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COVERINGS AND RING-GROUPOIDS

OSMAN MUCUK

Abstract. We prove that the set of homotopy classes of the paths in
a topological ring is a ring object (called ring groupoid). Using this
concept we show that the ring structure of a topological ring lifts to
a simply connected covering space.

Introduction

Let X be a connected topological space, ˜X a connected and simply con-
nected topological space, and let p : ˜X → X be a covering map. We call
such a covering simply connected. It is well known that if X is a topolog-
ical group, e is the identity element of X, and ẽ ∈ ˜X such that p(ẽ) = e,
then ˜X becomes a topological group such that p : ˜X → X is a morphism of
topological groups. In that case we say that the group structure of X lifts
to ˜X. This can be proved by the lifting property of the maps on covering
spaces (see, for example, [1]).

In the non-connected case the situation is completely different and was
studied by R. L. Taylor [2] for the first time. Taylor obtained an obstruction
class kX from the topological space X and proved that the vanishing of kX

is a necessary and sufficient condition for the lifting of the group structure
of X to ˜X as described above. In [3] this result was generalized in terms
of group-groupoids, i.e., group objects in the category of groupoids, and
crossed modules, and then written in a revised version in [4].

In this paper we give a similar result: Let X and ˜X be connected topolog-
ical spaces and p : ˜X → X a simply connected covering. If X is a topological
ring with identity element e, and ẽ ∈ ˜X such that p(ẽ) = e, then the ring
structure of X lifts to ˜X. That is, ˜X becomes a topological ring with iden-
tity ẽ ∈ ˜X such that p : ˜X → X is a morphism of topological rings. For this
the following helps us:

In [5] Brown and Spencer defined the notion of a group-groupoid. They
also proved that if X is a topological group, then the fundamental groupoid

1991 Mathematics Subject Classification. 22A05, 55M99, 55R15.
Key words and phrases. Fundamental groupoid, coverings, ring-groupoid.

475
1072-947X/98/0900-0475$15.00/0 c© 1999 Plenum Publishing Corporation



476 OSMAN MUCUK

π1X, which is the set of all rel end points homotopy classes of paths in the
topological space X, becomes a group-groupoid.

We introduce here the notion of a ring-groupoid, which is a ring object
in the category of groupoids.

On the other hand, in [6] it was proved by Brown that if X is a semilo-
cally simply connected topological space, i.e., each component has a simply
connected covering, then the category TCov/X of topological coverings of
X is equivalent to the category GpdCov/π1X of groupoid coverings of the
fundamental groupoid π1X.

In addition to this, in [3] it was proved that if X is a topological group
whose underlying space is semilocally simply connected, then the category
TGCov/X of topological group coverings of X is equivalent to the category
GpGpdCov/π1X of group-groupoid coverings of π1X.

Here we prove that if X is a topological ring, whose underlying space
is semilocally simply connected, then the category TRCov/X of topological
ring coverings of X is equivalent to the category RGpdCov/π1X of ring-
groupoid coverings of π1X.

1. Ring-Groupoids

A groupoid G is a small category in which each morphism is an isomor-
phism. Thus G has a set of morphisms, which we call elements of G, a set
OG of objects together with functions α, β : G → OG, ε : OG → G such that
αε = βε = 1. The functions α, β are called initial and final maps respec-
tively. If a, b ∈ G and βa = αb, then the product or composite ba exists
such that α(ba) = α(a) and β(ba) = β(b). Further, this composite is asso-
ciative, for x ∈ OG the element εx denoted by 1x acts as the identity, and
each element a has an inverse a−1 such that α(a−1) = βa, β(a−1) = α(a),
a−1a = εαa, aa−1 = εβa

In a groupoid G, for x, y ∈ OG we write G(x, y) for the set of all mor-
phisms with initial point x and final point y. We say G is transitive if
for all x, y ∈ OG, G(x, y) is not empty. For x ∈ OG we denote the star
{a ∈ G : αa = x } of x by Gx. The object group at x is G(x) = G(x, x). Let
G be a groupoid. The transitive component of x ∈ OG denoted by C(G)x is
the full subgroupoid of G on those objects y ∈ OG such that G(x, y) is not
empty.

A morphism of groupoids ˜G and G is a functor, i.e., it consists of a pair
of functions f : ˜G → G, O

f̃
: O

G̃
→ OG preserving all the structure.

Covering morphisms and universal covering groupoids of a groupoid are
defined in [6] as follows:

Let f : ˜G → G be a morphism of groupoids. Then f is called a covering
morphism if for each x̃ ∈ O

G̃
, the restriction ˜Gx̃ → Gfx̃ of f is bijective.
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A covering morphism f : ˜G → G of transitive groupoids is called universal
if ˜G covers every covering of G, i.e., if for every covering morphism a : A → G
there is a unique morphism of groupoids a′ : ˜G → A such that aa′ = f (and
hence a′ is also a covering morphism). This is equivalent to saying that for
x̃, ỹ ∈ O

G̃
the set ˜G(x̃, ỹ) has one element at most.

We now give

Definition 1.1. A ring-groupoid G is a groupoid endowed with a ring
structure such that the following maps are the morphisms of groupoids:

(i) m : G×G → G, (a, b) 7→ a + b, group multiplication,
(ii) u : G → G, a 7→ −a, group inverse map,
(iii) e : (?) → G, where (?) is a singleton,
(iv) n : G×G → G, (a, b) 7→ ab, ring multiplication.
So by (iii) if e is the identity element of OG then 1e is that of G.

In a ring-groupoid G for a, b ∈ G the groupoid composite is denoted by
b ◦ a when α(b) = β(a), the group multiplication by a + b, and the ring
multiplication by ab.

Let ˜G and G be two ring-groupoids. A morphism f : ˜G → G from ˜G to
G is a morphism of underlying groupoids preserving the ring structure. A
morphism f : ˜G → G of ring-groupoids is called a covering (resp. a universal
covering) if it is a covering morphism (resp. a universal covering) on the
underlying groupoids.

Proposition 1.2. In a ring-groupoid G, we have
(i) (c ◦ a) + (d ◦ b) = (c + d) ◦ (a + b) and
(ii) (c ◦ a)(d ◦ b) = (cd) ◦ (ab).

Proof. Since m is a morphism of groupoids,

(c ◦ a) + (d ◦ b) = m[c ◦ a, d ◦ b] = m[(c, d) ◦ (a, b)] =

= m(c, d) ◦m(a, b) = (c + d) ◦ (a + b).

Similarly, since n is a morphism of groupoids we have

(c ◦ a)(d ◦ b) = n[c ◦ a, d ◦ b] = n[(c, d) ◦ (a, b)]

= n(c, d) ◦ n(a, b) = (cd) ◦ (ab).

We know from [5] that if X is a topological group, then the fundamental
groupoid π1X is a group-groupoid. We will now give a similar result.

Proposition 1.3. If X is a topological ring, then the fundamental group-
oid π1X is a ring-groupoid.
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Proof. Let X be a topological ring with the structure maps

m : X ×X → X, (a, b) 7→ a + b,

n : X ×X → X, (a, b) 7→ ab

and the inverse map
u : X → X, a 7→ −a.

Then these maps give the following induced maps:

π1m : π1X × π1X → π1X, ([a], [b]) 7→ [b + a]

π1n : π1X × π1X → π1X, ([a], [b]) 7→ [ba]

π1u : π1X × π1X → π1X, [a] 7→ [−a] = −[a].

It is known from [5] that π1X is a group groupoid. So to prove that π1X
is a ring-groupoid we have to show the distributive law: since for a, b ∈ G
a(b + c) = ab + ac we have

[a]([b] + [c]) = [a]([b + c]) = [a(b + c)] = [ab + ac] = [ab] + [ac]

Proposition 1.4. Let G be a ring-groupoid, e the identity of OG. Then
the transitive component C(G)e of e is a ring-groupoid.

Proof. In [3] it was proved that C(G)e is a group-groupoid. Further it can
be checked easily that the ring structure on G makes C(G)e a ring.

Proposition 1.5. Let G be a ring-groupoid and e the identity of OG.
Then the star Ge = {a ∈ G : α(a) = e} of e becomes a ring.

The proof is left to the reader.

2. Coverings

Let X be a topological space. Then we have a category denoted by
TCov/X whose objects are covering maps p : ˜X → X and a morphism from
p : ˜X → X to q : ˜Y → X is a map f : ˜X → ˜Y (hence f is a covering map)
such that p = qf . Further for X we have a groupoid called a fundamental
groupoid (see [6], Ch. 9) and have a category denoted by GpdCov/π1X
whose objects are the groupoid coverings p : ˜G → π1X of π1X and a mor-
phism from p : ˜G → π1X to q : ˜H → π1X is a morphism f : ˜G → ˜H of
groupoids (hence f is a covering morphism) such that p = qf .

We recall the following result from Brown [6].

Proposition 2.1. Let X be a semilocally simply connected topological
space. Then the category TCov/X of topological coverings of X is equiva-
lent to the category GpdCov/π1X of covering groupoids of the fundamental
groupoid π1X.
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Let X and ˜X be topological groups. A map p : ˜X → X is called a
covering morphism of topological groups if p is a morphism of groups and p
is a covering map on the underlying spaces. For a topological group X, we
have a category denoted by TGCov/X whose objects are topological group
coverings p : ˜X → X and a morphism from p : ˜X → X to q : ˜Y → X is a map
f : ˜X → ˜Y such that p = qf . For a topological group X, the fundamental
groupoid π1X is a group-groupoid and so we have a category denoted by
GpGpdCov/π1X whose objects are group-groupoid coverings p : ˜G → π1X
of π1X and a morphism from p : ˜G → π1X to q : ˜H → π1X is a morphism
f : ˜G → ˜H of group-groupoids such that p = qf .

Then the following result is given in [4].

Proposition 2.2. Let X be a topological group whose underlying space
is semilocally simply connected. Then the category TGCov/X of topologi-
cal group coverings of X is equivalent to the category GpGpdCov/π1X of
covering groupoids of the group-groupoid π1X.

In addition to these results, we here prove Proposition 2.3.
Let X and ˜X be topological rings. A map p : ˜X → X is called a covering

morphism of topological rings if p is a morphism of rings and p is a covering
map on the underlying spaces. So for a topological ring X, we have a
category denoted by TRCov/X, whose objects are topological ring coverings
p : ˜X → X and a morphism from p : ˜X → X to q : ˜Y → X is a map
f : ˜X → ˜Y such that p = qf . Similarly, for a topological ring X, we
have a category denoted by RGpdCov/π1X whose objects are ring-groupoid
coverings p : ˜G → π1X of π1X and a morphism from p : ˜G → π1X to
q : ˜H → π1X is a morphism f : ˜G → ˜H of ring-groupoids such that p = qf .

Let X be a topological ring whose underlying space is semilocally simply
connected. Then we prove the following result.

Proposition 2.3. The categories TRCov/X and RGpdCov/π1X are
equivalent.

Proof. Define a functor

π1 : TRCov/X→RGpdCov/π1X

as follows: Let p : ˜X → X be a covering morphism of topological rings. Then
the induced morphism π1p : π1 ˜X → π1X is a covering morphism of group-
groupoids (see [3]), i.e., it is a morphism of group-groupoids and coverings
on the underlying groupoids. Further the morphism π1p preserves the ring
structure as follows:

(π1p)[ab] = [p(ab)] = [p(a)p(b)] = [p(a)][p(b)] = (π1p)[a](π1p)[a].

So π1p : π1 ˜X → π1X becomes a covering morphism of ring-groupoids.
We now define a functor
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η : RGpdCov/π1X → TRCov/X

as follows: If q : ˜G → π1X is a covering morphism of ring groupoids, then
we have a covering map p : ˜X → X, where p = Oq and ˜X = O

G̃
. Further

p is a morphism of topological groups (see [3]). Further we will prove that
the ring multiplication

ñ : ˜X × ˜X → ˜X, (a, b) 7→ ab

is continuous.
By assuming that X is semilocally simply connected, we can choose a

cover U of simply connected subsets of X. Since the topology ˜X is the
lifted topology (see [6], Ch. 9) the set consisting of all liftings of the sets in
U forms a basis for the topology on ˜X. Let ˜U be an open neighborhood of
ẽ and a lifting of U in U. Since the multiplication

n : X ×X → X, (a, b) 7→ ab

is continuous, there is a neighborhood V of e in X such that n(V ×V ) ⊆ U .
Using the condition on X and choosing V small enough we can assume that
V is simply connected. Let ˜V be the lifting of V . Then pñ(˜V × ˜V ) =
n(V × V ) ⊆ U and so we have ñ(˜V × ˜V ) ⊆ ˜U . Hence

ñ : ˜X × ˜X → ˜X, (a, b) 7→ ab

becomes continuous. Since by Proposition 2.2 the category of topological
group coverings is equivalent to the category of group-groupoid coverings,
the proof is completed by the following diagram:

TRCov/X π1−→ RGpdCov/π1X
↓ ↓

TGCov/X π1−→ GpGpdCov/π1X.

Before giving the main theorem we adopt the following definition:

Definition 2.4. Let p : ˜G → G be a covering morphism of groupoids
and q : H → G a morphism of groupoids. If there exists a unique morphism
q̃ : H → ˜G such that p = qq̃ we say q lifts to q̃ by p.

We recall the following theorem from [6] which is an important result to
have the lifting maps on covering groupoids.

Theorem 2.5. Let p : ˜G → G be a covering morphism of groupoids, x ∈
OG and x̃ ∈ O

G̃
such that p(x̃) = x. Let q : H → G be a morphism of

groupoids such that H is transitive and ỹ ∈ OH such that q(ỹ) = x. Then
the morphism q : H → G uniquely lifts to a morphism q̃ : H → ˜G such that
q̃(ỹ) = x̃ if and only if q[H(ỹ)] ⊆ p[ ˜G(x̃)], where H(ỹ) and ˜G(x̃) are the
object groups.
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Let G be a ring groupoid, e the identity of OG, and let ˜G be just a
groupoid, ẽ ∈ O

G̃
such that p(ẽ) = e. Let p : ˜G → G be a covering morphism

of groupoids. We say the ring structure of G lifts to ˜G if there exists a ring
structure on ˜G with the identity element ẽ ∈ O

G̃
such that ˜G is a group-

groupoid and p : ˜G → G is a morphism of ring-groupoids.

Theorem 2.6. Let ˜G be a groupoid and G a ring-groupoid. Let p : ˜G →
G be a universal covering on the underlying groupoids such that both group-
oids ˜G and G are transitive. Let e be the identity element of OG and ẽ ∈ O

G̃

such that p(ẽ) = e. Then the ring structure of G lifts to ˜G with identity ẽ.

Proof. Since G is a ring-groupoid as in Definition 1.1 it has the following
maps:

m : G×G → G, (a, b) 7→ a + b,

u : G → G, a 7→ −a,

n : G×G → G, (a, b) 7→ ab.

Since ˜G is a universal covering, the object group ˜G(ẽ) has one element at
most. So by Theorem 2.5 these maps respectively lift to the maps

m̃ : ˜G× ˜G → ˜G, (ã,˜b) 7→ ã +˜b,

ũ : ˜G → ˜G, ã 7→ −ã,

ñ : ˜G× ˜G → ˜G, (ã,˜b) 7→ ã˜b

by p : ˜G → G such that

p(ã +˜b) = p(ã) + p(˜b),

p(ã˜b) = p(ã)p(˜b),

p(ũ(ã)) = −(pã).

Since the multiplication m : G × G → G 7→ a + b is asociative, we have
m(m × 1) = m(1 ×m), where 1 denotes the identity map. Then again by
Theorem 2.5 these maps m(m× 1) and m(1×m) respectively lift to

m̃(m̃× 1), m̃(1× m̃) : ˜G× ˜G× ˜G → ˜G

which coincide on (ẽ, ẽ, ẽ). By the uniqueness of the lifting we have m̃(m̃×
1) = m̃(1 × m̃), i.e., m̃ is associative. Similarly, ñ is associative. Further
the distributive law is satisfied as follows:

Let p1, p2 : G×G×G → G be the morphisms defined by

p1(a, b, c) = ab, p2(a, b, c) = bc
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and
(p1, p2) : G×G×G → G×G, (a, b, c) 7→ (ab, ac)

for a, b, c ∈ G. Since the distribution law is satisfied in G, we have n(1×m) =
m(p1, p2). The maps n(1×m) and m(p1, p2) respectively lift to the maps

ñ(1× m̃), m̃(p̃1, p̃2) : ˜G× ˜G× ˜G → ˜G

coinciding at (ẽ, ẽ, ẽ). So by Theorem 2.5 we have ñ(1 × m̃) = m̃(p̃1, p̃2).
That means the distribution law on ˜G is satisfied. The rest of the proof is
straightforward.

From Theorem 2.6 we obtain

Corollary 2.7. Let X and ˜X be path connected topological spaces and
p : ˜X → X be a simply connected covering, i.e., ˜X is simply connected.
Suppose that X is a topological ring, and e is the identity element of the
group structure on X. If ẽ ∈ ˜X with p(ẽ) = e, then ˜X becomes a topological
ring with identity ẽ such that p is a morphism of topological rings.

Proof. Since p : ˜X → X is a simply connected covering, the induced mor-
phism π1p : π1 ˜X → π1X is a universal covering morphism of groupoids.
Since X is a topological ring by Proposition 1, π1X is a ring-groupoid. By
Theorem 2.6 π1 ˜X becomes a ring-groupoid and again by Proposition 2.3 ˜X
becomes a topological ring as required.
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