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ON THE INTEGRABILITY OF THE ERGODIC HILBERT
TRANSFORM FOR A CLASS OF FUNCTIONS WITH

EQUAL ABSOLUTE VALUES

L. EPHREMIDZE

Abstract. It is proved that for an arbitrary non-atomic finite mea-
sure space with a measure-preserving ergodic transformation there
exists an integrable function f such that the ergodic Hilbert trans-
form of any function equal in absolute values to f is non-integrable.

Let T be a one-to-one measure-preserving ergodic transformation of a
finite measure space (X, S, µ). For a real integrable function f , f ∈ L(X),
the ergodic Hilbert transform is defined by

H(f)(x) =
∞
∑′

k=−∞

f(T kx)
k

, x ∈ X

(the mark ′ indicates that the 0-th term in the sum is omitted). It exists for
almost all x ∈ X (in the sense of measure µ) and, furthemore, the operator
H satisfies a weak-type (1, 1) inequality

µ(|H(f)| > λ) ≤ c
λ
‖f‖1, λ > 0, f ∈ L(X), (1)

where c is an absolute constant (see, e.g., [2]).
It is well known that the condition f ∈ L lg L implies the integrability

of H(f) (see[1]) but, in general, it is rather difficult to give by means of
any integral classes an exact description of the set of functions f for which
H(f) ∈ L(X). Therefore the theorem below seems to be interesting for
investigation of this set.

Theorem. Let (X, S, µ) be a non-atomic finite measure space, and let
T be a one-to-one measure-preserving ergodic transformation on X. Then
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there exists f ∈ L(X) such that for any function g with the same absolute
values, |g| = |f |, we have

H(g) 6∈ L(X).

Analogous questions as a general problem of “kernel and hull” were for-
mulated by Prof. O. Tsereteli (see [3],[4]). He also proved the following
theorem on the conjugate operator: for any integrable function f on the
unit circle there exists a function g with the same absolute values such that
g̃ is integrable (see [5]).

The proof of the following lemma is simple and we give it for the sake of
completeness.

Lemma. Let T be a one-to-one measure-preserving ergodic transforma-
tion of a non-atomic finite measure space (X, S, µ). Then there exists a set
A of positive measure, µ(A) > 0, such that

µ
(

X\
n
∪

k=0
T kA

)

> 0 (2)

for all positive integers n.

Proof. Let us construct successively a sequence of imbedded measurable
sets (An)∞n=0. Let A0 be a set of positive not full measure, i.e., µ(A0) > 0
and the inequality

µ
(

X\
n
∪

k=0
T kAn

)

> 0 (3)

holds for n = 0. Assume now that A0 ⊃ A1 ⊃ · · · ⊃ An have already
been chosen, µ(An) > 0, and inequality (3) holds for An. Choose A0

n ⊂
X\

n
∪

k=0
T kAn such that

0 < µ(A0
n) <

µ(A0)
2n+2 ,

and assume An+1 = An\T−(n+1)A0
n. Then

A0
n ⊂ X\

( n+1
∪

k=0
T kAn+1

)

. (4)

Let

A =
∞
∩

n=0
An.
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Obviously,

µ(A) = µ(A0)−
∞
∑

n=0

µ(An\An+1) ≥

≥ µ(A0)−
∞
∑

n=0

µ(T−(n+1)A0
n) = µ(A0)−

∞
∑

n=0

µ(A0
n) ≥

≥ µ(A0)−
∞
∑

n=0

µ(A0)
2n+2 =

µ(A0)
2

> 0,

and (2) also holds for each positive integer n because of (4).

Proof of the Theorem. Let A be a set of positive measure with property (2),
and let us represent the space X as a skyscraper construction with the base
A, i.e., assume

X =
∞
∪

n=0

n
∪

k=0
T kBn,

where ∪∞n=0Bn = A and T iBn ∩ T jBm = ∅ when n 6= m, 0 ≤ i ≤ n,0 ≤
j ≤ m. Because of (2), there exists arbitrarily large n for which µ(Bn) > 0.

Let us choose successively an increasing sequence of positive integers
mn, for which µ(Bmn) > 0, and decreasing to 0 sequences δn and εn, n =
1, 2, . . . , which satisfy the inequalities

δ1 <
1
6

,
∞
∑

n=1

εn < 1,

δn · max
1≤i≤n−1

( εi

µ(Bmi)

)

<
1
4

,

εn · log(δn ·mn) > 3,

εn

µ(Bmn)
· c

∞
∑

k=n+1

εk < 1, n = 1, 2, . . . ,

(5)

where c is the constant appearing in inequality (1). After a suitable choice
of εn, δn−1 and mn−1 one can take δn small enough, mn large enough and
εn+1 small enough again to satisfy the second, the third, and the fourth
inequalities, respectively.

To simplify our expressions let us use the following notations: n = [mn
2 ]

([a] is the nearest integer less than or equal to a) and βn = µ(Bmn). Define
fn, n = 1, 2, . . . , by the equalities

fn(x) =







εn

βn
, when x ∈ TnBmn

0, when x ∈ X\TnBmn

.
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Note that ‖fn‖ = εn. Thus the function f ,

f =
∞
∑

n=1

fn,

is integrable and let us show that it has the property required in the theorem.
Let g be any function equal in absolute value to f . Assume

g =
∞
∑

n=1

gn,

where |gn| = fn, n = 1, 2, . . . . Partial sums of this series will be denoted by
hn,

hn =
n

∑

k=1

gk.

The relations below are assumed to hold for almost all x, in particular,
for those x for which the Hilbert transform of the corresponding functions
exists.

Temporarily, suppose n to be fixed. Let us show that the inequality

∣

∣H(hn)(T ix)−H(hn)(T−ix)
∣

∣ ≥ 2εn

iβn
− 12εn

mnβn
− 8δn‖hn−1‖∞, (6)

x ∈ TnBmn , holds for each i, 0 < i < δnmn. Indeed, because of the linearity
of the Hilbert transform,

∣

∣H(hn)(T ix)−H(hn)(T−ix)
∣

∣ ≥
≥

∣

∣H(gn)(T ix)−H(gn)(T−ix)
∣

∣−
∣

∣H(hn−1)(T ix)−H(hn−1)(T−ix)
∣

∣ =

= S1 − S2.

Taking into account that T kx ∈ TnBmn implies T k+jx 6∈ TnBmn , j =
1, 2, . . . ,mn, we have

S1 =
∣

∣

∣

∣

− gn(x)
i

+
∑′

k 6=−i

gn(T k+ix)
k

− gn(x)
i

−
∑′

k 6=i

gn(T k−ix)
k

∣

∣

∣

∣

=

=
∣

∣

∣

∣

− 2gn(x)
i

+
∑

|k|>mn/2

(gn(T k+ix)
k

− gn(T k+ix)
k + 2i

)

∣

∣

∣

∣

≥

≥ 2fn(x)
i

−
∑

|k|>mn/2

fn(T k+ix)
(1

k
− 1

k + 2i

)

≥

≥ 2fn(x)
i

− 2fn(x)
∞
∑

k=0

( 1
mn/2 + kmn

− 1
mn/2 + kmn + 2i

)

≥
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≥ 2fn(x)
i

− 4ifn(x)
m2

n

∞
∑

k=0

1
(1/2 + k)2

≥ 2fn(x)
i

− 12δnfn(x)
mn

=

=
2εn

iβn
− 12δnεn

mnβn

and

S2 =
∣

∣

∣

∣

∑

|k|>(1−δn)mn

(hn−1(T k+ix)
k

− hn−1(T k+ix)
k + 2i

)

∣

∣

∣

∣

≤

≤ 2‖hn−1‖∞
∑

k>(1−δn)mn

(1
k
− 1

k + 2i

)

≤ 4i‖hn−1‖∞
∑

k>(1−δn)mn

1
k2 ≤

≤ 4δnmn‖hn−1‖∞
1

(1− δn)mn − 1
≤ 8δn‖hn−1‖∞.

Thus (6) holds and therefore the inequality

max
(

|H(hn)(T ix)|, |H(hn)(T−ix)|
)

≥

≥ εn

iβn
− 6δnεn

mnβn
− 4δn‖hn−1‖∞ ≡ ηn(i) (7)

is true.
Denote by the same letter ηn the function on X defined by the equalities:

ηn(T ix) = ηn(|i|) whenever x ∈ TnBmn and |H(hn)(T ix)| ≥ ηn(|i|), 0 <
|i| < δnmn; ηn(x) = 0 otherwise.

Obviously,
|H(hn)| ≥ ηn.

Let En = ∪
n−δnmn<i<n+δnmn

T iBmn and

Mn =
{

x ∈ X :
∣

∣

∣H
(

∞
∑

k=n+1

gk

)∣

∣

∣ > 1
}

.

Because of inequality (1),

µ(Mn) ≤ c ·
∥

∥

∥

∞
∑

k=n+1

gk

∥

∥

∥ = c ·
∞
∑

k=n+1

εk.

Taking into account (7), we have
∫

En

|H(g)|dµ ≥
∫

En

∣

∣

∣

∣

|H(hn)| −
∣

∣

∣H
(

∞
∑

k=n+1

gk

)∣

∣

∣

∣

∣

∣

∣

dµ ≥

≥
∫

En\Mn

(|H(hn)| − 1)dµ ≥
∫

En\Mn

ηndµ− µ(En) ≥
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≥
∫

En

ηndµ− ‖ηn‖∞µ(Mn)− µ(En) ≥

≥
[δnmn]
∑

i=1

ηn(i)βn −
εn

βn
µ(Mn)− µ(En) ≥

≥ εn log(δnmn)− 6δnεn[δnmn]
mn

− 4δn‖hn−1‖∞µ(En)−

− εn

βn
c

∞
∑

k=n+1

εk − µ(En).

Thus, by virtue of (5),
∫

En

|H(g)|dµ ≥ 1− 2µ(En),

and since En, n = 1, 2, . . . , are pairwise disjoint, we can conclude that

‖H(g)‖ = ∞.
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