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ON A CLASS OF COVARIANCE OPERATORS

T. CHANTLADZE AND N. KANDELAKI

Abstract. This paper is the continuation of [1] in which complex
symmetries of distributions and their covariance operators are inves-
tigated. Here we also study the most general quaternion symmetries
of random vectors. Complete classification theorems on these sym-
metries are proved in terms of covariance operator spectra.

Let ξ = (ξ′, ξ′′) be a random vector with components from the separable
real Hilbert space HR with a scalar product (·|·)R. Thus ξ takes values from
the direct sum H0 = HR ⊕HR whose scalar product has the form

(h|g)0 = (h′|g′)R + (h′′|g′′)R ∀ h = (h′|h′′), g = (g′, g′′) ∈ H0.

Each element of the space L0 = L(H0) of linear bounded operators on
H0 can be represented as a block matrix

A = (aij)2i,j=1 =
(

a11, a12
a21, a22

)

, aij ∈ L(HR), i, j = 1, 2. (1)

Let us consider the operator U(x′, x′′) = (−x′′, x′) ∀(x′, x′′) ∈ H0 whose
representation (1) can be written as

U =
(

0, −I
I, 0

)

, (2)

where I is the unit operator from L(HR). The operator U possesses the
important property U∗U = UU∗ = I, implying that U is orthogonal and

U2 = −I. (3)

Definition 1. A random vector ξ is called symmetric if (ξ′, ξ′′) and
(−ξ′′, ξ′) are equally distributed, i.e., if ξ and Uξ are such.
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Clearly, if ξ is symmetric, then ξ, −ξ, Uξ, −Uξ are equally distributed.

Proposition 1. Let ξ1, ξ2, ξ2, ξ4 be the independent copies of a random
vector ξ. Then a random vector

ξa =
1
2
[ξ1 − ξ2 + Uξ3 − Uξ4]

is symmetric.

The proof immediately follows from (3).

Definition 2. ξa is called an additive symmetrization of a random vec-
tor ξ.

Proposition 2. Let M be a random operator taking the values I, −I,
U , −U , each with probability 1

4 . Then a random vector

ξm = Mξ

is symmetric if ξ and M are independent.

Proof. It follows from (3) that the operator UM has the same distribu-
tion as M, and does not depend on ξ, so that ξm and Uξm are equally
distributed.

Definition 3. ξm is called a multiplicative symmetrization.

Proposition 3. Let a symmetric random vector ξ have a strong moment
of second order. Then it is centered and its covariance K0 satisfies the
relation

UK0 = K0U. (4)

Proof. Since ξ and −ξ are equally distributed, ξ is centered. Since ξ and
Uξ are equally distributed, we have K0 = U∗K0U . But in that case (3)
implies (4).

Denote by L1 the commutant of the operator U , i.e., L1 = {A|A ∈
L0, AU = UA}. Then (4) implies that K0 ∈ L1.

Proposition 4. The operator A belongs to L1 if and only if its matrix
representation has the form

A =
(

a, −b
b, a

)

, a, b ∈ L(HR). (5)
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The proof follows immediately.
In [1], operators of form (5) are called proper and, accordingly, the cen-

tered random vector ξ possessing the covariance K0 is called proper for
K0 ∈ L1, i.e., for

K0 =
(

R −T
T R

)

. (6)

Generally speaking, if ξ = (ξ′, ξ′′) is the centered random vector with
covariance K0, then K0 has the form

K0 =
(

R1 T ∗

T R2

)

, (7)

where R1 and R2 are the covariances of ξ′ and ξ′′, respectively, and T is
their mutual covariance. Thus the properity of ξ implies that

R1 = R2 = R, T ∗ = −T. (8)

Definition 4. For A ∈ L0 we call the expression

p−−p
A =

1
2
[A + U∗AU ]

the averaging of the operator A.

It is easy to verify that the block representation of the averaging
p−−p
K0 of

the operator K0 from (7) is written as

p−−p
K0 =

1
2

(

R1 + R2 T ∗ − T
T − T ∗ R1 + R2

)

.

Proposition 5. The operator A ∈ L0 is proper, i.e., belongs to L1 if

and only if
p−−p
A = A.

The proof is obvious.
Let ξ be a centered random vector with covariance K0. Denote by Ka

and Km the covariances of additive and multiplicative symmetrizations of ξ.

Proposition 6. The equalities

Ka = Km =
p−−p
K0

are valid.
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Proof. The equality Ka =
p−−p
K0 immediately follows from Proposition 1. In-

deed, since ξa = 1
2 (ξ1 − ξ2 + Uξ3 − Uξ4), we have

Ka =
1
4
(K0 + K0 + U∗K0U + U∗K0U) =

1
2
(K0 + U∗KU) =

p−−p
K0.

Let us prove the equality Km =
p−−p
K0. We have

(Kmh|h)0 = E(ξm|h)20 = E(Mξ|h)20 = E(ξ|M∗h)20 = EMEξ(ξ|M∗h)20 =

= Em(K0M∗h|M∗h)0 =
1
4
((K0h|h)0 + (K0(−h)|(−h))0 +

+ (K0U∗h|U∗h)0 + (K0(−U∗h)|(−U∗h))0) =

=
1
2
((K0h|h)0 + (UK0U∗h|h)) =

1
2
((K0 + U∗K0U)h|h)0.

The latter equality follows from (3), which gives U∗ = −U .

As shown above (Proposition 4), a symmetric random vector ξ with co-
variance is proper. The converse statement, generally speaking, does not
hold, but we have

Proposition 7. A random proper Gaussian vector is symmetric.

Proof. For the characteristic functional of a proper Gaussian vector we have

ϕ(Ut) = e−
1
2 (K0Ut|Ut)0 = e−

1
2 (U∗K0Ut|t)0 =

= e−
1
2 (U∗UK0t|t)0 = e−

1
2 (K0t|t)0 = ϕ(t),

from which it follows that ξ and Uξ are equally distributed, i.e., ξ is sym-
metric.

Thus if ξ is a proper Gaussian vector, then ξ and ξa are equally dis-
tributed. Moreover, we have

Theorem 1. The distributions of ξ and ξa coincide if and only if ξ is a
random Gaussian vector.

This theorem is a corollary of a more general theorem proved by N.
Vakhania in [2].

The averaging
p−−p
K0 of the covariance operator K0 naturally appears as the

covariance operator of ξ from some complex Hilbert space H1. Indeed, let
us define the multiplication of vectors x ∈ H0 by scalars λ ∈ C as

λx = (λ′ + iλ′′)x = (λ′I + λ′′U)x ∀ x ∈ H0, λ ∈ C (9)
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and its Hermitian form as

(x|y)1 = (x|y)0 + i(x|Uy)0 ∀ x, y ∈ H0. (10)

As a result, the real space H0 becomes the complex Hilbert space H1 with
the Hermitian form (·|·)1 and algebra of C-linear operators L1. Hence our
random vector ξ becomes the complex random vector ξ = ξ′ + iξ′′, which
by virtue of (9) implies that ξ = (ξ′, 0) + U(ξ′′, 0), and its covariance K1
with respect to the Hermitian form (·|·)1 is defined by the relation

(K1h|h)1 =
1
2
E|(ξ|h)1|2. (11)

Proposition 8. The equality

K1 =
p−−p
K0

is valid.

Proof.

(K1h|h)1 =
1
2
E|(ξ|h)1|2 =

1
2
E

(

(ξ|h)20 + (ξ|Uh)20
)

=
1
2
(K0h|h)0 +

+
1
2
(U∗K0Uh|h)0 =

(1
2
(K0 + U∗K0U)h|h

)

0
= (

p−−p
K0h|h)0.

Since by (11) (K1h|h)1 is real, by (10) (K1h|h)1 = (K1h|h)0 and therefore

K1 =
p−−p
K0.

This important equality is thoroughly investigated in [1].
The above reasoning can be summarized as

Theorem 2. The following conditions are equivalent: (a) ξ is a proper

random vector (see (6) and (8)); (b) K0 =
p−−p
K0; (c) K0 = Ka; (d) K0 = Km;

(e) K0 = K1.

Let ξ be centered and have the covariance K0. Recall that K0 is a com-
pletely continuous, positive-definite operator. Denote by Mi (i = 1, 2, . . . )
the eigensubspaces of K0 which correspond to the eigenvalues µi, (i =
1, 2, . . . ), µ1 > µ2 > · · · ; µi → 0. If the operator K0 is degenerate, de-
note M0 = Ker K0. Let us now describe proper covariance operators in
terms of their eigenvalues.

Definition 5. A random vector ξ is called orthogonally proper if there
exists an orthogonal operator O such that Oξ is a proper random vector.

Theorem 3. A random vector ξ is orthogonally proper if and only if
dim Mk is even for all k ≥ 0.



420 T. CHANTLADZE AND N. KANDELAKI

Proof. Sufficiency. Let dim Mk be even for all k ≥ 0. Then there exists
a basis of the space H0 consisting of eigenvectors of the operator K0 :
f1, f2, . . . such that for K0f2p−1 = µf2p−1 we have K0f2p = µf2p, p =
1, 2, . . . . Let further gp (p = 1, 2, . . . ) be a basis of HR. Then a sequence
of vectors e1, e2, . . . from H0, for which e2p−1 = (gp, 0), e2p = (0, gp), p =
1, 2, . . . , is the orthonormal basis H0. By (2) Ue2p−1 = e2p, Ue2p = −e2p−1
(p = 1, 2, . . . ). Let us now define the orthogonal operator O as Oek = fk

(k = 1, 2, . . . ). The covariance Oξ has the form Γ = O−1K0O. Next we
shall prove that ΓU = UΓ. Indeed, we have

UΓe2p−1 = UO−1K0Oe2p−1 = UO−1K0f2p−1 = UO−1µkf2p−1 =

= µkUO−1f2p−1 = µke2p−1 = µke2p;

ΓUe2p−1 = O−1K0e2p = O−1K0f2p = µkO−1f2p = µke2p,

p = 1, 2, . . . . The same reasoning is true for e2p (p = 1, 2, . . . ).
Necessity. Let O be an orthogonal operator such that Oξ is proper.

Then M ′
k = O−1Mk (k ≥ 0) are the eigensubspaces of Γ and µk are the

corresponding eigenvalues. Indeed, if x ∈ Mk, then Γx = O−1K0Ox. Since
Ox ∈ Mk, we have Γx = O−1µkOx = µkx. Conversely, assume that Γx =
µkx. Then, on the one hand, µkx = Γx = O−1(K0Ox), and, on the other,
O−1(µkOx) = µkx. Hence it follows that K0Ox = µkOx and therefore
Ox ∈ Mk, i.e., x ∈ M ′

k. Since Γ is a proper operator, we have ΓU = UΓ.
Thus we conclude that M ′

k are invariant for U as well. Indeed, assuming
that x ∈ M ′

k, we obtain ΓUx = UΓx = Uµkx = µkUx. But this implies
that, together with x, Ux also belongs to M ′

k. But this is possible only
when dim M ′

k is even. Therefore dim Mk will be even too. (Throughout the
paper it is assumed that “infinity” may have any multiplicity).

Remark 1. The orthogonal property is understood as a property with
respect to U1 = OUO−1 in the sense that U1 is orthogonal, U2

1 = −I, and
U1K0 = K0U1.

Since K0 is the self-conjugate operator, H0 can be represented as an
orthogonal sum H0 = im K0 + Ker K0. e1, e2, . . . is the orthonormal basis
of the subspace im K0 consisting of the eigenvectors of K0 corresponding to
the values λ1 ≥ λ2 ≥ · · · .

Theorem 4. A self-conjugate invertible operator S, permutable with K0

and such that a random vector η = Sξ is orthogonally proper, exists if and
only if infp≥1

λ2p

λ2p−1
= c0 > 0 and Ker K0 is even.

Proof. Sufficiency. We write S as Sek = σkek, Sx = x ∀x ∈ Ker K0,
where σk are defined by the equalities σ2p = 1, σ2p−1 = (λ2p/λ2p−1)1/2

p = 1, 2, . . . . It is obvious that S is permutable with K0 and self-conjugate.
We shall prove that it is invertible. Note that

√
c0 ≤ σk ≤ 1 for all x.
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The right-hand side of the inequality follows from the definition of σk and
from λ2p ≤ λ2p−1 (p = 1, 2, . . . ), while the left-hand side is provided by
the condition of the theorem infp≥1

λ2p

λ2p−1 = c0 > 0. Therefore S is in-
vertible. Finally, let us prove that the random vector η = Sξ is orthog-
onally proper. Since S is self-conjugate and permutable with K0, the co-
variance η is S∗K0S, we obtain S∗K0S = S∗SK0 = S2K0. Thus the
covariance η in the basis e1, e2, . . . can be represented in the diagonal form
σ2

1λ1, σ2
2λ2, . . . . But σ2

2pλ2p = λ2p, σ2
2p−1λ2p−1 = (λ2p/λ2p−1)λ2p−1 = λ2p,

p = 1, 2, . . . . Therefore all eigensubspaces S∗K0S (including Ker K0) are
even, i.e., η = Sξ is orthogonally proper.

Necessity. Let S satisfy the conditions of the theorem: S is invert-
ible, self-conjugate, permutable with K0, and the dimensions of the eigen-
subspaces S∗K0S are even. Hence it immediately follows that Ker K0 =
Ker S∗K0S and im S∗K0S. Clearly, Sek = σkek, k = 1, 2, . . . , α0 ≤ σk ≤
α1, for all k and σ2

kλk = βk are such that β2p−1 = β2p p = 1, 2, . . . . Further,
λ2p/λ2p−1 = (σ2p−1/σ2p)2β2p/β2p−1 ≥ (α0

α1
)2 > 0.

We shall now give an example of a random vector which does not belong
to the above-mentioned class. Let ξ be a random vector with covariance
K0 whose eigenvalues λk = e−kα

(α > 1) (k = 1, 2, . . . ). It is assumed that
the conditions of Theorem 4 are fulfilled for α = 1 and for all orders less
than e−k.

Proposition 9. The operators from L0 = L(H0)

U =
(

0, −I
I, 0

)

, V =
(

v, 0
0, −v

)

, (12)

where v is an orthogonal operator in HR such that v2 = −I (for the existence
of such an operator see [3], [4]), give, in H0, an additional structure (see
[5], Ch. 11, §2), i.e., U and V are orthogonal in H0 and

U2 = V 2 = −I, UV = −V U. (13)

Proof. Follows immediately.

Theorem 5. The covariance K0 of a proper random vector (see (6), (8))
is permutable with V if and only if

Rv = vR, Tv = −vT.

Proof. Follows immediately.

Definition 6. A proper random vector ξ is called twice proper if its
covariance operator K0 is permutable with V .
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The operators defined by formulas (12), (13) allow us to introduce, in
the space H0, the so-called Hermitian form defining one more covariance K
for ξ. We shall see below that for twice proper random vectors K and K0
coincide.

Consider the set

H =
{

A|A ∈ L0A = aI + bU + cV + dW, a, b, c, d ∈ R
}

,

where W = UV . Note that W is an orthogonal operator such that WU =
−UW , WV = −V W . It is easy to verify that H is a four-dimensional
R-algebra with involution with respect to standard operations A + B, AB,
λA, A∗. Moreover, H is a body whose every nonzero element is invertible.
Indeed, for any A = aI +bU +cV +dW we have AA∗ = (a2 +b2 +c2 +d2)I,
which means that if a 6= 0, then A−1 exists and A−1 = (a2+b2+c2+d2)−1A∗.
The set H acts on H0 in a natural way: if A ∈ H, x ∈ H0, then its action is
simply Ax. Finally, the mapping (·|·) : H0×H0 → H defined by the formula

∀(x, y) ∈ H0 ×H0 (x|y) = (x|y)0I + (x|Uy)0U +

+(x|V y)0V + (x|Wy)0W (14)

gives the Hermitian form. Indeed, it is easy to verify that

(x + y|z) = (x|z) + (y|z) ∀ x, y ∈ H0,

(Ax|y) = A(x|y) ∀A ∈ H, x, y ∈ H0; (x|y)∗ = (y|x) ∀x, y ∈ H0,

and, finally, (x|x) ≥ 0 ∀x ∈ H (x|x) = 0 ⇔ x = 0, where A ≥ 0 means
that the operator A is nonnegative. But since |(|x)| = (x|x)0, the topologies
generated by the Hermitian forms ·|·) and ·|·)0 in H0 coincide.

For the centered random vector ξ with covariance K0 we define the
covariance K with respect to the Hermitian form (14) by the formula
(Kh|h) = 1

4E|(ξ|h)|α.

Proposition 10. The covariance K has the form

K =
1
4
(K0 + U∗K0U + V ∗K0V + W ∗K0W ). (15)

Proof. (14) implies

K =
1
4
[

E(ξ|h)20 + E(ξ|Uh)20 + E(ξ|V h)20 + E(ξ|Wh)20
]

=

=
1
4
[

(K0h|h)0 + (K0Uh|Uh)0 + (K0V h|V h)0 + (K0Wh|Wh)0
]

=

=
1
4
(

(K0 + U∗K0U + V ∗K0V h + W ∗K0W )h|h
)

0.

Since, by definition, (Kh|h) coincides with (Kh|h0)0, we obtain (15).
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Proposition 11. If a random vector is twice proper, then

K0 = K.

So far we have been concerned with introducing new structures in the
space H0. A similar situation occurs in the case of the narrowing of a scalar
field when a rich structure is given for the initial space and we are interested
in the behavior of a random vector in different structures. The case R ⊂ C
is treated in [1]. Here we shall consider the restriction of scalars in the
quaternion case. Recall that the quaternion body H is a four-dimensional
R-algebra with the basis 1, i, j, k and multiplication table

i j k
i -1 k -j
j -k -1 i
k j -i -1

The conjugate quaternion µ to µ = µ′ + iµ′′ + jµ′′′ + kµIV is defined as
µ = µ′−iµ′′−jµ′′′−kµIV . If λ = λ′+iλ′′+jλ′′′+kλIV , then the expression
(λ|µ) = λµ defines the quaternion Hermitian form, while (λ|µ)0 = Re λµ
gives a Euclidean scalar product H over R0 : (λ|µ)0 = λ′µ′+λ′′µ′′+λ′′′µ′′′+
λIV µIV with the norm |λµ|0 = |λµ| = |λ|0|µ|0, where, as usual, it is assumed
that | · |0 = (·|·)1/2

0 . Note that R ⊂ C ⊂ H. The quaternion Hilbert
space H is an Abelian group with respect to the sum x + y of the vectors
from H, where the product λx of scalars from H and of scalars from H is
defined. Moreover, this product is complete and separable with respect to
the following Hermitian form with values in H given on H : ∀x, y ∈ H:

(x|y) = (x|y)0 + (x|iy)0i + (x|jy)0j + (x|ky)0k.

Here

(·|·)0 = Re(·|·)

is the usual real scalar product. Thus, in the case of the restriction of the
scalars from H to R, the space H transforms to the real Hilbert space H0,
while in the case of the restriction to C, it transforms to the complex Hilbert
space H1 with the Hermitian form

(

· | ·
)

=
(

· | ·
)

0 +
(

· |i(·)
)

0i.

Since | · | = | · |1 = | · |0, we find that H0, H1, H0, being topological Abelian
groups, completely coincide.

Denote by L, L1, L0 the spaces of bounded linear operators H, C, R,
respectively. The restriction of the scalars gives the natural embeddings



424 T. CHANTLADZE AND N. KANDELAKI

L ⊂ L1 ⊂ L0. Now we introduce in H0 the operators U and V

U = iI, V = jI.

which, as is easy to verify, satisfy (13). Therefore all the above arguments
hold for the random vector ξ with values from H0. Thus Theorem 3 will
read as follows:

Theorem 6. A random vector ξ is twice orthogonally proper if and only
if dim Mk is a multiple of four for all k ≥ 0.
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