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THE DEPENDENCE OF SOLUTION UNIQUENESS
CLASSES OF BOUNDARY VALUE PROBLEMS FOR


GENERAL PARABOLIC SYSTEMS ON THE GEOMETRY
OF AN UNBOUNDED DOMAIN


A. GAGNIDZE


Abstract. General boundary value problems are considered for gen-
eral parabolic (in the Douglas–Nirenberg–Solonnikov sense) systems.
The dependence of solution uniqueness classes of these problems on
the geometry of a nonbounded domain is established.


The dependence of solution uniqueness classes of the first boundary value
problem for a second-order parabolic equation in an unbounded domain on
the domain geometry was considered in [2]. It was established there that
the uniqueness class could be wider than the solution uniqueness class of
the Cauchy problem for the above-mentioned equation. Analogous results
were obtained in [2] by the method of barrier functions.


In [3] O. Oleinik constructed examples of second-order parabolic equa-
tions in the exponentially narrowing domains for which the solution unique-
ness class for the second boundary value problem is the same as the solution
uniqueness class of the Cauchy problem although the solution uniqueness
class in this domain is wider. Later, in [4] E. Landis showed that if the
domain narrows with a sufficient quickness at |x| → ∞, then the solu-
tion uniqueness class for the second boundary value problem can be wider
than that of the Cauchy problem. In [5] the author considered degenerat-
ing parabolic equations of second order and obtained analogous uniqueness
theorems for general boundary value problems.


This paper deals with general boundary value problems for general pa-
rabolic systems in unbounded domains. Such problems were studied in [6],
where solvability conditions similar to the Shapiro-Lopatinski conditions for
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322 A. GAGNIDZE


elliptic boundary value problems were found. The solvability conditions for
analogous problems in unbounded domains were obtained in [7], [8].


Let ω be an unbounded domain in Rn+1 contained between the planes
{t = 0} and {t = T = const > 0} and the surface γ lying in-between
these planes. Let us consider, in this domain, a linear system of differential
equations with complex-valued coefficients of the form


N
∑


j=1


∑


|α|+2bβ≤sk+tj


aαβ
kj (x, t)Dα


x
∂β


∂tβ
uj(x, t) = 0, (1)


where b, N are positive integers, s1, s2, . . . , sN , t1, t2, . . . , tN , β are integers,
sj ≤ 0 and tj ≥ 0 for all j = 1, 2, . . . , N , aαβ


kj (x, t) ≡ 0 if sk + tj < 0;
N
∑


j=1
(sj + tj) = 2bm, m is a positive integer, α = (α1, . . . , αn) is a multi-


index; |α| = α1 + α2 + · · · + αn; Dα
x = Dα1


x1
·Dα2


x2
· · ·Dαn


xn
, Dxj = −i ∂


∂xj
(i


is the imaginary unit).
The matrix L0(x, t, ξ, σ) with elements


∑


|α|+2bβ≤sk+tj


aαβ
kj (x, t)ξασβ (k, j = 1, 2, . . . , N),


where ξ ∈ Rn, σ is a complex-valued number, ξα = ξα1
1 · · · ξαn


n , will be called
the principal part of the symbol of system (1). It is assumed that system
(1) is uniformly parabolic in the domain ω.


Following [6]–[9], we shall say that system (1) is parabolic in the domain
ω if there exists a positive constant λ0 called a parabolicity constant such
that for any (x, t) ∈ ω and ξ ∈ Rn the roots σ1, . . . , σm of the polynomial
P (x, t, ξ, σ) = det L0(x, t, ξ, σ) with respect to σ satisfy the inequality


Re σs(x, t, ξ) ≤ −λ0|ξ|2b (s = 1, 2, . . . ,m), (2)


where |ξ|2 =
n
∑


j=1
ξ2
i .


Denote by ̂L0(x, t, ξ, σ) the matrix of algebraic complements to the ele-
ments of the matrix L0(x, t, ξ, σ). Then ̂L0 = p · L−1


0 .
On the surface γ, we give general boundary conditions of the form


N
∑


j=1


∑


|α|+2bβ≤qν+tj


bαβ
νj


(x, t)Dα
x


∂β


∂tβ
uj(x, t)


∣


∣


∣


γ
= 0 (ν = 1, 2, . . . , bm), (3)


where qν are some integers.
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Let (x̂,̂t) ∈ γ. Consider the matrix B0(x̂,̂t, ξ, σ) with
∑


|α|+2bβ=qν+tj


bαβ
νj


(x̂,̂t)ξασβ .


Let ν0 = (ν1, . . . , νn) be the unit vector of the external normal to the
surface st̂ = γ∩{x, t : t = ̂t} at the point (x̂,̂t), and η(x̂,̂t) be any tangential
vector to st̂ at the same point. It follows from the parabolicity condition (see
[6] and [10]) that the polynomial P (x̂,̂t, η(x̂,̂t) + τν0(x̂,̂t), σ) with respect
to τ has bm roots, τs


+(x̂,̂t, η, σ), (s = 1, 2, . . . , bm), with positive imaginary
parts if there exists a constant λ1 such that 0 < λ1 < λ0 and the inequalities


Re σ ≥ −λ1|η(x̂,̂t)|2b, |σ|2 + |η(x̂,̂t)|4b > 0


are fulfilled.


We set M+(x̂,̂t, η, σ, τ) =
bm
∏


s=1
(τ − τ s


+(x̂,̂t, η, σ)).


As to the boundary conditions (3) and system (1), it is assumed that the
conditions for being complementary are fulfilled for any point (x̂,̂t) ∈ γ.
The condition for being complementary for system (1) and the boundary
conditions (3) is fulfilled at the point (x̂,̂t) if the rows of the matrix


A(x̂,̂t, η(x̂,̂t) + τν0(x̂,̂t), σ) ≡ B0
(


x̂,̂t, η(x̂,̂t) + τν0(x̂,̂t), σ
)


×


×̂L0
(


x̂,̂t, η(x̂,̂t) + τν0(x̂,̂t), σ
)


are linearly independent modulo the polynomial M+(x̂,̂t, η, σ, τ) with re-
spect to τ provided that Re σ ≥ −λ1|η(x̂,̂t)|2b, |σ|2 + |η(x̂,̂t)|4b > 0.


We set


(
bm−1
∑


s=0


qs
hj(x̂,̂t, η, σ)τs


)


≡ A
(


x̂,̂t, η(x̂,̂t) + τν0(x̂,̂t), σ
)


×


×
(


mod M+(x̂,̂t, η, σ, τ)
)


.


Consider the matrix Q(x̂,̂t, η, σ) with elements qs
bj


(x̂,̂t, η, σ), which has
bm rows and bmN columns (h = 1, 2, . . . , bm; s = 0, 1, . . . , bm − 1; j =
1, 2, . . . , N).


Let ∆k(x̂,̂t, η, σ), (k = 1, 2, . . . , N1) be the minors of order bm of the
matrix Q and let ∆(x̂,̂t, η, σ) = maxk |∆k(x̂,̂t, η, σ)|.


According to [6] the condition for being complementary is fulfilled uni-
formly on the surface γ if


∆γ ≡ inf
(x̂,̂t)∈γ


∆
(


x̂,̂t, η(x̂,̂t), σ
)


> 0, (4)


Re σ ≥ −λ|η(x̂,̂t)|2b, |σ|2 + |η(x̂,̂t)|4b = 1.
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On ω0 = ω ∩ {x, t : t = 0} we give initial conditions of the form


N
∑


j=1


∑


|α|+2bβ≤rh+tj


cαβ
hj


(x, t)Dα
x


∂β


∂tβ
uj(x, t)


∣


∣


∣


ω0


= 0 (h = 1, 2, . . . , m), (5)


where rh are some negative integer numbers and the coefficients cαβ
hj


(x, t) ≡
0, when rh + tj < 0. Consider the matrix C0(x, t, ξ, σ) with elements


∑


|α|+2bβ=rh+tj


cαβ
hj


(x, t)ξασβ .


For system (1) and the boundary conditions (5) the condition for being
complementary is fulfilled at the point (x̂,̂t) ∈ ω if the rows of the matrix
H(x̂,̂t, σ)=C0(x̂,̂t, 0, σ) · ˜L0(x̂,̂t, 0, σ) are linearly independent modulo σm.


Let
( m−1


∑


s=0
ds


hj
(x̂,̂t)σs


)


≡ H(x̂,̂t, σ)(mod σm).


Consider the matrix H(x̂,̂t) with elements ds
hj


(x̂,̂t), which has m rows
and mN columns (s = 0, 1, . . . ,m − 1; j = 1, 2, . . . , N). Let Ek(x̂,̂t),
(k = 1, 2, . . . , L1) be the minors of order m of the matrix H(x̂,̂t) and let


∆(x̂,̂t) = max
k
|Ek(x̂,̂t)|.


According to [6] the condition for being complementary is fulfilled uni-
formly in ω if


∆0 ≡ inf
ω


∆(x̂,̂t) > 0. (6)


We introduce a space of functions, where a solution of problem (1), (3),
(5) will be considered.


Let G ⊂ Rn
x × (0, T ) be a finite domain. Denote by 〈u〉Gp,0 the norm of


the function u in the space Lp(G), 〈u〉Gp,0 =
(


∫


G |u|
p dx dt


)1/p
.


We define the norm ‖u‖G
p,2bs =


∑


|α|+2bβ≤2bs
〈Dα


x
∂β


∂tβ u〉Gp,0, where s is some


positive integer.
Denote by W 2bs,s


p (G) the space of functions obtained by completing with
respect to the norm ‖u‖G


p,2bs the set of smooth functions in G.
As to the surface γ, it is assumed that it satisfies the conditions of uniform


local unbending. By [9] this means the following:







BOUNDARY VALUE PROBLEMS FOR PARABOLIC SYSTEMS 325


In the space Rn+1
x,t we consider the sets


H(x̂,̂t; ρ) =
{


x, t : |xj − x̂j | < ρ, j = 1, 2, . . . , n; −p2b < t− ̂t < ρ2b};


H−(x̂,̂t; ρ) =
{


x, t : |xj − x̂j | < ρ, j = 1, 2, . . . , n; −p2b < t− ̂t ≤ 0};


H+(x̂,̂t; ρ) =
{


x, t : |xj − x̂j | < ρ, j = 1, 2, . . . , n; 0 ≤ t− ̂t < ρ2b};


H+(x̂,̂t; ρ1, ρ2) =
{


x, t : |xj − x̂j | < ρ1, j = 1, 2, . . . , n; 0 ≤ t− ̂t < ρ2b
2


}


.


Analogous sets in the space Rn+1
y,τ are denoted by s(ŷ, τ̂ , ρ), s−(ŷ, τ̂ , ρ),


s+(ŷ, τ̂ , ρ), and s+(ŷ, τ̂ , ρ1, ρ2), respectively.
The surface γ will be said to satisfy the condition of uniform local unbend-


ing with the constants d(ω), M(ω) and γ ∈ Cs∗+t∗,b, where t∗ = max{tj}
and s∗ > q = max(0, q1, . . . , qbm), if the following conditions are fulfilled:


1. For any point (x̂, 0) ∈ ∂ω0 there exists a neighborhood Ox̂,0 such that
the set ω∩Ox̂,0 is homeomorphic under some nondegenerate transformation
of the coordinates Ψx̂,0 = {y = f(x, t), τ = t : f(x̂, 0) = x̂} to the set
s+(0, 0;κ1)∩{yn ≥ 0}, 0 < κ ≤ 1, and the set γ ∩Ox̂,0 is homeomorphic to
s+(0, 0;κ1) ∩ {yn = 0}. It is assumed that the number κ1 does not depend
on the point (x̂, 0) ∈ ∂ω0. Let


M0 = ∪
(x̂,0)∈∂ω0


Ψ−1
x̂,0


(


s+
(


0, 0;
κ1


2


)


∩ {yn ≥ 0}
)


.


2. For any point (x̂, T ) ∈ ∂ωT , where ωT = ω ∩ {t = T}, there exists
a neighborhood Ox̂,T such that the set ω ∩ Ox̂,T is homeomorphic under
some nondegenerate transformation of the coordinates Ψx̂,T = {y = f(x, t),
τ = t − T ; f(x̂, T ) = 0} to the sets s−(0, 0;κ2) ∩ {yn ≥ 0}, and the set
γ ∩ Ox̂,T is homeomorphic to s−(0, 0;κ2) ∩ {yn = 0}, 0 < κ2 ≤ 1. It is
assumed that the number κ2 does not depend on the point (x̂, T ) ∈ ∂ωT .
Let


MT = ∪
(x̂,0)∈∂ωT


Ψ−1
x̂,T


(


s−
(


0, 0;
κ2


2


)


∩ {yn ≥ 0}
)


.


3. The transformations Ψx̂,0, Ψx̂,T , Ψ−1
x̂,0


, Ψ−1
x̂,T


are given by the functions


whose norms in the space Cs∗+t∗,t are bounded by the variable K1(γ) ≥ 1.
4. For any point (x̂,̂t) ∈ γ1, where


γ1 = γ ∩
{


x, t :
1
2


(κ1


2


)2b
(k1(γ)(n + 1))−1 ≤ t ≤


≤ T − 1
2


(κ2


2


)2b
(k1(γ)(n + 1))−1


}


there exists a neighborhood Ox̂,̂t such that the set Ox̂,̂t∩ω is homeomorphic
under some nondegenerate transformation of the coordinates Ψx̂,̂t = {y =
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f(x, t), τ = t− ̂t; f(x̂,̂t) = 0} to the set s(0, 0;κ3) ∩ {yn ≥ 0}, 0 < κ3 ≤ 1,
and the set Ox̂,̂t∩γ is homeomorphic to s(0, 0;κ3)∩{yn = 0}. Assume that


κ3 does not depend on the point (x̂,̂t) ∈ γ1. Let


Mγ1 = ∪
(x̂,wht)∈γ1


Ψ−1
x̂,̂t


(


s
(


0, 0;
κ3


2


)


∩ {yn ≥ 0}
)


.


5. The transformations ψx̂,̂t and ψ−1
x̂,̂t


are given by the functions whose


norms in the space Cs∗+t∗,t are bounded by the variable K2(γ) ≥ 1.
Let K(γ) = max{K1(γ),K2(γ)}. Since the transformations ψ−1


x̂,0
, ψ−1


x̂,T


and ψ−1
x̂,̂t


shorten the distance between the points (n+1)K(γ) times at most,


the distance from any point of the set ω1 = ω\{M0 ∪MT ∪Mγ1} to γ is at
least


d1(γ) = min
{1


2


(κ1


2


)2b
(K(j)(n + 1))−1,


1
2


(κ2


2


)2b
(K(j)(n + 1))−1,


(κ3


2


)2b
(K(j)(n + 1))−1


}


.


We set d(ω) = d1(γ)(n + 1)−
1
2 , M(ω) = K(γ)(n + 1). It is easy to


check that d(ω) < 1, and for any point (x0, t0) ∈ ω1 the parallelepiped
H(x0, t0; ρ) ∩ {0 < t < T}) belongs to ω when ρ < d(ω).


The following statement is proved in [9].


Lemma 1. Let system (1) be uniformly parabolic in ω with the parabol-
icity constant λ0. Let system (1), and the boundary and initial conditions
(3) and (5) satisfy the conditions for being complementary to (4) and (6),
respectively. It is assumed that the surface γ satisfies the condition of a
uniform local unbending with the constants d(ω), M(ω), and γ ∈ Cs∗+t∗,b,
where t∗ = max(t1, . . . , tN ), s∗ > q∗ = max(0, qb1, . . . , qbn). Let the integer
numbers tj, sk, qν , and rh be divisible by 2b, and for the coefficients of
problem (1), (3), (5) the condition


∥


∥aαβ
kj ; Cs∗−sk,b(ω)


∥


∥ +
∥


∥bα′β′


νj ; Cs∗−qν ,b(γ)
∥


∥ +


+ sup
τ∈[0,T ]


∥


∥cα′′β′′


hj ; Cs∗−rh(ω ∩ {t = τ})
∥


∥ ≤ M,


be fulfilled, where M = const > 0, k, j = 1, 2, . . . , N , ν = 1, 2, . . . , bm,
h = 1, 2, . . . , m, |α|+2bβ ≤ sk+tj, |α′|+2bβ′ ≤ qν+tj, |α′′|+2bβ′′ ≤ rh+tj.


Let l > 0, 0 < τ ≤ T , 1 ≤ p < ∞, and 0 < ρ ≤ min(1, d(ω), τ1/2b). Then
for any solution u of the homogeneous problem (1), (3), (5) such that


uj ∈ W s∗+tj ,(s∗+tj)/2b
p


(


ω(l + M(ω)ρ; 0, τ)
)


(j = 1, 2, . . . , N),
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we have an estimate


N
∑


j=1


ρs∗+t∗
∥


∥uj ; W s∗+tj ,(s∗+tj)/2b
p (ω(l; 0, τ))


∥


∥ ≤


≤ C0


N
∑


j=1


ρs∗−tj
∥


∥uj ; Lp(ω(l + M(ω)ρ; 0, τ))
∥


∥, (7)


where ω(l; 0, τ) = ω∩{x, t : |xj | < l, j = 1, 2, . . . , n; 0 < t < τ}; the constant
C0 depends on the set of constants {K} = {λ0, n, s∗,m, b, t1, . . . , tN , s1, . . . ,
sN ,M, M(ω), d(ω)}.


Let us introduce an additional independent variable x0 and assume that
the domain Ω = ω×R1


x0
. In the domain Ω we consider an additional system


of the form


N
∑


j=1


∑


|α|+2bβ≤sk+tj


aαβ
kj (x, t)Dα


x


( ∂β


∂tβ
+ p1D2b


x0


)


νj(x, x0, t) = 0 (8)


(k = 1, 2, . . . , N)


with the boundary conditions on Γ = γ × R1
x0


N
∑


j=1


∑


|α|+2bβ≤qν+tj


bαβ
νj (x, t)Dα


x


( ∂β


∂tβ
+ p1D2b


x0


)


νj(x, x0, t) = 0 (9)


(ν = 1, 2, . . . , bm),


and the initial conditions on Ω0 = ω × R1
x0


N
∑


j=1


∑


|α|+2bβ≤rh+tj


cαβ
hj (x, t)Dα


x


( ∂β


∂tβ
+ p1D2b


x0


)


νj(x, x0, t) = 0 (10)


(h = 1, 2, . . . ,m),


where p1 is a positive integer.
The following statement is also proved in [9].


Lemma 2.
(a) System (8) is uniformly parabolic in the domain Ω with the parabol-


icity constant λ(p1); λ(p1) → λ0 for p1 → ∞, where λ0 is the parabolicity
constant of system (1).


(b) For system (8) and the initial conditions (10), the conditions for being
complementary are fulfilled uniformly in Ω with the constant ∆0 defined by
condition (6).
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(c) There are positive constants A0 and p0 such that, for p1 ≥ p0, system
(8) and the boundary conditions (9) satisfy the conditions for being comple-
mentary uniformly on Γ with the constant ∆Γ ≥ A0∆γ , where ∆γ is defined
by condition (4).


(d) The coefficients of problem (8)–(10) satisfy the conditions of Lemma
1 with the constant M(p1) > 0.


(e) The function v(x, x0, t) = exp{iµx0 − p1µ2bt}u(x, t) is a solution of
problem (8)–(10) for any real parameter µ if only u is a solution of problem
(1), (3), (5).


Let u be a solution of problem (1), (3), (5). Consider two additional
functions w(x, t) = exp{−p1µ2bt}u(x, t) and v(x, x0, t) = exp{iµx0}w(x, t).


By Lemma 2 the function v is a solution of problem (8)–(10) and thus
this problem satisfies the conditions of Lemma 1. Then for v the inequality


N
∑


j=1


ρs∗+t∗
∥


∥vj ; W s∗+tj ,(s∗+tj)/2b(Ω(l; 0, τ))
∥


∥ ≤


≤ C0


N
∑


j=1


ρs∗−tj
∥


∥vj ;Lp(Ω(l + M(ω)ρ; 0, τ))
∥


∥ (11)


holds, where Ω(l; 0, τ) = ω(l; 0, τ)×{|x0| < l} and the constant C0 depends
on the set of constant {Kp1} = {λ(p1), n, s∗, t1, . . . , tN , s1, . . . , sN , b, m,
M(p1), s(ω), M(ω)}.


Lemma 3. For the functions w and v, for any l > 0 and 0 < τ ≤ T the
estimate


∥


∥vj ; Lp(Ω(l; 0, τ))
∥


∥ ≤ Cj
1


∥


∥wj ; Lp(ω(l; 0, τ))
∥


∥ (12)


holds, where the constant Cj
1 depends on l and p.


Proof. It is easy to see that
∥


∥vj ; Lp(Ω(l; 0, τ))
∥


∥ =
∥


∥ exp{iµx0}wj ;Lp(Ω(l; 0, τ))
∥


∥ =


=
( ∫


Ω(l;0,τ)


|wj |pdx dx0 dt
)1/p


= e1/p
( ∫


ω(l;0,τ)


|wj |pdx dt
)1/p


.


Hence follows inequality (12).


Lemma 4. For the functions v and w, for any l > 0, µ > 0, 0 < τ ≤ T
the inequality


Cj
2(µ, l)


∥


∥wj ; Lp(ω(l; 0, τ))
∥


∥ ≤
∥


∥vj ; W s∗+tj ,(s∗+tj)/2b
p (Ω(l; 0, τ))


∥


∥ (13)


holds, where the constant Cj
2 depends only on l, m, p.
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Proof. As in proving Lemma 3, it is easy to see that


∥


∥vj ; W s∗+tj ,(s∗+tj)/2b
p (Ω(l; 0, τ))


∥


∥ =
∑


|α|+2bβ≤s∗+tj


〈Dα
x,x0


∂β


∂tβ
vj〉Ω(l;0,τ)


p,0 ≥


≥ 〈Ds∗+tj
x0


vj〉Ω(l;0,r)
p,0 =


(


∫


Ω(l;0,τ)


µ(s∗+tj)p|wj |pdx0 dx dt
)1/p


=


= µs∗+tj e1/p
∥


∥wj ;Lp(ω(l; 0, τ))
∥


∥.


Hence follows inequality (13) for Cj
2 = µs∗+tj l


1
p .


Lemma 5. For the function w, for any l > 0, 0 < τ ≤ T , and 0 < ρ ≤
min(1, d(ω), τ1/2b) the inequality


N
∑


j=1


Cj
3(µ, ρ, l)ρt∗−tj


∥


∥wj ; Lp(ω(l; 0, τ))
∥


∥ ≤


≤
N


∑


j=1


ρt∗−tj
∥


∥wj ;Lp(ω(l + M(ω)ρ; 0, τ))
∥


∥ (14)


holds, where the constant Cj
3 depends only on µ, ρ, l, p.


Proof. With (12) and (13) taken into account, inequality (11) implies


N
∑


j=1


ρs∗+t∗Cj
2(µ, l)


∥


∥wj ; Lp(ω(l; 0, τ))
∥


∥ ≤


≤ C0


N
∑


j=1


ρt∗−tj Cj
1(l + M(ω)ρ)


∥


∥wj ;Lp(ω(l + M(ω)ρ; 0, τ))
∥


∥.


Hence follows inequality (14) for Cj
3 = e


1
p (l + M(ω)ρ)−1/p 1


C0
(µρ)s∗+tj .


Lemma 6. Let u be a solution of problem (1), (3), (5). Then for the
function w, for any m1 ≥ m0 = const > 0 and 0 < τ ≤ T the inequality


N
∑


j=1


∥


∥wj ;Lp(ω(2m1 ; 0, τ))
∥


∥≤e−
k(m1)


2


N
∑


j=1


∥


∥wj ;Lp(ω(2m1+1, 2m1 ; 0, τ))
∥


∥ (15)


holds, where k(m1) =
[


λ2
2b


2b−1 m1
]


and λ is a positive number, while
ω(l2, l1; 0, τ) = ω(l2; 0, τ)\ω(l1; 0, τ) for l2 > l1.
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Proof. Assume l1 = 2m1 and l2 = 2l1. Let ρ(m1) = 2m1/(M(ω)k(m1)).
Let m0 be a sufficiently large number such that for m1 ≥ m0 the inequal-


ity


2m1/(M(ω)K(m1)) ≤ min(1, d(ω), τ
1
2b ) (16)


is fulfilled.
Let l1(n1) = l1 + n1M(ω)ρ and l1(0) = l1. Then inequality (14) implies


N
∑


j=1


Cj
3ρt∗−tj


∥


∥wj ; Lp(ω(l1 + n1M(ω)ρ; 0, τ))
∥


∥ ≤


≤
N


∑


j=1


ρt∗−tj
∥


∥wj ; Lp(ω(l1 + (n + 1)M(ω)ρ; 0, τ))
∥


∥.


It is easy to see that


Cj
3 =


( 2m1 + n1M(ω)ρ
2m1 + (n1 + 1)M(ω)ρ


) 1
p 1
C0


(µρ)s∗+tj ≥ 2−
1
p C−1


0 (µρ(m1))s∗+tj .


Let µ = λb02
m1


2b−1 . Since ρ(m1)≥2m1(M(ω)λ)−12−
2bm1
2b−1 =(M(ω)λ2


m1
2b−1 )−1,


we have Cj
3 ≥ 2−


1
p C−1


0 bs∗+tj
0 . It is easy to check that if b0 = (2


p+1
p C0e)


1
s∗ ,


then Cj
3 ≥ 2e for any j = 1, 2, . . . , N . In that case we obtain


N
∑


j=1


2eρt∗−tj
∥


∥wj ; Lp(ω(l1(n1); 0, τ))
∥


∥ ≤
N


∑


j=1


ρt∗−tj
∥


∥wj ;Lp(ω(l2(n1); 0, τ))
∥


∥,


where l2(n1) = l1(n1 + 1). Hence we find


N
∑


j=1


(2e− 1)ρt∗−tj
∥


∥wj ; Lp(ω(l1(n1); 0, τ))
∥


∥ ≤


≤
N


∑


j=1


ρt∗−tj
∥


∥wj ; Lp(ω(l2(n1), l1(n1); 0, τ))
∥


∥.


But since 2e− 1 > 0, we have


N
∑


j=1


ρt∗−tj
∥


∥wj ; Lp(ω(l1(n1); 0, τ))
∥


∥ ≤


≤ e−1
N


∑


j=1


ρt∗−tj
∥


∥wj ; Lp(ω(l2(n1), l1(n1); 0, τ))
∥


∥. (17)


If we now apply inequality (17) corresponding to n1 = ν + 1 to estimate
the right-hand side of this inequality corresponding to n1 = ν and assume
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successively that ν = 0, 1, 2, . . . , (k − 1) and also take into account the fact
that the domain ω(l2(k(m1) − 1), l1(k(m1) − 1); 0, τ) is contained in the
domain ω(l2, l1; 0, τ), then, since ρ ≤ 1, we obtain


N
∑


j=1


ρt∗−t)j
∥


∥wj ; Lp(ω(2m1 ; 0, τ))
∥


∥≤e−k(m1)
N


∑


j=1


∥


∥wj ;Lp(ω(2m1+1, 2m1 ; 0, τ))
∥


∥.


Since t∗ − tj ≥ 0 for any j, we have


(ρ(m1))t∗−tj ≥
(


2m1/(M(ω)k(m1))
)t∗−tj ≥ (M(ω)k(m1))tj−t∗ .


Since k(m1) → ∞ as m1 → ∞, the estimate
(


M(ω)k(m1)
)t∗−tj ≤


exp(k(m1)/2) holds for m1 ≥ m0, where m0 is a sufficiently large num-
ber.


Thus for m1 ≥ m0 the function w satisfies the inequality


N
∑


j=1


∥


∥wj ; Lp(ω(2m1 ; 0, τ))
∥


∥≤e−
k(m1)


2


}
N


∑


j=1


∥


∥wj ;Lp(ω(2m1+1, 2m1 ; 0, τ))
∥


∥.


Theorem. Let the domain ω be such that for a solution u of problem
(1), (3), (5) in the domain ω the equality


lim
R→∞


exp{−σR
2b


2b−1 } ·
∥


∥u; Lp(ω(2R, R; 0, T ))
∥


∥ = 0 (18)


holds, where 1 ≤ ρ < ∞ and σ is a positive constant. Then u ≡ 0 in ω.


Proof. Since w(x, t) = exp{−p1µ2bt}u(x, t), inequality (15) implies


N
∑


j=1


∥


∥uj ; Lp(ω(2m1 ; 0, τ))
∥


∥ ≤ exp
{


− 1
2
k(m1) + p1µ2b(m1)τ


}


×


×
N


∑


j=1


∥


∥uj ;Lp(ω(2m1+1, 2m1 ; 0, τ))
∥


∥,


where k(m1) =
[


2
2bm1
2b−1 λ


]


, µ(m1) = λb02
m1


2b−1 .
Let λ = 4σ and τ0 = (4p1λ2b−1b2b


0 )−1. Then for any τ ≤ τ0 we have


N
∑


j=1


∥


∥uj ; Lp(ω(2m1 ; 0, τ))
∥


∥ ≤ exp
{


− σ2
2b


2b−1 m1


}


×


×
N


∑


j=1


∥


∥uj ; Lp(ω(2m2+1, 2m1 ; 0, τ))
∥


∥.
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Passing in the latter inequality to the limit as m1 →∞ and taking into
account condition (18), we find that u ≡ 0 in the domain ω ∩ {x, t : 0 ≤
t ≤ τ0}. Next we find that u ≡ 0 in the domains ω ∩ {x, t : τ0 ≤ t ≤ 2τ0},
ω ∩ {x, t : 2τ0 ≤ t ≤ 3τ0}, . . . . Therefore u(x, t) ≡ 0 in ω.
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