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REGULARITY IN MORREY SPACES OF STRONG
SOLUTIONS TO NONDIVERGENCE ELLIPTIC


EQUATIONS WITH V MO COEFFICIENTS


DASHAN FAN, SHANZHEN LU, AND DACHUN YANG


Abstract. In this paper, by means of the theories of singular inte-
grals and linear commutators,the authors establish the regularity in
Morrey spaces of strong solutions to nondivergence elliptic equations
with V MO coefficients.


1. Introduction


Let Ω be an open set of Rn, p ∈ (1,∞), and λ ∈ (0, n). For f ∈ L1
loc(Ω),


let


‖f‖p
Lp,λ(Ω) = sup


ρ>0,x∈Ω


1
ρλ


∫


Bρ(x)∩Ω


|f(y)|p dy


and define Lp,λ(Ω) to be the set of measurable functions f such that
‖f‖Lp,λ(Ω) < ∞, where, and in what follows, Bρ(x) = {y ∈ Rn : |x−y| < ρ}
for any ρ > 0. The space Lp,λ(Ω) is usually called the Morrey space.


Assuming f ∈ Lp,λ(Ω), the main purpose of this paper is to investigate
the regularity in the Morrey space of the strong solution to the following
Dirichlet problem on the second-order elliptic equation in nondivergence
form:

















Lu ≡
n


∑


i,j=1


aij(x)uxixj = f a.e. in Ω,


u = 0 on ∂Ω,


(1.1)


where x = (x1, . . . , xn) ∈ Rn; Ω is a bounded domain C1,1 of Rn; the
coefficients {aij}n


i,j=1 of L are symmetric and uniformly elliptic, i.e., for
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some ν ≥ 1 and every ξ ∈ Rn,


aij(x) = aji(x) and ν−1|ξ|2 ≤
n


∑


i,j=1


aij(x)ξiξj ≤ ν|ξ|2 (1.2)


with a.e. x ∈ Ω. Moreover, we assume that aij ∈ V MO(Ω), the space of
the functions of vanishing mean oscillation introduced by Sarason in [1].


Our method is based on integral representation formulas established in
[2, 3] for the second derivatives of the solution u to (1.1), and on the theories
of singular integrals and linear commutators in Morrey spaces. In fact, in
§2, we will establish the boundedness in Morrey spaces for a large class
of singular integrals and linear commutators. From this, we can deduce
the interior estimates and boundary estimates for the solution to (1.1);
therefore, by a standard procedure, we can obtain its whole estimates in
Morrey spaces (see [3] and [4]). This will be done in §3.


It is worth pointing out that part of the interior estimates for the solution
to (1.1) have been obtained in [5]. Here, we obtain the whole interior esti-
mates in a different way, which seems much simpler than the corresponding
ones in [5].


2. Singular Integrals and Linear Commutators


First, we have the following general theorem for the boundedness in Mor-
rey spaces of sublinear operators.


Theorem 2.1. Let p ∈ (1,∞) and λ ∈ (0, n). If a sublinear operator T
is bounded on Lp(Rn) and for any f ∈ L1(Rn) with compact support and
x 6∈ supp f ,


|Tf(x)| ≤ c
∫


Rn


|f(y)|
|x− y|n


dy, (2.1)


then T is also bounded on Lp,λ(Rn).


Proof. Fix x ∈ Rn and r > 0. Write


f(y) = f(y)χB2r(x)(y) +
∞
∑


k=1


f(y)χB2k+1r(x)\B2kr(x)(y) ≡
∞
∑


k=0


fk(y). (2.2)


Thus, by the Lp(Rn)-boundedness of T and (2.1), we have


( ∫


Br(x)


|Tf(z)|p dz
)1/p


≤
∞
∑


k=0


( ∫


Br(x)


|Tfk(z)|p dz
)1/p


≤
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≤ cp‖f0‖Lp(Rn) + c
∞
∑


k=1


{ ∫


Br(x)


( ∫


B2k+1r(x)\B2kr(x)


|f(y)|
|z − y|n


dy
)p


dz
}1/p


≤


≤ cprλ/p‖f‖Lp,λ(Rn) + cp


∞
∑


k=1


rn/p


(2kr)n/p


( ∫


B2k+1r(x)


|f(y)|p dy
)1/p


≤


≤ cprλ/p‖f‖Lp,λ(Rn) + cprλ/p‖f‖Lp,λ(Rn)


∞
∑


k=1


1
2k(n−λ)/p ≤


≤ cprλ/p‖f‖Lp,λ(Rn).


Therefore, ‖Tf‖Lp,λ(Rn) ≤ c‖f‖Lp,λ(Rn).


Condition (2.1) can be satisfied by many operators such as Bochner–Riesz
operators at the critical index, Ricci–Stein’s oscillatory singular integral,
C. Fefferman’s singular multiplier, and the following Calderón–Zygmund
operators.


Definition 2.1. Let k : Rn \ {0} → R. We say that k(x) is a constant
Calderón–Zygmund kernel (constant C − Z kernel) if


(i) k ∈ C∞(Rn \ {0});
(ii) k is homogeneous of degree −n;
(iii)


∫


Σ k(x) dσ = 0, where, and in what follows, Σ = {x ∈ Rn : |x| = 1}.


Definition 2.2. Let Ω be an open subset of Rn and k : Ω×{Rn\{0}} →
R. We say that k(x) is a variable C − Z kernel on Ω if


(i) k(x, ·) is a C − Z kernel for a.e. x ∈ Ω;
(ii) max|j|≤2n ‖(∂j/∂zj)k(x, z)‖L∞(Ω×Σ) ≡ M < ∞.


Let k be a constant or a variable C − Z kernel on Ω. We define the
corresponding C − Z operator by


Tf(x) = p.v.
∫


Rn


k(x− y)f(y) dy or Tf(x) = p.v.
∫


Ω


k(x, x− y)f(y) dy.


Obviously, in these cases it satisfies the conditions of Theorem 2.1; see
Theorems 2.10 and 2.5 in [2]. Thus we have the following simple corollary.


Corollary 2.1. Let p ∈ (1,∞) and λ ∈ (0, n). If k is a constant or
a variable C − Z kernel on Rn and T is the corresponding operator, then
there exists a constant c = c(n, p, λ, k) or c = c(n, p, λ, k,M) such that for
all f ∈ Lp,λ(Rn), ‖Tf‖Lp,λ(Rn) ≤ c(p, λ, k)‖f‖Lp,λ(Rn).


From this corollary, by a proof similar to that of Theorem 2.11 in [2] (see
also Theorem 2.2 in [5]), we obtain the following corollary.
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Corollary 2.2. Let p ∈ (1,∞), λ ∈ (0, n), and Ω be an open subset
of Rn. If k is a variable C − Z kernel on Ω and T is the corresponding
operator, then there exists a constant c = c(n, p, λ, k, M) such that for all
f ∈ Lp,λ(Ω),


‖Tf‖Lp,λ(Ω) ≤ c(p, λ, k)‖f‖Lp,λ(Ω).


Now, let us consider the boundedness on Morrey spaces of the linear
commutator [a, T ] defined by [a, T ]f = T (af)(x) − a(x)Tf(x). First, we
recall the definitions of the spaces BMO and V MO. For the properties of
these spaces, we refer to [1], [6], and [7].


Definition 2.3. Let Ω be an open subset of Rn. We say that any f ∈
L1


loc(Ω) is in the space BMO(Ω) if


sup
ρ>0,x∈Ω


1
|Bρ(x) ∩ Ω|


∫


Bρ(x)∩Ω


|f(y)− fBρ(x)∩Ω| dy ≡ ‖f‖∗ < ∞,


where fBρ(x)∩Ω is the average over Bρ(x) ∩ Ω of f .
Moreover, for any f ∈ BMO(Ω) and r > 0, we set


sup
ρ≤r,x∈Ω


1
|Bρ(x) ∩ Ω|


∫


Bρ(x)∩Ω


|f(y)− fBρ(x)∩Ω| dy ≡ η(r). (2.3)


We say that any f ∈ BMO(Ω) is in the space V MO(Ω) if η(r) → 0 as
r → 0 and refer to η(r) as the V MO modulus of f .


Theorem 2.2. Let p ∈ (1,∞), λ ∈ (0, n) and a ∈ BMO(Rn). If a linear
operator T satisfies (2.1) and [a, T ] is bounded on Lp(Rn), then [a, T ] is also
bounded on Lp,λ(Rn).


Proof. For any x ∈ Rn and r > 0, we write f as in (2.2). By the Lp-
boundedness of [a, T ] and (2.1), we obtain


( ∫


Br(x)


∣


∣[a, T ]f(z)
∣


∣


p
dz


)1/p


≤
∞
∑


k=0


( ∫


Br(x)


∣


∣[a, T ]fk(z)
∣


∣


p
dz


)1/p


≤


≤ c‖f0‖Lp(Rn) +


+c
∞
∑


k=1


{ ∫


Br(x)


( ∫


B2k+1r(x)\B2kr(x)


|a(y)− a(z)| |f(y)|
|z − y|n


dy
)p


dz
}1/p


≤


≤ crλ/p‖f‖Lp,λ(Rn) +


+c
∞
∑


k=1


1
(2kr)n


{ ∫


Br(x)


( ∫


B2k+1r(x)


|a(y)− a(z)| |f(y)| dy
)p


dz
}1/p


.
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For any σ > 0, we set


aσ =
1


|Bσ(x)|


∫


Bσ(x)


a(y) dy.


By the John–Nirenberg’s lemma on BMO functions and the fact that
|a2k+1r − ar| ≤ c(n)(k + 1)‖a‖∗ (see [7]), we obtain


{ ∫


Br(x)


( ∫


B2k+1r(x)


|a(y)− a(z)| |f(y)| dy
)p


dz
}1/p


≤


≤
{ ∫


Br(x)


|ar − a(z)|p dz
}1/p ∫


B2k+1r(x)


|f(y)| dy +


+crn/p
∫


B2k+1r(x)


|a(y)− ar| |f(y)| dy ≤


≤ crn+λ/p2k{n(1−1/p)+λ/p}‖a‖∗‖f‖Lp,λ(Rn) +


+crn/p
( ∫


B2k+1r(x)


|a(y)− ar|p
′
dy


)1/p′( ∫


B2k+1r(x)


|f(y)|p dy
)1/p


≤


≤ crn+λ/p2k{n(1−1/p)+λ/p}‖a‖∗‖f‖Lp,λ(Rn)cr
n+λ/p2k{n(1−1/p)+λ/p} ×


×
{(


1
|B2k+1r(x)|


∫


B2k+1r(x)


|a(y)− a2k+1r|p
′
dy


)1/p′


+


+|a2k+1r − ar|
}


‖f‖Lp,λ(Rn) ≤


≤ c(k + 1)rn+λ/p2k{n(1−1/p)+λ/p}‖a‖∗‖f‖Lp,λ(Rn),


where, and in what follows, 1/p + 1/p′ = 1. Thus,
( ∫


Br(x)


|[a, T ]f(z)|p dz
)1/p


≤


≤ crλ/p‖a‖∗‖f‖Lp,λ(Rn)


{


1 +
∞
∑


k=1


k + 1
2k(n−λ)/p


}


≤ crλ/p‖a‖∗‖f‖Lp,λ(Rn).


Therefore
‖[a, T ]f‖Lp,λ(Rn) ≤ c‖a‖∗‖f‖Lp,λ(Rn).


From this theorem and Theorems 2.7 and 2.10 in [2], we easily deduce
the following corollary.
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Corollary 2.3. Let p ∈ (1,∞), λ ∈ (0, n), and a ∈ BMO(Rn). If k
is a constant or a variable C − Z kernel on Rn and T the corresponding
operator, then there exists a constant c = c(n, p, λ, k) or c = c(n, p, λ, k,M)
such that for all f ∈ Lp,λ(Rn),


‖[a, T ]f‖Lp,λ(Rn) ≤ c‖a‖∗‖f‖Lp,λ(Rn).


From this and the extension theorem of BMO(Ω)-functions in [8, page
42 and 54], by a procedure similar to Theorem 2.11 in [2] and Theorem 2.2
in [5], we can obtain the following corollary.


Corollary 2.4. Let p ∈ (1,∞) and λ ∈ (0, n). Suppose Ω is an open
subset of Rn and a ∈ BMO(Rn). If k is a variable C−Z kernel on Ω and T
the corresponding operator, then there exists a constant c = c(n, p, λ, k, M)
such that for all f ∈ Lp,λ(Ω),


‖[a, T ]f‖Lp,λ(Ω) ≤ c‖a‖∗‖f‖Lp,λ(Ω).


We can also have the following local version of Corollary 2.4; see Theorem
2.13 in [1] for the proof.


Corollary 2.5. Let p ∈ (1,∞) and λ ∈ (0, n). Let Ω be an open subset
of Rn, a ∈ V MO(Ω), and η be as in (2.3). If k is a variable C − Z kernel
on Ω and T the corresponding operator, then for any ε > 0, there exists
positive ρ0 = ρ0(ε, η) such that for any ball Br with the radius r ∈ (0, ρ0),
Br ∩ Ω ≡ Ωr 6= ∅ and all f ∈ Lp,λ(Ωr),


‖[a, T ]f‖Lp,λ(Ωr) ≤ cε‖f‖Lp,λ(Ωr),


where c = c(a, p, λ, k) is independent of f and ε.


It is worth pointing out that Corollaries 2.4 and 2.5 have been obtained
by Fazio and Ragusa in [5] in a different way. It seems that our method is
much simpler than theirs.


Let Rn
+ = {x = (x′, xn) : x′ = (x1, . . . , xn−1) ∈ Rn−1, xn > 0}. To


establish the boundary estimates of the solutions to (1.1), we need to study
the boundedness on Lp,λ(Rn


+) of some other integral operators. First, we
have the following general theorem for sublinear operators.


Theorem 2.3. Let p ∈ (1,∞), λ ∈ (0, n), and x̃ = (x′,−xn) for x =
(x′, xn) ∈ Rn


+. If a sublinear operator T is bounded on Lp(Rn
+) and for any


f ∈ L1(Rn
+) with compact support and x ∈ Rn


+,


|Tf(x)| ≤ c
∫


Rn
+


|f(y)|
|x̃− y|n


dy, (2.4)


then T is also bounded on Lp,λ(Rn
+).
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Proof. Let z ∈ Rn
+ and σ > 0. In what follows, we set B+


σ (z) = Bσ(z)∩Rn
+.


We consider two cases.


Case 1. 0 ≤ zn < 2σ. In this case, we write


f(y) = f(y)χB+
24σ


(z)(y) +
∞
∑


`=4


f(y)χB+
2`+1σ


(z)\B+
2`σ


(z)(y) ≡
∞
∑


`=3


f`(y). (2.5)


Therefore, by Lp-boundedness of T and (2.4), we obtain


( ∫


B+
σ (z)


|Tf(x)|p dx
)1/p


≤
∞
∑


`=3


( ∫


B+
σ (z)


|Tf`(x)|p dx
)1/p


≤


≤ c‖f3‖Lp(Rn
+) + c


∞
∑


`=4


{ ∫


B+
σ (z)


( ∫


B+
2`+1σ


(z)\B+
2`σ


(z)


|f(y)|
|x̃− y|n


dy
)p


dx
}1/p


≤


≤ cσλ/p‖f‖Lp,λ(Rn
+) + c


∞
∑


`=4


1
(2`σ)n


{ ∫


B+
σ (z)


( ∫


B+
2`+1σ


(z)


|f(y)| dy
)p


dx
}1/p


≤


≤ cσλ/p‖f‖Lp,λ(Rn
+)


{


1 +
∞
∑


`=4


1
2`(n−λ)/p


}


≤ cσλ/p‖f‖Lp,λ(Rn
+),


which is the desirable estimate.


Case 2. There exists ` ∈ N such that 2`σ ≤ zn < 2`+1σ. In this case, we
write


f(y) = f(y)χB+
2`+4σ


(z)(y) +
∞
∑


k=1


f(y)χB+
2`+k+4σ


(z)\B+
2`+k+3σ


(z)(y) ≡


≡
∞
∑


k=0


fk(y). (2.6)


From (2.4), it follows that


( ∫


B+
σ (z)


|Tf(x)|p dx
)1/p


≤ c
{ ∫


B+
σ (z)


( ∫


B+
2`+4σ


(z)


|f(y)|
|x̃− y|n


dy
)p


dx
}1/p


+


+c
∞
∑


k=1


{ ∫


B+
σ (z)


( ∫


B+
2`+k+4σ


(z)\B+
2`+k+3σ


(z)


|f(y)|
|x̃− y|n


dy
)p


dx
}1/p


≤
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≤ c
(2`σ)n


{ ∫


B+
σ (z)


( ∫


B+
2`+4σ


(z)


|f(y)| dy
)p


dx
}1/p


+


+c
∞
∑


k=1


1
(2`+kσ)n


{ ∫


B+
σ (z)


( ∫


B+
2`+k+4σ


(z)


|f(y)| dy
)p


dx
}1/p


≤


≤ cσλ/p‖f‖Lp,λ(Rn
+)


{


1
2`(n−λ)/p +


∞
∑


k=1


1
2(`+k)(n−λ)/p


}


≤ cσλ/p‖f‖Lp,λ(Rn
+),


by noting that ` ∈ N and λ < n. From this, it is easy to deduce Theorem
2.3.


To state the following corollary, we need more notation. Let a(x) =
{ain(x)}n


i=1 be as in (1.2) and define


T (x, y) ≡ x− 2xn


ann(y)
a(y).


Then, as a simple corollary of the above Theorem 2.3 and Lemma 3.1 in [3],
we have


Corollary 2.6. Let p ∈ (1,∞), λ ∈ (0, n), and Ω be an open subset of
Rn


+. If k is a variable C − Z kernel on Ω, and for x ∈ Ω we define


˜Tf(x) =
∫


Ω


k(x, T (x)− y)f(y) dy


with T (x) = T (x, x), then there exists a constant c = c(p, λ, ν, k) such that
for all f ∈ Lp,λ(Ω),


‖ ˜Tf‖Lp,λ(Ω) ≤ c‖f‖Lp,λ(Ω).


For the linear commutator on Rn
+, we have


Theorem 2.4. Let p ∈ (1,∞), λ ∈ (0, n), and a ∈ BMO(Rn
+). If a


linear operator ˜T satisfies (2.4) and [a, ˜T ] is bounded on Lp(Rn
+), then [a, ˜T ]


is also bounded on Lp,λ(Rn
+).


Proof. Let z ∈ Rn
+ and σ > 0. Similarly to the proof of Theorem 2.3, we


also consider two cases.


Case 1. 0 ≤ zn < 2σ. In this case, we write f as in (2.5). We then have
( ∫


B+
σ (z)


|[a, ˜T ]f(x)|p dx
)1/p


≤
∞
∑


j=3


( ∫


B+
σ (z)


|[a, ˜T ]fj(x)|p dx
)1/p


≤
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≤ c‖a‖∗‖f3‖Lp(Rn
+) +


+c
∞
∑


j=4


{ ∫


B+
σ (z)


( ∫


B+
2j+1σ


(z)\B+
2jσ


(z)


|a(y)− a(x)||f(y)|
|x̃− y|n


dy
)p


dx
}1/p


≤


≤ cσλ/p‖a‖∗‖f‖Lp,λ(Rn
+) +


+c
∞
∑


j=4


1
(2jσ)n


{ ∫


B+
σ (z)


( ∫


B+
2j+1σ


(z)


|a(y)− a(x)| |f(y)| dy
)p


dx
}1/p


≤


≤ cσλ/p‖a‖∗‖f‖Lp,λ(Rn
+) + c


∞
∑


j=4


1
(2jσ)n


( ∫


B+
σ (z)


|aσ − a(x)|p dx
)1/p


×


×
( ∫


B+
2j+1σ


(z)


|f(y)| dy
)


+


+c
∞
∑


j=4


1
(2jσ)n


{ ∫


B+
σ (z)


( ∫


B+
2j+1σ


(z)


|a(y)− aσ| |f(y)| dy
)p


dx
}1/p


≤


≤ cσλ/p‖a‖∗‖f‖Lp,λ(Rn
+) + cσλ/p‖a‖∗‖f‖Lp,λ(Rn


+)


(
∞
∑


j=4


1
2j(n−λ)/p


)


+


+c
∞
∑


j=4


1
(2jσ)n (2jσ)λ/p‖f‖Lp,λ(Rn


+)σ
n/p


( ∫


B+
2j+1σ


(z)


|a(y)− aσ|p
′
dy


)1/p′


≤


≤ cσλ/p‖a‖∗‖f‖Lp,λ(Rn
+) + cσn/p‖f‖Lp,λ(Rn


+)


{ ∞
∑


j=4


1
(2jσ)(n−λ)/p (2jσ)n/p′ ×


×
[(


1
|B+


2j+1σ(z)|


∫


B+
2j+1σ


(z)


|a(y)− a2j+1σ|p
′
dy


)1/p′


+ |a2j+1σ − aσ|
]}


≤


≤ cσλ/p‖a‖∗‖f‖Lp,λ(Rn
+) +


+cσλ/p‖f‖Lp,λ(Rn
+)


∞
∑


j=4


1
2j(n−λ)/p


{


‖a‖∗ + |a2j+1σ − aσ|
}


≤


≤ cσλ/p‖a‖∗‖f‖Lp,λ(Rn
+)


{ ∞
∑


j=4


j + 1
2j(n−λ)/p


}


≤ cσλ/p‖a‖∗‖f‖Lp,λ(Rn
+),
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where for any r > 0 we set


ar =
1


|B+
r (x)|


∫


B+
r (x)


a(y) dy


and use the fact that λ < n and |a2j+1σ − aσ| ≤ c(n)j‖a‖∗. This estimation
is the expected one.


Case 2. There exists ` ∈ N such that 2`σ ≤ zn < 2`+1σ. In this case, we
write f as in (2.6). We then have


( ∫


B+
σ (z)


|[a, ˜T ]f(x)|p dx
)1/p


≤
∞
∑


k=0


( ∫


B+
σ (z)


|[a, ˜T ]fk(x)|p dx
)1/p


≤


≤ c
{ ∫


B+
σ (z)


( ∫


B+
2`+4σ


(z)


|a(y)− a(x)||f(y)|
|x̃− y|n


dy
)p


dx
}1/p


+


+c
∞
∑


k=1


{ ∫


B+
σ (z)


( ∫


B+
2k+`+4σ


(z)\B+
2k+`+3σ


(z)


|a(y)− a(x)||f(y)|
|x̃− y|n


dy
)p


dx
}1/p


≤


≤ c
(2`σ)n


{


∫


B+
σ (z)


( ∫


B+
2`+4σ


(z)


|a(y)− a(x)||f(y)| dy
)p


dx
}1/p


+


+c
∞
∑


k=1


1
(2k+`σ)n


{ ∫


B+
σ (z)


( ∫


B+
2k+`+4σ


(z)


|a(y)− a(x)| |f(y)| dy
)p


dx
}1/p


≤


≤ cσλ/p‖a‖∗‖f‖Lp,λ(Rn
+)


{ ∞
∑


k=1


1
2(k+`)(n−λ)/p


}


≤ cσλ/p‖a‖∗‖f‖Lp,λ(Rn
+),


since ` ∈ N and λ < n. Here, in the next to the last inequality, we used a
computation technique similar to Case 1. By the above estimate we easily
finish the proof of Theorem 2.4.


We can also obtain the local version of Theorem 2.4; see Theorem 2.13
in [2] for the proof.


Corollary 2.7. Let p ∈ (1,∞), λ ∈ (0, n), and for any σ > 0, B+
σ (x) =


{(x′, xn) ∈ Rn : |x| < σ, xn > 0}. Let a ∈ V MO(Rn
+) and η be its V MO


modulus. If k is a variable C − Z kernel on Rn
+ and ˜T is as in Corollary


2.6, then for any ε > 0, there exists a positive ρ0 = ρ0(ε, η) such that for
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any r ∈ (0, ρ0) and f ∈ Lp,λ(B+
r ),


‖[a, ˜T ]f‖Lp,λ(B+
r ) ≤ cε‖f‖Lp,λ(B+


r )


with c = c(ν, p, λ, k) independent of f , ε, and r.


3. Elliptic Equations with V MO Coefficients


In this section, we will establish the regularity of the solution to (1.1).
First, we have the following definition.


Definition 3.1. Let p ∈ (1,∞), λ ∈ (0, n), and Ω be an open subset of
Rn. f ∈ L1


loc(Ω) is said to belong to the Sobolev–Morrey space W 2Lp,λ(Ω)
if and only if u and its distributional derivatives, uxi , uxixj (i, j = 1, . . . , n)
are in Lp,λ(Ω). Moreover, let ‖u‖W 2Lp,λ(Ω) ≡ ‖u‖Lp,λ(Ω)+


∑n
i=1 ‖uxi‖Lp,λ(Ω)


+
∑n


i,j=1 ‖uxixj‖Lp,λ(Ω).
We also assume that f ∈ W 2


locL
p,λ(Ω) if f ∈ W 2Lp,λ(Ω′) for every Ω′ ⊂⊂


Ω.


Now, let Ω be an open bounded subset of Rn with n ≥ 3 and ∂Ω ∈ C1,1,


L ≡
n


∑


i,j=1


aij(x)
∂2


∂xi∂xj


with aij ’s satisfying (1.2). We also assume that aij ∈ V MO(Ω). Since
for each function in V MO(Ω) there is an extension to Rn with the V MO
modulus controlled by its original one (see [8, page 42 and 54]), without
loss of generality, we may assume that aij ’s belong to V MO(Rn). Let
f ∈ Lp,λ(Ω), p ∈ (1,∞) and λ ∈ (0, n). We are interested in the following
Cauchy problem:


{


Lu = f a.e. in Ω,
u ∈ W 2Lp,λ(Ω) ∩W 1,p


0 (Ω).
(3.1)


Note that Ω is bounded; therefore f ∈ Lp,λ(Ω) implies f ∈ Lp(Ω). By the
results in [3], we know that for f ∈ Lp,λ(Ω) with p ∈ (1,∞) and λ ∈ (0, n),
(3.1) has a unique solution u ∈ W 2,p(Ω) ∩W 1,p


0 (Ω) satisfying


‖u‖W 2,p(Ω) ≤ c‖f‖Lp(Ω), (3.2)


where c is independent of f . Our main interest here is to improve (3.2) into


‖u‖W 2Lp,λ(Ω) ≤ c‖f‖Lp,λ(Ω). (3.3)


By a standard procedure, the proof of (3.3) consists in establishing the
interior and boundary estimates of the solution to (3.1); see Theorems 4.4,
4.1, and 4.2 in [3]. Indeed, by a similar proof to Theorem 4.2 in [2] and
Theorem 3.3 in [5], we can prove the following interior estimate.
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Theorem 3.1. Let L satisfy the above assumption and η=(
∑n


i,j=1 η2
ij)


1/2


where ηij is the V MO modulus of aij in Ω. Let λ ∈ (0, n), q, p ∈ (1,∞),
q ≤ p, f ∈ Lp,λ(Ω), u ∈ W 2Lq,λ(Ω)∩W 1,q


0 (Ω), and Lu = f a.e. in Ω. Then
u ∈ W 2


locL
p,λ(Ω). Moreover, given any Ω′ ⊂⊂ Ω, there exists a constant


c = c(n, p, λ, ν, dist(Ω′, ∂Ω), η) such that


‖u‖W 2Lp,λ(Ω′) ≤ c
{


‖u‖Lp,λ(Ω) + ‖f‖Lp,λ(Ω)
}


.


The case q = p of Theorem 3.1 is just Theorem 3.3 in [5]. See [5] for the
proof of Theorem 3.1, and we omit the details here. To finish the proof of
(3.3), we still need to establish the following boundary estimate.


Theorem 3.2. Let L, λ, q, p, and η be as in Theorem 3.1. Let f ∈
Lp,λ(Ω), u ∈ W 2Lq,λ(Ω) ∩ W 1,q


0 (Ω), and Lu = f a.e. in Ω. Then u ∈
W 2Lp,λ(Ω) and there exists a constant c = c(n, p, λ, ν, ∂Ω, η) such that


‖u‖W 2Lp,λ(Ω) ≤ c
{


‖u‖Lp,λ(Ω) + ‖f‖Lp,λ(Ω)
}


.


To prove Theorem 3.2, we need to introduce more notation. We let
W 2,p


γ0
(B+


σ ) be the closure in W 2,p of the subspace


Cγ0 =
{


u : u is the restriction to B+
σ


of a function in C∞0 (B+
σ ) and u(x′, 0) = 0


}


,


where, and in what follows, Bσ = {x ∈ Rn : |x| < σ} and B+
σ = {(x′, xn) ∈


Rn : |x| < σ and xn > 0} for any σ > 0. We also make the following
assumption and refer to it as assumption (H).





























Let n ≥ 3, bij ∈ V MO(Rn), i, j = 1, . . . , n,
bij(x) = bji(x), i, j = 1, . . . , n, a.e. in B+


σ .
There exists µ > 0 such that for all ξ ∈ Rn,
µ−1|ξ|2 ≤


∑n
i,j=1 bij(x)ξiξj ≤ µ|ξ|2, a.e. in B+


σ .


(H)


Let


˜L ≡
n


∑


i,j=1


bij
∂2


∂xi∂xj


and


Γ(x, t) =
1


(n− 2)ωn(detbij)1/2


(
n


∑


i,j=1


Bij(x)titj
)(2−n)/2


,


Γi(x, t) =
∂


∂ti
Γ(x, t), Γij(x, t) =


∂2


∂ti∂tj
Γ(x, t),
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for a.e. x ∈ B+
σ and all t ∈ Rn \ {0}, where Bij ’s are the entries of the


inverse of the matrix {bij}i,j=1,...,n. We also set b(x) = {bin(x)}n
i=1 and


T (x, y) = x− 2xn


bnn(y)
b(y).


By a covering and flattening argument, the proof of Theorem 3.2 can
be reduced to establishing the estimate in Lp,λ(B+


r ) of uxixj with u ∈
W 2,q


γ0
(B+


r ) and ˜Lu ∈ Lp,λ(B+
r ), where 1 < q ≤ p < ∞ and λ ∈ (0, n).


To do so, we need the following key lemma established in [3, page 847].


Lemma 3.1. Assume (H) and let u ∈ W 2,p
γ0


(B+
σ ) with p ∈ (1,∞). Then


uxixj (x) =


= p.v.
∫


B+
σ


Γij(x, x− y)
{ n


∑


h,k=1


[bhk(x)− bhk(y)]uxhxk(y) + ˜Lu(y)
}


dy


+˜Lu(x)
∫


|t|=1


Γi(x, y)tj dσt + Iij(x), (3.4)


where for i, j = 1, . . . , n− 1,


Iij(x) =


= p.v.
∫


B+
σ


Γij(x, T (x)− y)
{ n


∑


h,k=1


[bhk(x)− bhk(y)]uxhxk(y) + ˜Lu(y)
}


dy;


for i = 1, . . . , n− 1,


Iin(x) = Ini(x) =
∫


B+
σ


( n
∑


`=1


B`(x)Γi`(x, T (x)− y)
)


{· · · } dy,


and


Inn(x) =
∫


B+
σ


n
∑


`,k=1


B`(x)Bk(x)Γ`k(x, T (x)− y){· · · } dy;


in the formulas above T (x) = T (x; x), Bi(x) is the i-th component of the
vector B(x) = T (en;x) with en = (0, . . . , 0, 1), tj is the j-th component of
the outer normal to the sphere Σ, and in the curly brackets there is always
the same expression as in the first case.


Now, to finish the proof of Theorem 3.2, we only need to prove the
following theorem.







438 DASHAN FAN, SHANZHEN LU, AND DACHUN YANG


Theorem 3.3. Assume (H). Let λ ∈ (0, n), q, p ∈ (1,∞), and q ≤ p.


Set η̃ = (
n
∑


i,j=1
η̃2


ij)
1/2, where η̃ij is the V MO modulus of bij , and


M ≡ max
i,j=1,...,n


max
|α|≤2n


∥


∥


∥


∂α


∂tα
Γij(x, t)


∥


∥


∥


L∞(B+
σ ×Σ)


.


Then there exists a positive number ρ0 = ρ0(n, q, p,M, µ, η̃, λ), ρ0 < σ, such
that for any r ∈ (0, ρ0) and any u ∈ W 2,q


γ0
(B+


r ) with ˜Lu ∈ Lp,λ(B+
r ), we have


u ∈ W 2Lp,λ(B+
r ). Furthermore, there exists a constant c=c(n, p, λ,M, µ, η̃)


such that


‖uxixj‖Lp,λ(B+
r ) ≤ c‖˜Lu‖Lp,λ(B+


r ). (3.5)


Proof. Set for i, j, h, k = 1, . . . , n


Sijhk(f)(x) = p.v.
∫


B+
r


Γij(x, x− y)(bhk(x)− bhk(y))f(y) dy,


and for i, j = 1, . . . , n− 1, h, k = 1, . . . , n


˜Sijhk(f)(x) =
∫


B+
r


Γij(x, T (x)− y)(bhk(x)− bhk(y))f(y) dy,


for i = 1, . . . , n− 1, h, k = 1, . . . , n


˜Sinhk(f)(x) =
∫


B+
r


(
n


∑


j=1


Γij(x, T (x)− y)Bj(x)
)


(bhk(x)− bhk(y))f(y) dy,


and, finally, for h, k = 1, . . . , n


˜Snnhk(f)(x) =


=
∫


B+
r


(
n


∑


i,j=1


Γij(x, T (x)− y)Bi(x)Bj(x)
)


(bhk(x)− bhk(y))f(y) dy,


where r ∈ (0, σ] and f ∈ Ls,λ(B+
r ).


By Lemma 3.1 in [2] and Corollaries 2.5 and 2.7, we can fix ρ0 so small
that


∑


i,j,h,k


‖Sijhk + ˜Sijhk‖ < 1,


where the norm of operators Sijhk + ˜Sijhk is the norm in the space of linear
operators from Ls,λ(B+


r ) into itself if r ∈ (0, ρ0) and s ∈ [q, p].
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Consider u ∈ W 2,p
γ0


(B+
r ) with ˜Lu ∈ Lp,λ(B+


r ), r ∈ (0, ρ0) and set


hij = p.v.
∫


B+
r


Γij(x, x− y)˜Lu(y) dy + ˜Lu(x)
∫


|t|=1


Γi(x, t)tj dσt + ˜Iij(x),


where


˜Iij(x) =

































































∫


B+
r


Γij(x, T (x)− y)˜Lu(y) dy for i, j = 1, . . . , n− 1,


∫


B+
r


( n
∑


`=1
Γi`(x, T (x)− y)B`(x)


)


˜Lu(y) dy


for i = 1, . . . , n− 1, j = n,
∫


B+
r


( n
∑


`,m=1
Γ`m(x, T (x)−y)B`(x)Bm(x)


)


˜Lu(y) dy for i=j =n.


From Corollary 2.6, we easily deduce that hij ∈ Lp,λ(B+
r ).


Consider w ∈ [Lp,λ(B+
r )]n


2
and define Tw : [Lp,λ(B+


r )]n
2 → [Lp,λ(B+


r )]n
2


by setting


Tw = ((Tw)ij)i,j=1,...,n =
(


n
∑


h,k=1


(Sijhk + ˜Sijhk)(wij) + hij


)


i,j=1,...,n
.


The operator T is a contraction on [Lp,λ(B+
r )]n


2
and thus has a unique fixed


point w̃. Since, by (3.4), {uxixj}i,j=1,...,n is also a fixed point in [Lq,λ(B+
r )]n


2


and Lp,λ(B+
r ) ⊆ Lq,λ(B+


r ) if q ≤ p, the uniqueness of the fixed point implies
that uxixj = w̃ij ∈ Lp,λ(B+


r ) for i, j = 1, . . . , n. Then (3.5) can be deduced
from (3.4), and Corollaries 2.2, 2.4, 2.6, and 2.7.
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