 2µ)(λ2
2 − λ2

1)
− δ3l

2πρω2 ,
3

∑

l=1

αl = 0.

The behavior of the fundamental matrix largely depends on the property of
the characteristic parameters λk, k = 1, 3.

The relation ˜Φ(x,−iω) = ΦT (−x,−iω) holds, where ˜Φ(x,−iω) is the
matrix of fundamental solutions of the conjugated operator ˜L( ∂

∂x ,−iω).
Note that the matrix of fundamental solutions of the static operator

L( ∂
∂x ) (ω = 0) has the form:

Φ(x) =
λ + µ

4πµ(λ + 2µ)
×
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×

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2(λ + 2µ)
λ + µ

δjk

|x|
− ∂2|x|

∂xj∂xk
3×3

,
µγ

λ + µ
grad |x|

3×1

0 1×3,
2(λ+2µ)µ

λ+µ · 1
|x|

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

.

We have

Φ(x,−iω)− Φ(x) = const +O(|x|),
∂

∂xp

[

Φ(x,−iω)− Φ(x)
]

= O(1), p = 1, 3,

∂2

∂xp∂xq

[

Φkj(x,−iω)− Φkj(x)
]

= O
(

|x|−1), k, j = 1, 3,

k = j = 4, p, q = 1, 3,

∂2

∂xp∂xq

[

Φkj(x,−iω)− Φkj(x)
]

= O(1), k = 1, 3, j = 4,

and k = 4, j = 1, 3.

Fundamental solutions are used in a usual manner to construct new sin-
gular solutions of the equations which serve as measures of the generalized
potentials of the considered boundary value problems.

Principal potentials for system (4) are written as:

V (x, ϕ) =
∫

S

Φ(x− y,−iω)ϕ(y) dyS (the simple-layer potential);

W (x, ϕ) =
∫

S

[

˜R
( ∂

∂y
, n

)

˜Φ(y − x,−iω)
]T

ϕ(y) dyS

(the double-layer potential);

M (1)(x, ϕ) =
∫

S

[

˜P
( ∂

∂y
, n

)

˜Φ(y − x,−iω)
]T

ϕ(y) dyS,

M (2)(x, ϕ) =
∫

S

[

Q
( ∂

∂y
, n

)

˜Φ(y − x,−iω)
]T

ϕ(y) dyS

the mixed-type potentials;

U(ψ)(x) ≡ U(x, ψ) =
∫

D

Φ(x− y,−iω)ψ(y) dy (the volume potential).
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By virtue of the above constructed mathematical tool the investigation
of these potentials, as well as their application in the theory of boundary
value problems are accomplished in the same way as in classical thermoe-
lasticity [13], [14]. Therefore all the results obtained in [14] on classical
thermoelasticity for oscillations and pseudo-oscillations remain valid in the
considered case as well. As for nonstationary problems of general dynamics,
they demand a separate investigate, since, for instance, the fourth equation
of system (2) is not a parabolic but a hyperbolic one with respect to v4(x, t).
The “compatibility” and other conditions will be changed accordingly [14].
However we do not intend to dwell on this topic here.

Remark. By Theorem 1 and Lemma 1 an explicit expression of the funda-
mental matrix Φ(x−y,−iω) containing expressions of the form exp(iλk|x−
y|), k = 1, 3, implies that the radiation conditions (27) are satisfied by each
column- vector of this matrix, while for pseudo-oscillations condition (28)
is satisfied due to Lemma 2. Thus the constructed potentials possess the
required properties at infinity. We note further that using (20) and (21) one
can derive formulas for general integral representations of an arbitrary reg-
ular vector, which can in turn be used as a basis for investigating boundary
value problems and as a source of new estimates.

5. Completeness Theorem

We will prove here some completeness theorems for the definite sets of
vector-functions generated by the matrix of fundamental solutions Φ(x,−iω).
In doing so, a sufficiently general situation will be considered. These theo-
rems underlie the construction of approximate solutions of the correspond-
ing boundary value problems by the Riesz–Fisher–Kupradze method (the
method of discrete singularities).

Let: Dk ⊂ R3 be a finite domain with the boundary Sk ∈ L2(α0),
α0 > 0, (Sk ∩ Sj = ∅, k 6= j = 0, m), S0 cover all the other domains but
the latter Sj not cover one another; Dk ≡ Dk ∪ Sk, S ≡ S+ ≡ ∪m

k=0Sk,
D+ ≡ D0\ ∪m

k=1 Dk, D− ≡ R3\ ∪m
k=1 Dk be an infinite connected domain

with the boundary S− ≡ ∪m
k=1Sk; ˜Dk be a domain entirely lying strictly

within Dk: ˜Dk b ˜D0, k = 1,m; ˜D0 be a domain covering D0; D0 b ˜D0;
˜Sk = ∂ ˜Dk, k = 0,m; ˜S ≡ ˜S+ ≡ ∪m

k=0
˜Sk, ˜S− ≡ ∪m

k=0
˜Sk. Clearly, S∩ ˜S = ∅,

S− ∩ ˜S ≡ ∅.
Denote by {xk}∞k=1 a dense everywhere countable set of points on the

auxiliary surface ˜S. We introduce the matrix

M(y − x,−iω) =
∥

∥

1
M,

2
M,

3
M,

4
M

∥

∥

4×4,
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where

M(y − x,−iω) =

=







































Φ(y − x,−iω), y ∈
m1∪
k=0

Sk, x ∈ R3,

R
( ∂

∂y
, n

)

Φ(y − x,−iω), y ∈
m2∪

k=m1+1
Sk, x ∈ R3,

Q
( ∂

∂y
, n

)

Φ(y − x,−iω), y ∈
m3∪

k=m2+1
Sk, x ∈ R3,

P
( ∂

∂y
, n

)

Φ(y − x,−iω), y ∈
m
∪

k=m3+1
Sk, x ∈ R3,

(29)

mj , j = 1, 3, m are arbitrary natural numbers; 0 ≤ m1 ≤ m2 ≤ m3 ≤ m.

Theorem 6. The countable set of vectors

{
j

M(y − xk, ζ)
}∞, 4

k=1, j=1, y ∈ S′ ≡
m
∪

k=0
Sk (30)

is linearly independent and complete in the (vector) Hilbert space L2(S).

Proof. a) Linear Independence. By assuming that the opposite is true we
have

4
∑

j=1

N
∑

k=1

cjk

j
M(y − xk, ζ) ≡ 0, y ∈ S, (31)

where at least one cjk 6= 0, N is an arbitrary natural number. Consider the
vector

V (x) =
4

∑

j=1

N
∑

k=1

cjk

j
Φ(y − xk, ζ).

By (31) V (x) is a regular in D+ solution of the homogeneous problem
M+

0 (ζ) : ∀x ∈ D+ : L( ∂
∂x , ζ)V = 0; ∀z ∈ Sk, k = 0,m1 : V +(z) = 0;

∀z ∈ Sk, k = m1 + 1, . . . , m2 : [RV (z)]+ = 0; ∀z ∈ Sk, k = m2 + 1, . . . , m3 :
[QV (z)]+ = 0; ∀z ∈ Sk, k = m3 + 1, . . . , m : [PV (z)]+ = 0. Therefore by
virtue of Theorem 4 V (x) ≡ 0, x ∈ D+. Hence, since V is analytic, we have

V (x) ≡ 0, x ⊂ ˜D0\ ∪m
k=1

˜Dk. Further, by making the point x approach
xk, k = 1, N , and repeating the standard reasoning from [13] we obtain the
contradiction cjk = 0, j = 1, 4, k = 1, N .

b) Completeness. Let ϕ ∈ L2(S) be an arbitrary four-dimensional vector.
Since L2(S) is a complete Hilbert space, the necessary and sufficient condi-
tion for set (29) to be complete consists in that the orthogonality condition

∫

S

j
MT (y − xk, ζ)ϕ(y) dS = 0, j = 1, 4, k = 1,∞, (32)
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would imply the equality ϕ(y) = 0 almost everywhere on S.
Consider the mixed-type potential

˜M(ϕ)(x) ≡ ˜M(x, ϕ) =
m1
∑

k=0

∫

Sk

˜Φ(x− y, ζ)ϕ(y) dyS +

+
m2
∑

k=m1+1

∫

Sk

[

R
( ∂

∂y
, n

)

Φ(y − x, ζ)
]T

ϕy dS +

+
m3
∑

k=m2+1

∫

Sk

[

Q
( ∂

∂y
, n

)

Φ(y − x, ζ)
]T

ϕy dyS +

+
m

∑

k=m3+1

∫

Sk

[

P
( ∂

∂y
, n

)

Φ(y − x, ζ)
]T

ϕy dyS. (33)

Using (29), (30), (32) and assuming that points xk, k = 1,∞, are dense
everywhere on ˜S, we have ˜M(x, ϕ) ≡ 0, x ∈ ˜S. Hence, by the uniqueness
theorem for the conjugate problem, we readily obtain

˜M(x, ϕ) = 0, x ∈
m
∪

k=1
˜Dk ∪

(

R3\ ˜D0
)

. (34)

Since ˜M(x, ϕ) is analytic in the domain R3\ ∪m
k=0 Sk, (34) implies [13]

˜M(x, ϕ) = 0, x ∈
m
∪

k=1
Dk ∪

(

R3\D0
)

, ϕ ∈ C(1,α)(S). (35)

To solve the homogeneous singular integral equations [13] we have used
here some theorems of the embedding type. Applying familiar theorems of
the Liapunov-Tauber type (see [13], [14], [15]) to (35), we conclude that
˜M(x, ϕ) is a regular solution of the homogeneous boundary value problem
˜M+

0 (ζ):

∀x ∈ D+ : ˜L
( ∂

∂x
, ζ

)

˜M(x, ϕ) = 0,

∀z ∈
m1∪
k=0

Sk : ˜M+(z, ϕ) = 0, ∀z ∈
m2∪

k=m1

Sk :
[

˜R˜M(z, ϕ)
]+

= 0,

∀z ∈
m3∪

k=m2

Sk :
[

˜Q˜M(z, ϕ)
]+

= 0, ∀z ∈
m
∪

k=m3

Sk :
[

˜P˜M(z, ϕ)
]+

= 0,

and therefore, by the uniqueness theorem,

˜M(x, ϕ) = 0, ∀x ∈ D+. (36)

Finally, relations (35) and (36) give in turn ϕ(y) = 0, y ∈ S, i.e., ϕ(y) = 0,
which completes the proof of Theorem 6.
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Replace, in (29), y ∈ ∪m1
k=0S by y ∈ ∪m1

k=1Sk and denote by M ′(y−x,−iω)
the matrix M(y − x,−iω) (this means that the surface S0 “expands” to
infinity).

By a reasoning similar to the above one can prove the following theorems:

Theorem 7. A countable set of vectors

{
j

M(y − xk,−ip)
}∞, 4

k=1, j=1, p > 0, y ∈ S ≡
m
∪

k=0
Sk,

is linearly independent and complete in the space L2(S) if p2 is different
from the eigenvalues of the homogeneous problem M+

0 (−ip).

Theorem 8. A countable set of vectors

{
j

M ′(y − xk, ζ)
}∞, 4

k=1, j=1, y ∈ S− ≡
m
∪

k=1
Sk,

is linearly independent and complete in L2(S−).

Theorem 9. A countable set of vectors

{
j

M ′(y − xk,−ip)
}∞, 4

k=1, j=1, p > 0, y ∈ S−,

is linearly independent and complete in L2(S−).

(In Theorems 8 and 9 {xk} ∈ ˜S− ≡ ∪m
k=1

˜Sk is a dense everywhere count-
able set of points).

6. Solution Continuation Theorems

As is well known, in the three-dimensional domain with the boundary
whose some part is plane, a regular solution of the Laplace (also Helmholtz)
equation analytically continues across this plane part into an additional do-
main which is the mirror reflection of the initial domain. In that case the
continuable solutions must satisfy additional homogeneous conditions im-
posed on the plane part of the boundary. This property known by the name
of the symmetry principle is important in solving effectively (in quadratures)
the boundary value problems for some classes of infinite domains. This prin-
ciple was generalized by E. I. Obolashvili for equations of classical elasticity
[18], [19], by V. D. Kupradze and T. V. Burchuladze for equations of con-
jugate thermoelasticity, and by T. V. Burchuladze for systems of equations
of elastothermodiffusion [15].

Let: Σ be the plane part of the boundary of the domain D given by the
equation

∑3
k=1 bkxk + b4 = 0; x̂ = (x̂1, x̂2, x̂3) be the mirror reflection of

the point x ∈ D in Σ (it is assumed that D lies on one side of Σ),

̂U(x) = (û, û4) =
∥

∥ûk(x)
∥

∥

4×1,
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û4(x) = b−2
3

∑

l=1

(

2bkbl − δlkb2)u(x̂), k = 1, 3,

û4(x) = −u4(x̂), b2 =
3

∑

k=1

b2
k.

Theorem 10. If U(x) = (u, u4) = ‖uk(x)‖4×1 is a regular in D solution
of the homogeneous system (4), satisfying, on Σ, the boundary conditions
u− n(u · n) = 0, (HU · n) = 0, u4 = 0, then the vector V (x) = ‖vk(x)‖4×1,

V (x) =

{

U(x), x ∈ D,
̂U(x), x ∈ ̂D

is a regular solution of system (4) in the domain D ∪ Σ ∪ ̂D.

Theorem 11. If the vector U = ‖uk(x)‖4×1 is a regular in D solution
of the homogeneous system (4), satisfying, on Σ, the boundary conditions
(u·n) = 0, HU−n(HU ·n) = 0, ∂u4

∂n = 0, then the vector V (x) = ‖vk(x)‖4×1,

V (x) =

{

U(x), x ∈ D,
−̂U(x), x ∈ ̂D

is a regular solution of system (4) in the domain D ∪ Σ ∪ ̂D.

The proof of these theorems rests on the equalities

∆
( ∂

∂x

)

= ∆
( ∂

∂x̂

)

, div ̂U(x) = − div U(x̂)

which are easy to verify, and on general integral representations of the so-
lution of system (4) (see [13], [14]).

Like in [20], [21], [22], [23], one can use these theorems and Theorem 2 to
solve effectively (in quadratures) the boundary value problems for system
(4) in the case of infinite domains such as a half-space; right, dihedral
and trihedral angles (a quarter and eighth part of the space); dihedral and
trihedral angles with opening π/2m (m is a natural number), an infinite
layer, a half-layer, a nonhomogeneous (piecewise homogeneous) space, a
half-space and so on.
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