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SOLUTION OF SOME WEIGHT PROBLEMS FOR THE
RIEMANN–LIOUVILLE AND WEYL OPERATORS

A. MESKHI

Abstract. The necessary and sufficient conditions are found for the
weight function v, which provide the boundedness and compactness
of the Riemann–Liouville operator Rα from Lp to Lq

v . The criteria
are also established for the weight function w, which guarantee the
boundedness and compactness of the Weyl operator Wα from Lp

w
to Lq .

In this paper, the necessary and sufficient conditions are found for the
weight function v (w), which provide the boundedness and compactness
of the Riemann-Liouville transform Rαf(x) =

∫ x
0

f(t)
(x−t)1−α dt (of the Weyl

transform Wαf(x) =
∫∞

x
f(t)

(t−x)1−α dt) from Lp to Lq
v (from Lp

w to Lq) when

1 < p, q < ∞, 1
p < α < 1 or α > 1 ( q−1

q < α < 1 or α > 1).
A complete description of the weight pairs (v, w) providing the bounded-

ness of the operators Rα and Wα from Lp
w to Lq

v when 1 < p < q < ∞ and
0 < α < 1 is given in [1]. For 1 < p ≤ q < ∞ and α > 1 a similar problem
has been solved by many authors (see, e.g., [2, 3]).

The necessary and sufficient conditions for pairs of weights, which provide
the boundedness of the above-mentioned operators when 1 < q < p < ∞
and α > 1, are obtained in [4].

For 1 < q ≤ p < ∞ and 0 < α < 1, the two-weight problem for the
operators Rα and Wα remains unsolved and in this context the results
presented here are interesting.

Let v and w be positive almost everywhere, locally integrable functions
defined on R+.
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Denote by Lp
v (1 < p < ∞) a class of all Lebesgue-measurable functions

defined on R+ for which

‖f‖Lp
v

=
(

∞
∫

0

|f(x)|pv(x) dx
) 1

p
< ∞.

First, let us recall some familiar results.

Theorem A ([5–10]). Let 1 ≤ p ≤ q < ∞. The inequality

(
∞
∫

0

∣

∣

∣

x
∫

0

f(t)dt
∣

∣

∣

q
v(x)dx

) 1
q

≤ c
(

∞
∫

0

|f(x)|pw(x)dx
) 1

p
, (1)

where the positive constant c does not depend on f , is fulfilled iff

D = sup
t>0

(

∞
∫

t

v(x)dx
) 1

q
(

t
∫

0

w1−p′(x)dx
) 1

p′ < ∞
(

p′ =
p

p− 1

)

.

Moreover, if c is the best constant in (1), then c ≈ D (the symbol ≈ here
denotes a two-sided inequality).

Theorem B ([10]). Let 1 ≤ q < p < ∞. Then inequality (1) holds iff

D1 =
(

∞
∫

0

[

(

∞
∫

t

v(x)dx
)(

t
∫

0

w1−p′(x)dx
)q−1

]
p

p−q

w1−p′(t)dt
)

p−q
pq

< ∞.

Moreover, if c is the best constant in (1), then c ≈ D1.

We also need Kolmogorov’s theorem formulated as follows (see, e.g., [11]):

Theorem C. Let 1 < p, q < ∞ and K : Lp → Lq
v be an integral operator

of the form Kf(x) =
∫∞
0 k(x, y)f(y)dy. If

‖ ‖k(x, ·)‖Lp′ ‖Lq
v

< ∞,

then the operator K is compact.

Theorem 1. Let 1 < p ≤ q < ∞, 1
p < α < 1 or α > 1. The inequality

‖Rαf‖Lq
v
≤ A‖f‖Lp , (2)

where the positive constant A does not depend on f , is fulfilled iff

B = sup
t>0

B(t) = sup
t>0

(

∞
∫

t

v(x)
x(1−α)q dx

) 1
q
t

1
p′ < ∞. (3)

Moreover, if A is the best constant in (2), then A ≈ B.
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Proof. Sufficiency. Denoting I1αf(x) =
∫ x

2
0

f(t)
(x−t)1−α dt and I2αf(x) =

∫ x
x
2

f(t)
(x−t)1−α dt for f ∈ Lp we write Rαf as Rαf(x) = I1αf(x) + I2αf(x).

We obtain

‖Rαf‖q
Lq

v
≤c1

∞
∫

0

|I1αf(x)|qv(x)dx+c1

∞
∫

0

|I2αf(x)|qv(x)dx=S1+S2.

If 0 < t < x
2 , then (x−t)α−1 ≤ bxα−1, where the positive constant b depends

only on α. Consequently, using Theorem A with w ≡ 1, we have

S1 ≤ c2

∞
∫

0

v(x)
x(1−α)q

(

x
∫

0

|f(t)|dt
)q

dx ≤ c3Bq‖f‖q
Lp .

Now we shall estimate S2. Using the Hölder inequality and the condition
1
p < α, we obtain

S2 = c1

∞
∫

0

v(x)
∣

∣

∣

x
∫

x
2

f(t)
(x− t)1−α dt

∣

∣

∣

q
dx ≤

≤ c1

∞
∫

0

v(x)
(

x
∫

x
2

|f(t)|pdt
)

q
p
(

x
∫

x
2

dt
(x− t)(1−α)p′

)
q
p′ dx =

= c4

∑

k∈Z

2k+1
∫

2k

v(x) · x(α−1)q+ q
p′

(

x
∫

x
2

|f(t)|pdt
)

q
p
dx ≤

≤ c4

∑

k∈Z

(

2k+1
∫

2k−1

|f(t)|pdt
)

q
p
(

2k+1
∫

2k

v(x) · x(α−1)q+ q
p′ dx

)

≤

≤ c5

∑

k∈Z

(

2k+1
∫

2k−1

|f(t)|pdt
)

q
p
(

2k+1
∫

2k

v(x) · x(α−1)qdx
)

· 2
kq
p′ ≤

≤ c5Bq
∑

k∈Z

(

2k+1
∫

2k−1

|f(t)|pdt
)

q
p ≤ c6Bq‖f‖q

Lp

which proves the sufficiency.
Necessity. Let f(x) = χ(0, t

2 )(x). Note that if 0 < y < t
2 and x > t, then

(x − y)α−1 ≥ b1xα−1, where the positive constant b1 depends only on α.
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We have

‖Rαf‖Lq
v
≥

(
∞
∫

t

v(x)
(

t
2

∫

0

dy
(x− y)1−α

)q
dx

) 1
q

≥ c7

(

∞
∫

t

v(x)
x(1−α)q dx

) 1
q · t.

On the other hand, ‖f‖Lp = c8t
1
p and by virtue of inequality (2) we find

that B(t) ≤ c9A for all t > 0.

A most complicated proof of a similar theorem is given in [12] for the
case p = q = 2.

Remark 1. Condition (3) is equivalent to the condition

˜B = sup
k∈Z

(

2k+1
∫

2k

v(x)

x(1−α)q− q
p′

dx
) 1

q
< ∞. (4)

Moreover, B ≈ ˜B.
Indeed, the fact that (3) implies (4) follows from the proof of Theorem

1. Now let condition (4) be satisfied and t ∈ (0,∞). Then t ∈ (2m, 2m+1]
for some m ∈ Z. We have

B(t)q =
(

∞
∫

t

v(x)
x(1−α)q dx

)

t
q
p′ ≤

(

∞
∫

2m

v(x)
x(1−α)q dx

)

2
(m+1)q

p′ =

= c12
mq
p′

∞
∑

k=m

(

2k+1
∫

2k

v(x)
x(1−α)q dx

)

≤ c22
mq
p′

∞
∑

k=m

2−
kq
p′

2k+1
∫

2k

v(x)x
q
p′

x(1−α)q dx ≤

≤ c2 ˜Bq2
mq
p′

∞
∑

k=m

2−
kq
p′ ≤ c3 ˜Bq

and therefore B ≤ c4 ˜B < ∞.
By the duality argument and Theorem 1 we obtain

Theorem 2. Let 1 < p ≤ q < ∞, 1
q′ < α < 1 or α > 1. For the

inequality

‖Wαf‖Lq ≤ A‖f‖Lp
w
, (5)

where the positive constant A does not depend on f , to be valid it is necessary
and sufficient that

B = sup
t>0

B(t) = sup
t>0

(

∞
∫

t

w1−p′(x)
x(1−α)p′ dx

) 1
p′ t

1
q < ∞. (6)



SOLUTION OF SOME WEIGHT PROBLEMS 569

Moreover, if A is the best constant in inequality (5), then A ≈ B.

We shall now consider the case 1 < q < p < ∞. Applying the integration
by parts, we obtain

Lemma 1. Let 1 < q < p < ∞ and u be a locally integrable function on
R+. Then the equality

(

b
∫

a

u(x)dx
)

p
p−q

=
p

p− q

b
∫

a

(

b
∫

x

u(t)dt
)

q
p−q

u(x)dx

holds, where 0 ≤ a < b < ∞.

Theorem 3. Let 1 < q < p < ∞, 1
p < α < 1 or α > 1. The inequality

‖Rαf‖Lq
v
≤ A1‖f‖Lp (7)

is fulfilled iff

B1 =
(

∞
∫

0

(

∞
∫

x

v(t)
t(1−α)q dt

)
p

p−q
x

(q−1)p
p−q dx

)
p−q
pq

< ∞. (8)

Moreover, if A1 is the best constant in inequality (7), then A1 ≈ B1.

Proof. Sufficiency. In the notation introduced in the proof of Theorem 1
we have

‖Rαf‖q
Lq

v
≤ S1 + S2.

Using Theorem B with w ≡ 1 and the argument from the proof of Theorem
1, we obtain

S1 ≤ c2B
q
1‖f‖

q
Lp .

Applying the Hölder inequality twice and the fact that 1
p < α, we have

S2 ≤ c1

∞
∫

0

(

x
∫

x
2

|f(t)|pdt
)

q
p
(

x
∫

x
2

dt
(x− t)(1−α)p′

)
q
p′ v(x)dx =

= c3

∑

k∈Z

2k+1
∫

2k

(

x
∫

x
2

|f(t)|pdt
)

q
p
v(x)x(α−1)q+ q

p′ dx ≤

≤ c3

∑

k∈Z

(

2k+1
∫

2k−1

|f(t)|pdt
)

q
p
(

2k+1
∫

2k

v(x)x(α−1)q+ q
p′ dx

)

≤
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≤ c3

(
∑

k∈Z

2k+1
∫

2k

|f(t)|pdt
)

q
p
(

∑

k∈Z

(

2k+1
∫

2k

v(x)x(α−1)q+ q
p′ dx

)
p

p−q
)

p−q
p

≤

≤c4‖f‖q
Lp

(

∑

k∈Z

(

2k+1
∫

2k

v(x)x(α−1)q+ q
p′ dx

)
p

p−q
)

p−q
p

=c4‖f‖q
Lp

(
∑

k∈Z
S2k

)
p−q

p
.

By Lemma 1, we find for S2k that

S2k ≤ 2
(k+1)qp
p′(p−q)

(

2k+1
∫

2k

v(x)x(α−1)qdx
)

p
p−q ≤

≤ c52
kqp

p′(p−q)

2k+1
∫

2k

(

2k+1
∫

x

v(t)
t(1−α)q dt

)
q

p−q v(x)
x(1−α)q dx ≤

≤ c5

2k+1
∫

2k

(

∞
∫

x

v(t)
t(1−α)q dt

)
q

p−q v(x)
x(1−α)q · x

q(p−1)
p−q dx.

Using integration by parts we get

S2 ≤ c6‖f‖q
Lp

(
∞
∫

0

(

∞
∫

x

v(t)
t(1−α)q dt

)
q

p−q v(x)
x(1−α)q · x

q(p−1)
p−q dx

)
p−q

p

=

= c7‖f‖q
Lp

(
∞
∫

0

(

∞
∫

x

v(t)
t(1−α)q dt

)
p

p−q
x

p(q−1)
p−q dx

)
p−q

p

= c7‖f‖q
LpBq

1

and finally we obtain inequality (7).
Necessity. Let 1

p < α < 1 and v0(t) = v(t) · χ(a,b)(t), w0(t) = χ(a,b)(t),
where 0 < a < b < ∞, and let

f(x) =
(

∞
∫

x

v0(t)
t(1−α)q dt

) 1
p−q

(

x
∫

0

w0(t)dt
)

q−1
p−q

w0(x).

Then we have

‖f‖Lp =
(

b
∫

a

(

∞
∫

x

v0(t)
t(1−α)q dt

)
p

p−q
(

x
∫

0

w0(t)dt
)

(q−1)p
p−q

dx
) 1

p

< ∞.
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On the other hand,

‖Rαf‖Lq
v

=
(

∞
∫

0

v(x)
(

x
∫

0

f(t)
(x− t)1−α dt

)q
dx

) 1
q

≥

≥ c8

(
∞
∫

0

v(x)
x(1−α)q

(

x
∫

0

f(t)dt
)q

dx
) 1

q

≥ c9

(
∞
∫

0

v(x)
x(1−α)q ×

×
(

∞
∫

x

v0(y)
y(1−α)q dy

)
q

p−q
(

x
∫

0

(

t
∫

0

w0(y)dy
)

q−1
p−q

w0(t)dt
)q

dx
) 1

q

≥

≥ c10

(
∞
∫

0

v0(x)
x(1−α)q

(

∞
∫

x

v0(y)
y(1−α)q dy

)
q

p−q
(

x
∫

0

w0(y)dy
)

(p−1)q
p−q

dx
) 1

q

=

= c11

(
∞
∫

0

(

∞
∫

x

v0(t)
t(1−α)q dt

)
p

p−q
(

x
∫

0

w0(t)dt
)

(q−1)p
p−q

w0(x)dx
) 1

q

=

= c11

(
b

∫

a

(

∞
∫

x

v0(t)
t(1−α)q dt

)
p

p−q
(

x
∫

0

w0(t)dt
)

(q−1)p
p−q

dx
) 1

q

.

From inequality (7) we have

(
b

∫

a

(

∞
∫

x

v0(t)
t(1−α)q dt

)
p

p−q
(

x
∫

0

w0(t)dt
)

(q−1)p
p−q

dx
)

q−p
pq

≤ c12A1,

where c12 does not depend on a and b. By Fatou’s lemma we finally obtain
condition (8). The case α > 1 is proved similarly.

By the duality argument and Theorem 3 we have

Theorem 4. Let 1 < q < p < ∞, 1
q′ < α < 1 or α > 1. The inequality

‖Wαf‖Lq ≤ A1‖f‖Lp
w
, (9)

where the positive constanr A1 does not depend f , holds iff

B1 =
(

∞
∫

0

(

∞
∫

x

w1−p′(t)
t(1−α)p′ dt

)
q(p−1)

p−q
x

q
p−q dx

)
p−q
pq

< ∞. (10)

Moreover, if A1 is the best constant in inequality (9), then A1 ≈ B1.

Let us now investigate the compactness of the operators Rα and Wα.
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Theorem 5. Let 1 < p ≤ q < ∞, 1
p < α < 1 or α > 1. The operator

Rα is compact from Lp to Lq
v iff condition (3) and the condition

lim
t→0

B(t) = lim
t→∞

B(t) = 0

is satisfied.

Proof. Sufficiency. Let 0 < a < b < ∞. We write Rαf as

Rαf = χ[0,a]Rα(f · χ(0,a)) + χ(a,b)Rα(f · χ(0,b)) + χ[b,∞)Rα(f · χ
(0, b

2 )
) +

+χ[b,∞)Rα(f · χ
( b
2 ,∞)

) = P1αf + P2αf + P2αf + P4αf.

For P2αf we have P2αf(x) = χ(a,b)(x)
∫∞
0 k1(x, y)f(y)dy, with k1(x, y) =

(x− y)α−1 for y < x and k1(x, y) = 0 for y ≥ x. Consequently

b
∫

a

v(x)
(

∞
∫

0

(k1(x, y))p′dy
)

q
p′ dx ≤

(

b
∫

a

v(x)
x(1−α)q dx

)

b
q
p′ < ∞

and by Theorem C we conclude that P2α is compact from Lp to Lq
v.

In a similar manner we show that P3α is compact too.
Using Theorem 1 for the operators P1α and P4α, we obtain

‖P1α‖ ≤ c1 sup
0<t<a

B(t) and ‖P4α‖ ≤ c2 sup
t> b

2

B(t).

Consequently

‖Rα − P2α − P3α‖ ≤ ‖P1α‖+ ‖P4α‖ ≤ c1 sup
0<t<a

B(t) + c2 sup
t> b

2

B(t) → 0

as a → 0 and b →∞.
Thus the operator Rα is compact, since it is a limit of compact operators.

The sufficiency is proved.
Necessity. Note that the fact B < ∞ follows from Theorem 1. Thus

we need to prove the remaining part. Let ft(x) = χ(0,t)(x)t−1/p. Then the
sequence ft is weakly convergent to 0. Indeed, assuming that ϕ ∈ Lp′ , we
obtain

∣

∣

∣

∞
∫

0

ft(x)ϕ(x)dx
∣

∣

∣ ≤
(

t
∫

0

|ϕ(x)|p
′
dx

) 1
p′ → 0 as t → 0.

On the other hand, we have

‖Rαft‖Lq
v
≥

(
∞
∫

t

v(x)
(

t
∫

0

ft(y)
(x− y)1−α dy

)q
dx

) 1
q

≥
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≥ c3

(

∞
∫

t

v(x)
x(1−α)q dx

) 1
q
t

1
p′ = c3B(t).

Using the fact that a compact operator maps a weakly convergent sequence
into a strongly convergent form, we find that B(t) → 0 as t → 0.

Keeping in mind that the operator Wα is compact from Lq′

v1−q′ to Lp′

and arguing as above, we prove the remaining part of the theorem.

In [12] a similar theorem is proved for the case p = q = 2.
Since the operator Wα is compact from Lp

w to Lq iff the operator Rα is
compact from Lq′ to Lp′

w1−p′ , by Theorem 5 we obtain

Theorem 6. Let 1 < q < p < ∞, 1
q′ < α < 1 or α > 1. The operator

Wα is compact from Lp
w to Lq iff condition (6) and the condition

lim
t→0

B(t) = lim
t→∞

B(t) = 0

are fulfilled.

Theorem 7. Let 1 < q < p < ∞, 1
p < α < 1 or α > 1. The operator

Rα is compact from Lp to Lq
v iff condition (8) is satisfied.

Proof. The sufficiency is proved as in proving Theorem 5 while the necessity
follows from Theorem 3.

By the duality argument we have

Theorem 8. Let 1 < q < p < ∞, 1
q′ < α < 1 or α > 1. The operator

Wα is compact from Lp
w to Lq iff condition (10) is fulfilled.

In [13, 14] the necessary and sufficient conditions are found for the oper-
ators Rα and Wα to be compact when 1 < p ≤ q < ∞ and α = 1.

An analogous problem for α > 1 was investigated in [15].

Remark 2. In Theorems 1 and 5 it suffices to consider v as a measurable
almost everywhere, positive function. The same assumption can be made
for w in Theorems 2 and 6.
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