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ABSOLUTE SUMMABILITY FACTORS AND ABSOLUTE
TAUBERIAN THEOREMS FOR DOUBLE SERIES AND

SEQUENCES

SH. YANETZ (CHACHANASHVILI)

Abstract. Let A and B be the linear methods of the summability of
double series with fields of bounded summability A′b and B′b, respec-
tively. Let T be certain set of double series. The condition x ∈ T is
called Bb-Tauberian for A if A′b ∩ T ⊂ B′b.

Some theorems about summability factors enable one to find new
Bb-Tauberian conditions for A from the already known Bb-Tauberian
conditions for A.

The first paper on connections between summability factors and Taube-
rian theorems for simple series and sequences was by Kangro [1] who proved
three theorems where conditions were formulated in terms of summability
factors. The theorems of Kangro [1] and Baron [2, §27] are generalizations
of the theorems of Meyer-König and Tietz [3]–[5] and Leviatan [6].

To prove absolute Tauberian theorems with the aid of absolute summa-
bility factors for double series and sequences we need to generalize some
important theorems about absolute summability factors for simple series
and sequences.

1. Basic Definitions and the Main Lemma

The following notation and definitions will be used in this section.
Let

∞
∑

m,n=0

umn (1.1)
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be an infinite double series of real or complex numbers with partial sums

Umn =
m,n
∑

k,`=0

uk`.

Let A = (amnk`) be an infinite normal double matrix of real or complex
numbers.

Let

U ′
mn =

m,n
∑

k,`=0

amnk`Uk`.

We say that (1.1) is summable by the method A, or, shortly, (1.1) is
A-summable to the sum U ′ if there exists the limit

lim
m,n

U ′
mn = U ′. (1.2)

In that case we call the matrix A a method of summability.
We call a double series (1.1) boundedly A-summable, or, shortly, Ab-

summable to the sum U ′ if U ′
mn satisfies conditions (1.2) and U ′

mn = O(1). In
that case we also denote the method of summability A by Ab. Analogously,
the Bb-summability will be defined with the aid of the double matrix B =
(bmnk`).

Let A′b be the set of all Ab-summable double series. If (1.1) is Ab-
summable to the sum U ′, we write

Ab

{
∑

m,n

umn

}

= U ′.

The number U ′ is called the A-sum of the double series (1.1).
If for every absolutely convergent double series (1.1) is |A|-summable (see

[7], p. 141), then we say that the method A conserves absolute convergence.
If the method A conserves absolute convergence and

Ab

{
∑

m,n

umn

}

=
∑

m,n

umn

for each absolute convergent double series (1.1), then the method A is called
absolute regular.

The set of all |A|-summable double series is called the field of absolute
summability of A and we denote it by A′` or |A|′. If

Bb

{
∑

m,n

umn

}

= Ab

{
∑

m,n

umn

}

for each double series from |B|′ ∩ |A|′, then we say that A` is consistent
with B`.
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In the sequel we use the notation:

∆mxmn = xmn − xm−1,n,

∆nxmn = xmn − xm,n−1,

∆mnxmn = ∆m(∆nxmn) = ∆n(∆mxmn) =

= xmn − xm−1,n − xm,n−1 + xm−1,n−1.

Let ρ be an arbitrary set of double series (1.1). We denote by r the set
of double sequences x = (Uk`) associated with ρ, i.e.,

r =
{

x :
∑

k,`

∆k`Uk` ∈ ρ
}

.

For example, if ρ is the set of bounded convergent double series, then
r = bc, the set of bounded convergent double sequences; if ρ is the set bγ0 of
bounded double series converging to zero, then r = bcn, the set of bounded
double sequences converging to zero; if ρ is the set µ of double series with
bounded partial sums, then r is the set m of bounded double sequences; if ρ
is the set ` of absolutely convergent double series, `0 absolutely convergent
double series converging to zero, then r is the set a of absolutely converging
double sequences, i.e., a = {x : Uk` = Ω(1)}. Here xmn = Ω(ymn) denotes
∑

m,n
|∆mn(xmn/ymn)| < ∞. If ρ is the set `0 of double series absolutely

converging to zero, then r is the set a0 of double sequences x, for which
Uk` = ω(1). Here xmn = ω(ymn) denotes xmn = Ω(ymn) and xmn = o(ymn).

We will use the notation:

xmn = Ωm(ymn) means
∑

m

|∆m(xmn/ymn)| = O(1),

xmn = Ωn(ymn) means
∑

n

|∆n(xmn/ymn)| = O(1),

xmn = ωm(ymn) means xmn = Ωm(ymn), xmn = o(1),

xmn = ωn(ymn) means xmn = Ωn(ymn), xmn = o(1).

The numbers (εmn) are called summability factors of type (ρ,B`) (or (ρ,Bb))
if for every double series

∑

m,n
umn ∈ ρ it always follows that

∑

m,n

εmnumn ∈ B′
`

(

or
∑

m,n

εmnumn ∈ B′
b

)

.

Let A and B be the methods of the summability of double series (1.1).
Let T and T0 be certain sets of double series (1.1). We denote three double
series (1.1) by x, y and z.
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The condition x ∈ T will be called B`-Tauberian for A` if

A′` ∩ T ⊂ B′
`.

In particular, when the convergence method E = C0,0 (see [7], p. 141),
i.e., if B′

` = E′
` = `, instead of an E`-Tauberian condition, it will simply be

called an absolute Tauberian condition.
Now we formulate the main lemma.

Lemma 1.1. Let A′` ⊃ B′
` and A` be consistent with B`. If the condi-

tion x ∈ T0 is B`-Tauberian for A`, then the condition x ∈ T is also B`-
Tauberian for A` if every element x ∈ T can be represented by x = y + z,
where y ∈ T0 and z ∈ B′

`.

Proof. Let x ∈ A′` ∩ T and x = y + z with y ∈ T0 and z ∈ B′
`. Then clearly

y = x− z ∈ A′` ∩ T0 ⊂ B′
`. Hence x ∈ B′

`.

Let the numbers λmn 6= 0, µmn 6= 0, where ∆mnµmn 6= 0 and µ−1,n =
µm,−1 = 0.

Let us assume that µmn and λmn are factorizable, i.e.,

µmn = µ′m · µ′′n, λmn = λ′m · λ′′n,

and for m,n > 0

h′ = ∆mµ′m/λ′m, h′′ = ∆nµ′′n/λ′′n.

Then

∆nµm−1,n

λmn
=

µ′m−1

λ′m
· ∆nµ′′n

λ′′n
,

∆mµm,n−1

λmn
=

∆mµm

λ′m
·
µ′′n−1

λ′′n
.

2. Connections Between Absolute Summability Factors for
Double Series and Absolute Tauberian Theorems

For every double series (1.1) a double sequence (Vmn) will be constructed
by the formula

Vmn =
1

µmn

m,n
∑

k,`=0

λk`uk`. (2.1)

Recall

αmn = µm−1,n−1/λmn, γmn = (∆mnµmn)/λmn,

β′mn = (∆nµm−1,n)/λmn, β′′mn = (∆mµm,n−1)/λmn.

One can now state
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Theorem 2.1. Let A′` ⊃ B′
`, where A` is consistent with B`. If the fol-

lowing conditions are fulfilled:
(1) the numbers αmn are summability factors of type (ρ,B`),
(2) the double series ω′ =

∑

m,n
β′mn∆mVmn and ω′′ =

∑

m,n
β′′mn∆nVmn are

boundedly |B|-summable,
(3) condition (umn/γmn) ∈ r is B`-Tauberian for A`,

then the condition

(Vmn) ∈ r (2.2)

is also B`-Tauberian for A.

Proof. From (2.1) we obtain

umn =
1

λmn
∆mn(µmnVmn).

We use the formula (see formula (15.31) in [2]) for the difference of products
of double sequences and obtain

umn = αmn∆mnVmn + β′mn∆mVmn + β′′mn∆nVmn + γmnVmn. (2.3)

With the aid of the series

x =
∑

m,n

umn, y =
∑

m,n

γmnVmn, z = ω + ω′ + ω′′,

where

ω =
∑

m,n

αmn∆mnVmn, ω′ =
∑

m,n

β′mn∆mVmn, ω′′ =
∑

m,n

β′′mn∆nVmn,

we get x = y + z from (2.3).
If condition (2.2) is satisfied, then

∑

m,n
∆mnVmn ∈ ρ, and from conditions

(1) and (2) it follows that z ∈ B′
`. We denote

T0 =
{

∑

m,n

umn : (umn/γmn) ∈ r
}

.

From (2.3) we conclude that y ∈ T0. According to (3), the condition
x ∈ T0 is B`-Tauberian for A`. Thus the statement of Theorem 2.1 follows
from Lemma 1.1 if one sets

T =
{

∑

m,n

umn : (Vmn) ∈ r
}

.
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If in Theorem 2.1 we take B = E and r = a, then (ρ,B`) = (`, `). It is
known (see [8], p. 131, Theorem 3) that εmn ∈ (Cα,β

` , Cα,β
` ) for α, β ≥ 0 iff

the following conditions

∆α,β
mnεmn = O[(m + 1)−α(n + 1)−β ], ∆α

mεmn = O[(m + 1)−α],

∆β
nεmn = O[(n + 1)−β ], εmn = O(1)

are fulfilled. From here, with α = β = 0, we obtain following

Lemma 2.2. For εmn ∈ (|`|, |`|) it is necessary and sufficient that

εmn = O(1).

The proof of the condition ω′ = O(1) in the proof of Corollary 4.1 from
[9], p. 160, and Lemma 2.2 imply

Corollary 2.3. Let A be an absolutely regular method for the summa-
bility of double series. If the following conditions are fulfilled:

(1) µm−1,n−1 = O(λmn),
(2)

∑

m,n
|hmn| < ∞,

(3)
∑

m,n

∣

∣

∣

µ′m−1
λ′m

∆mVmn

∣

∣

∣ = O(1),
∑

mn

∣

∣

∣

µ′′n−1
λ′′n

∆nVmn

∣

∣

∣ = O(1),

(4) condition umn = Ω(γmn) is absolute Tauberian for A`,
then Vmn = Ω(γmn) is also absolute Tauberian for A`.

As we see by Lemma 2.2, εmn ∈ (`, `) iff εmn = O(1). Since `0 ⊂ `, the
conditions for εmn ∈ (`, `) are necessary and sufficient for εmn ∈ (`0, `) as
well. Therefore εmn ∈ (`0, `) iff εmn = O(1). Thus analogously to Corollary
2.3 we obtain

Corollary 2.4. Let A be an absolutely regular method of the summability
for double series. If the conditions (1), (2), and (3) of Corollary 2.3 are
fulfilled and

(4) the condition umn = ω(γmn) is absolute Tauberian for A`,
then V ′

mn = ω(γmn) is also absolute Tauberian for A`.

Analogous theorems for simple series were proved by S. Baron (see [2],
p. 234, Corollary 27.3).
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3. Connections Between Absolute Summability Factors for
Double Sequences and Absolute Tauberian Theorems

In this section we shall find connections between summability factors for
a double sequence and absolute Tauberian theorems.

In (2.1) let
λmn = amnbmn.

With the notation used in Theorem 2.1 we get

Theorem 3.1. Let A′` ⊃ B′
`, where A` is consistent with B`. If the fol-

lowing conditions are fulfilled:
(1) the numbers αmn are summability factors of type (ρ,B`),
(2) the numbers ∆mnµmn/bmn are summability factors for a double se-

quence of type (r, r),
(3) the double series ω′ and ω′′ are B`-summable,
(4) condition (amnumn) ∈ r is B`-Tauberian for A`,

then the condition

(Vmn) ∈ r (3.1)

is also B`-Tauberian for A`.

Proof. With the aid of the formal series x, y, z as in the proof of Theorem
2.1, expansion (2.3) gives x = y+z. Then, as stated in the proof of Theorem
2.1, from condition (3.1) and conditions (1) and (3) it follows that z ∈ B′

`.
In addition, from conditions (3.1) and (2) one gets

(

∆mnµmn

bmn
Vmn

)

∈ r.

We set
T0 =

{
∑

m,n

umn : (amnumn) ∈ r
}

and conclude that y ∈ T0 if in T0 we take umn = γmnVmn. According to
(4), the condition x ∈ T0 is B`-Tauberian for A`. Thus the statement of
Theorem 3.1 follows from Lemma 1.1 if one sets

T =
{

∑

m,n

umn : (Vmn) ∈ r
}

.

In Theorem 3.1, if we put B′
` = ` and r = a, then (ρ,B`) = (`, `)

and (r, r) = (a, a). Then the convergence factors αmn ∈ (`, `) and are
characterized by Lemma 2.2. In condition (2) the convergence factors
∆mnµmn/bmn ∈ (a, a) for the above-mentioned convergence factors, which
we characterize by Lemma 3.2 below, are obtained from Theorem 1 of [7],
p. 144.
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If we examine B = E in Theorem 1 of [7] and assume that bmnk` =
∆mnk`δmnk`, then

m,n
∑

µ,ν=k,`

bmnµνξµνk`εµν =
m,n
∑

µ,ν=k,`

∆mnδmnµνεµν =

= ∆mn

m,n
∑

µ,ν=k,`

δmnk`εµν = ∆mnεmn. (3.2)

By substituting (3.2) into (4) of [7] we obtain
∑

m,n

|∆mnεmn| < ∞. (3.3)

If in (5) of [7], p. 144, we take only the term with k = m and put ` = 0,
we obtain

∑

n

∣

∣

∣

n
∑

ν=0

bmnmνεmn

∣

∣

∣ =
∑

n

|∆nδnνεmν | =
∑

n

|∆nεmν | = O(1).

Consequently, condition (5) of Theorem 1 in [7] implies the condition

εmn = Ωn(1) (3.4)

and, analogously, the condition

εmn = Ωm(1). (3.5)

Since by Proposition 1 of [7], p. 144, condition (5) is equivalent to condi-
tions (6), (7), (8) of Proposition 1 in [7], the latter follow from (3.3), (3.4),
and (3.5).

Indeed, from (3.4) we obtain

∑

m,n

∣

∣

∣

m,`−1
∑

µ,ν=0

∆mnδmnµνεµν

∣

∣

∣ =
∑

m,n

∣

∣

∣

`−1
∑

ν=0

∆nδnν ·∆mεmν
∣

∣

∣ =

= O(1)
∑

n

∣

∣

∣

`−1
∑

ν=0

∆nδnν

∣

∣

∣ = O(1).

Consequently, the above mentioned conditions (7) and (8) follow from
(3.4) and (3.5), but in our case condition (6) is condition (3.3).

Thus we have proved

Lemma 3.2. For εmn ∈ (|E|, |E|) it is necessary and sufficient that con-
ditions (3.4) and (3.5) and εmn = Ω(1) be fulfilled.

If as above we combine Theorem 3.1 with Lemmas 2.2 and 3.2, and choose
εmn = µm−1,n−1/γmn and εmn = ∆mnµmn/bmn (respectively), we obtain
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Corollary 3.3. Let A be an absolute regular method of the summability
for double series. If the following conditions are fulfilled:

(1) µm−1,n−1 = O(λmn),
(2) ∆mµmn = Ω(bmn), ∆mnµmn = Ωm(bmn), ∆mnµmn = Ωn(bmn),
(3)

∑

m,n
|hmn| < ∞,

(4)
∑

m

∣

∣

∣

µ′m−1
λ′m

∆mVmn

∣

∣

∣ = O(1)
∑

n

∣

∣

∣

µ′′n−1
λ′′n

∆nVmn

∣

∣

∣ = O(1)

(5) condition amnumn = Ω(1) is absolute Tauberian for A`,
then the condition Vmn = Ω(1) is also absolute Tauberian for A`.

We use Theorem 3.1 with r = a0 and show that the conditions of Lemma
3.2 are necessary and sufficient for εmn ∈ (a0, a). Indeed, from conditions
(3.3)–(3.5) it follows that εmn = O(1) by the formula (see [10], p. 10)

εmn = ε00 +
m−1,n−1

∑

µ,ν=0

∆µνεµν −
m−1
∑

µ=0

∆µεµ0 −
n−1
∑

v=0

∆νε0ν , m, n = 1, 2, . . . .

Therefore the conditions of Lemma 3.2 are necessary and sufficient for
εmn ∈ (a0, a0), since εmnUmn = O(1)Umn = O(1) · o(1) = o(1), and from
(3.3)–(3.5) it follows that (εmnUmn) ∈ a.

Theorem 3.1 and Lemma 3.2 imply

Corollary 3.4. Let A be an absolute regular method for the summabil-
ity of double series. If conditions (1), (3), and (4) of Corollary 3.3 and
conditions

(2′) ∆mnµmn = ωm(bmn), ∆mnµmn = ωn(bmn),
(5′) condition amnumn = ω(1) is absolute Tauberian for A`,

are fulfilled, then the condition Vmn = ω(1) is also absolute Tauberian for
A`.

Analogous theorems for simple series were proved by H. Tietz ([11],
p. 139, Theorems 3.1 and 3.3) and S. Baron ([2], p. 236, Corollary 27.4).
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