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A PROBLEM WITH NONLOCAL BOUNDARY
CONDITIONS FOR A QUASILINEAR PARABOLIC

EQUATION

T. D. DZHURAEV AND J. O. TAKHIROV

Abstract. The solvability of the nonlocal boundary value problem

ut = a(t, x, u, ux)uxx + b(t, x, u, ux), 0 ≤ t ≤ T, |x| ≤ l,

u(0, x) = 0, u(t,−l) = u(t, l), ux(t,−l) = ux(t, l)

in a class of functions is investigated for a quasilinear parabolic equa-
tion. The solution uniqueness follows from the maximum principle.

The problem of solving the basic boundary value problems and Cauchy’s
problem has been thoroughly investigated for a wide class of nonlinear
parabolic equations of second order. Local (see, for example, [1]) and global
([2]) existence theorems under different assumptions on the character of
nonlinearity of equations have been proved by different methods. Local
solvability takes place for equations with smooth coefficients without any
essential restrictions on the nonlinearity character of coefficients. Such re-
strictions become necessary when constructing a global solution.

Problems for linear equations with nonlocal (initial or boundary) condi-
tions have been studied in many papers, but boundary value problems for
nonlinear equations with nonlocal conditions have so far remained nearly
uninvestigated. In this paper we shall consider a problem on the rectangle
Q = {(t, x) : 0 ≤ t ≤ T , |x| ≤ l} for the quasilinear parabolic equation

ut = a(t, x, u, ux)uxx + b(t, x, u, ux) (1)

under the conditions

u(0, x) = 0, (2)

u(t,−l) = u(t, l), ux(t,−l) = ux(t, l). (3)
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It is assumed that the functions a(t, x, u, p) and b(t, x, u, p) are defined
for (t, x) ∈ Q and arbitrary (u, p) and bounded on every compactum.

Note the problem under consideration appears when studying the birth
process of separate population in the one-dimensional biological reactor hav-
ing the shape of a long tube and closed like a ring [3]. In that case u(t, x)
is the population density, l is the reactor length.

When constructing the theory of nonlocal boundary value problems and
Cauchy’s problem for parabolic equations of form (1), a major difficulty is
to obtain a priori estimates for the absolute value of the derivative ux and
its Hölder constant.

We shall use the notation from [2]:

Qδ
0 = {(t, x) : 0 ≤ t ≤ T, |x| ≤ l − δ},

Qδ = {(t, x) : δ ≤ t ≤ T, |x| ≤ l − δ},

where 0 < δ < min(l, T ).
Some of S. N. Kruzhkov’s results [2, 4] will also be used in the investiga-

tion of the formulated problem.
Let the function u(t, x) be defined on some set D; for every number

γ ∈ (0, 1) let

|u|Dγ = sup
D
|u(t, x)|+ sup

(t,x)∈D, (τ,y)∈D

|u(t, x)− u(τ, y)|
(|t− τ |+ |x− y|2)γ/2 ,

|u|D1+γ = |u|Dγ + |ux|Dγ , |u|D2+γ = |u|D1+γ + |uxx|Dγ + |ut|Dγ .

Throughout the paper it is assumed that the following basic conditions
are fulfilled for equation (1):

A. bu(t, x, u, 0) ≤ b0 and |b(t, x, 0, 0)| ≤ b1 for (t, x) ∈ Q and arbitrary
u(t, x);

B. a(t, x, u, p) ≥ a0 = const > 0 for (t, x) ∈ Q and arbitrary u(t, x)
and p(t, x).

Further we denote by C, Ci, Nj any constants which depend only on
known data.

1. A Priori Estimates for Solving the Problem.

Theorem 1. Let the function u(t, x) and its derivative ux be continuous
on Q and satisfy conditions (2), (3) and equation (1) on Q except perhaps
the points (t, x) : 0 ≤ t ≤ T , x = 0. Further, let max

Q
|u| = M , and for

(t, x) ∈ Q, |u| ≤ M and arbitrary p the continuous functions a and b satisfy
the conditions

a(t,−l, u, p) = a(t, l, u, p), b(t,−l, u, p) = b(t, l, u, p), (4)
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|b(t, x, u, p)|
a(t, x, u, p)

≤ K(p2 + 1).

Then for (t, x) ∈ Q |ux(t, x)| ≤ C(M,a0,K) = M1. If a1 = max a(t, x, u, p),
b2 = max |b(t, x, u, p)| in the domain {(t, x) ∈ Q, |u| ≤ M , |p| ≤ M1},
then (see [4], Lemma 4.5)

|u(t1, x)− u(t2, x)| ≤ C(M, a1, b2,K, M1)|t1 − t2|1/2. (5)

Let u(t, x) have the generalized derivatives uxx, utx ∈ L2(Q). Then there
exists γ = γ(M,a0, a1,K) such that

|u|Q1+γ ≤ C(M, a0, a1,K), 0 < γ < 1. (6)

Proof. The estimate |ux| ≤ C for Qδ
0 immediately follows from Theorem 2

of [2]. Here we use the method of introducing additional space variables.
To complete the proof, it is necessary to establish the correctness of the
estimate up to lateral sides of the rectangle Q. In the well-known work [2], as
u|x=±l = 0, S. N. Kruzhkov has used the method of continuing the solution
through the lateral sides which leads to the odd function. We propose to
continue the function u(t, x) through the lateral sides of Q according to the
rule

u(t, x) = u(t, 2l + x) for − 3l ≤ x ≤ −l, (7)

u(t, x) = u(t, x− 2l) for l ≤ x ≤ 3l. (8)

It is assumed that the coefficients of equation (1) are continued in x
according to (7), (8). The new function (also denoted by u(t, x)) has a
continuous derivative ux at every point of rectangles R± = {(t, x) : 0 ≤
t ≤ T , |x ± 3

2 l| ≤ 3
2 l} and satisfies a ”continued” equation of form (1) (for

example, under l < x < 3l, ut = a(t, x − 2l, u, ux)uxx + b(t, x − 2l, u, ux))
with the same properties as in Theorem 1. Using the well-known “intrinsic”
results, we get an estimate of |ux| in rectangles whose union contains Q.
Since the obtaining of intrinsic estimates is based on the maximum principle,
the statements of the theorem remain true when the function u(t, x) is
continuous in Q, has a continuous derivative ux and satisfies (1) throughout
Q except the points of a finite number of straight lines x = const (see the
proof of Theorem 4.3 in [4]).

Now, using the obtained estimates of |u| and |ux| in Q, by virtue of [4,
Theorem 4.5] we get estimate (5).

The intrinsic estimate

|u|Q
2δ

1+γ ≤ C(M, a0, a1,K, δ) (9)

follows from Theorem 3 of [2]. By virtue of the obtained results the func-
tion u(t, x) can be considered as a solution of the linear equation ut =
a(t, x)uxx + b(t, x) with bounded and Hölder continuous coefficients. To
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get an estimate up to the boundary, as in the first statement of Theorem
1, we shall continue u(t, x) by rule (7), (8). As it is known (see the proof
of Theorem 4 in [2]), for the solution of the “intrinsic” equation intrinsic
a priori estimates of form (11) hold in the rectangles containing Q. Hence
the results of [2] (Theorem 3 in [2]) on Hölder continuity of the generalized
solution can be used. Thus we obtain estimate (6).

Lemma. For the solution u(t, x) of problem (1)–(3) the estimate

|u(t, x)| ≤ b1 exp{βT}
β − b0

= M, (10)

is true. Here β satisfies the condition β − b0 > 0.

The proof is conducted according to the following scheme. The function
v = e−βtu(t, x) is introduced and the equation for v(t, x) is considered at the
intrinsic points of positive maximum and negative minimum of the solution.
With regard for A and B and using the boundary point of extremum (see
[5], Lemma 5) and also the absolute value estimate of the solution of the
linear equation ([5], Lemma 6), we get (10).

2. A priori Estimates of Higher Derivatives.

Theorem 2. In addition to all the assumptions of Theorem 1, let the in-
equality |bx| ≤ B1 hold and the function a(t, x, u, p) have continuous bounded
derivatives |ax|, |au|, |ap| ≤ K1; let the function u(t, x), satisfying conditions
(2), (3) and equation (1) in Q, be continuous in Q together with its deriva-
tives ut, ux, uxx, and on the compact subsets of Q together with utx, uxxx.
Further, let |u|Q

δ
0

2+γ < +∞. Then |u|Q
2δ
0

2+γ ≤ C(M, a0, a1,K, δ). Moreover, if
|u|Q2+γ < ∞, then |u|Q2+γ ≤ C(M1, a0, a1,K1,K).

Proof. Differentiating equation (1) with respect to x on the compact subsets
of Q, we get, for the function p = ux(t, x), the equation

pt = apxx + b(t, x, u, p, px), (11)

where b = (appx + aup + bp)px + bup + (ax + bx), and the initial condition
gives

p(0, x) = 0. (12)

The second condition from (3) implies

p(t,−l) = p(t, l). (13)

Further, letting x = ±l in (1) and taking (4) into account, from the first
condition of (3) we obtain

px(t,−l) = px(t, l). (14)
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Now, by applying Theorem 1 (formula (7); the functions p, a and b are
assumed to satisfy the conditions of the theorem) to problem (11)–(14) we
have |ux(t, x)|Q1+γ ≤ C. The estimate for ut follows from (1).

3. The Solution Existence and Uniqueness. Using the established a
priori estimates, we shall prove a theorem on the unique solvability of prob-
lem (1)–(3).

Theorem 3. Let the conditions of Theorem 2 and the compatibility con-
dition b(0,−l, 0, 0) = b(0, l, 0, 0) hold. Then for some α ∈ (0, 1) there exists
a unique solution u ∈ C2+α(Q) of the problem (1)–(3).

Proof. We shall use Shauder’s fixed point principle. Let C
1+γ

(Q) be the
set of all functions from C1+γ(Q) satisfying conditions (2), (3).

Consider the problem

vt = a(t, x, u, ux)vxx + b(t, x, u, ux), (15)

v(0, x) = 0, (16)

v(t,−l) = v(t, l), vx(t,−l) = vx(t, l), (17)

where u(t, x) ∈ C
1+γ

(Q).
Equation (15) can be treated as a linear equation with Hölder continu-

ous coefficients. Here we cannot refer to the well-known results, since we
consider the problem with boundary conditions in nonlocal terms.

First we shall prove the following theorem for linear parabolic equations.

Theorem 4. Let the function u(t, x) be a solution of the parabolic equa-
tion

Lu ≡ a(t, x)uxx + b(t, x)ux + e(t, x)u− ut = f(t, x), (t, x) ∈ Q, (18)

satisfying conditions (2), (3). If the coefficients a, b, e and f(t, x) satisfy the
Hölder condition, then there exists a solution of problem (18), (2), (3) such
that

|u|Q2+α ≤ C|f |Qα . (19)

Proof. By virtue of Ciliberto’s results [6] we have |u|Q
δ
0

2+α ≤ C0|f |Qα . There-
fore it will be enough to establish estimates (19) under t > 0. Let us reduce
equation (18) to the homogeneous one by means of the solution

u0(t, x) =
∫ t

0
dη

∫ l

−l
Γ(t, x, η, ξ)f(η, ξ)dξ,
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where Γ(t, x; η, ξ) is the fundamental solution of (18) where f ≡ 0. Substi-
tuting v = u + u0, and putting Lu0 = −f, we get the problem

Lv = 0, (20)

v(t,−l) = v(t, l) + r1(t), (21)

vx(t,−l) = vx(t, l) + r2(t), (22)

v(0, x) = 0, (23)

where r1(t) = u0(t,−l)− u0(t, l), r2(t) = u0x(t,−l)− u0x(t, l).
Now we shall improve the smoothness of the functions ri(t), i = 1, 2. As

known from the theory of parabolic potentials [7, 8], if f(t, x) satisfies the
Hölder condition, then there exist continuous derivatives u0x, u0xx and u0t

in Q and the estimate |u0|Q2+α ≤ C0|f |Qα is true. Here the definitions of
functions ri(t) include the values u0(t, l) (u0(t,−l)) and ux(t, l)(u0x(t,−l)).
As is known, the function Γ(t, x; η, ξ) is smooth enough if x 6= ξ. Therefore
ri(t), i = 1, 2, are smooth enough functions. The solution of problem (20)–
(23) is found as the sum of parabolic simple layer potentials

v(t, x) =
∫ t

o
Γ(t, x; η,−l)ψ1(η)dη +

∫ t

0
Γ(t, x; η, l)ψ2(η)dη,

where ψi(t), i = 1, 2, are the unknown densities. It is known that for the
simple layer potential V (t, x) =

∫ t
0 Γ(t, x; l, η)ψ(η)dη we have the estimate

|V |Q2+α ≤ C|ψ|1+α. Therefore by showing that ψi(t) ∈ C1+α[0, T ] we shall
prove the theorem.

By the boundary conditions (21), (22) we find
∫ t

0
Γ(t,−l; η,−l)ψ1(η)dη +

∫ t

0
Γ(t,−l; η, l)ψ2(η)dη −

−
∫ t

0
Γ(t,−l; η, l)ψ1(η)dη −

∫ t

0
Γ(t, l; η, l)ψ2(η)dη = r1(t), (24)

−
√

π
√

a(t,−l)
ψ1(t) +

∫ t

0
Γx(t,−l; η,−l)ψ1(η)dη +

+
∫ t

0
Γx(t,−l; η, l)ψ2(η)dη −

√
π

√

a(t, l)
ψ2(t)−

−
∫ t

0
Γx(t, l; η,−l)ψ1(η)dη −

∫ t

0
Γx(t, l; η, l)ψ2(η)dη = r2(t). (25)

Next we reduce equation (24) to the second kind integral equation

d
dt

∫ t

0

r1(η)√
t− η

dη=πψ1(t)+
∫ t

0

∂
∂t

[ ∫ t

η

Γ(z,−l; η,−l)√
t− z

dz
]

ψ1(η)dη − πψ2(t)−
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−
∫ t

0

∂
∂t

[ ∫ t

η

Γ(z, l; η, l)√
t− z

dz
]

ψ2(η)dη+
∫ t

0

∂
∂t

[ ∫ t

η

Γ(z,−l; η, l)√
t− z

dz
]

ψ2(η)dη−

−
∫ t

0

∂
∂t

[ ∫ t

η

Γ(z, l; η,−l)√
t− z

dz
]

ψ1(η)dη. (26)

If
√

a(t,−l) +
√

a(t, l) 6= 0, then (25), (26) is the system of Volterra
integral equations of second kind. Clearly, ψi(0) = 0, i = 1, 2. By Lem-
mas 11 and 12 from [9] the kernels of this system have a weak singularity.
Therefore the system has a solution in the class of functions to which the
known function belongs.

Using the properties of parabolic potentials and applying integral in-
equalities one can obtain estimates for the solution of the system in the
form |ψ1|1+α ≤ C1|f |α, |ψ2|1+α ≤ C2|f |α. On combining the obtained
estimates, we find |u|Q2+α ≤ C|f |Qα .

Thus we can state that problem (15)–(17) has the solution v(t, x) ∈
C2+α(Q). On the other hand, for the solution we have the estimate

|v|1+γ ≤ N(M, a0, a1,K). (27)

Let D(N) be the set of functions from C
1+γ

(Q) which satisfy estimate (27).
If the functions u(t, x) from (15) belong to D(N), then the considered

problem is the mapping v = Tu of the sphere D(N) into itself. Now let us
verify that the conditions of Shauder’s principle are fulfilled.

We shall prove that the operator T is continuous.
Let v1 and v2 be the solutions of equation (15) corresponding to u1 and

u2, respectively. The function v = v1 − v2 satisfies the equation

vt = a(t, x, u1, u1x)vxx + F (t, x),

and conditions (16), (17), where

F (t, x) =
[

(u1 − u2)
∫ 1

0
au(t, x, τu1 + (1− τ)u2, u1x)dτ +

+(u1x − u2x)
∫ 1

0
ap(t, x, u2, τu1x + (1− τ)u2x)dτ

]

v2xx +

+(u1 − u2)
∫ 1

0
bu(t, x, τu1 + (1− τ)u2, u1x)dτ +

+(u1x − u2x)
∫ 1

0
bp(t, x, u2, τu1x + (1− τ)u2x)dτ.

It is clear that |F |Qα ≤ N1|u1−u2|Q1+γ . By the results for linear equations we
have |v|Q2+α ≤ N2|F |Qα . Then |v|Q1+γ ≤ N3|v|Q2+α ≤ N4|F |Qα ≤ N5|u1−u2|Q1+γ .
Let us now prove that the operator T is completely continuous. The set of
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solutions v(t, x) is bounded in the space C2+α(Q) and, if γ ≤ α, is compact
in the space C1+γ(Q). Thus the mapping v = Tu transfers the bounded
set of u ∈ D(N) to the compact set of v ∈ D(N). Therefore the conditions
of Shauder’s principle are fulfilled. Thus there exists a solution u(t, x) of
problem (1)–(3).

The uniqueness of the problem follows from the extremum principle.
Remark. Since the solution uniqueness has been proved by assuming

that the coefficients are differentiable, the same assumption has been made
when obtaining a priori estimates for higher derivatives. Actually, it could
be possible first to prove Theorem 4 and then, using it and Theorem 1,
to obtain immediately the required estimate. In that case the esimates of
higher derivatives could be obtained by imposing the Hölder condition on
the coefficients.
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