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Abstract. It is shown that in an infinite-dimensional dually separated sec-
ond category topological vector space X there does not exist a probability
measure µ for which the kernel coincides with X. Moreover, we show that
in “good” cases the kernel has the full measure if and only if it is finite-
dimensional. Also, the problem posed by S. Chevet [5, p. 69] is solved by
proving that the annihilator of the kernel of a measure µ coincides with the
annihilator of µ if and only if the topology of µ-convergence in the dual space
is essentially dually separated.
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1. Introduction

Let (X,B, µ) be a probability space. It is well-known that any convergent in
measure µ sequence of measurable functions converges everywhere if and only
if µ is completely atomic (i.e., X equals to the union of all µ-atoms). Also, it is
well-known that any convergent in measure µ sequence of measurable functions
converges µ-almost everywhere if and only if µ is purely atomic (i.e., the union
of all µ-atoms has µ-measure one).

The situation may change if we consider the question not for all measurable
functions, but for sequences of measurable functions taken from a given fixed
set F .

The purpose of this note is to study the question when X is a dually separated
real topological vector space and F = X∗ is the dual space. B will be any σ-
algebra of subsets of X with respect to wich all members of X∗ are measurable.
For a probability measure µ given on B its annihilatorNµ is the set of all x∗ ∈ X∗

which are zero µ-a.e.; µ will be called scalarly non-degenerate if Nµ = {0}. τµ

will stand for the topology in X∗ of convergence in measure µ. The kernel Hµ

of µ is defined as the dual space of (X∗, τµ). We also consider the initial kernel
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Kµ := Hµ∩X. Evidently, if a ∈ X is a fixed element, then a ∈ Kµ if and only if
lim

n→∞x∗n(a) = 0 for an arbitrary sequence (x∗n) in X∗ which τµ-converges to zero.

Our results are related to the question of “the richness” of the kernel of a
probability measure. Proposition 3.4 asserts that for a given µ with Kµ = Hµ

the annihilator of Kµ into X∗ coincides with Nµ if and only if (X∗, τµ) is an
essentially dually separated space (this means that the space (X∗/Nµ, τµ/Nµ)
is dually separated). This statement can be considered as a solution of the
problem posed in [5, p. 69] about the characterization of (cylindrical) measures
µ for which the equality Kµ

◦ = Nµ is true. Here we do not deal with cylindrical
measures, but the proof works for them, too.

The next statement considers very big kernels. It is easy to see that for any
scalarly non-degenerate probability measure µ in a finite-dimensional Hausdorff
topological vector space X, the kernel coincides with X. Our Theorem 4.1
says that a probability measure with a similar property does not exist when X
is an infinite-dimensional second category dually separated topological vector
space. Note that the statement is formulated without any further supposition
of local convexity, metrizability or separability. For separable Frechet spaces
the statement is known and is not difficult to prove (see Remark 4.2).

The above discussed result shows that for an infinite-dimensional second cat-
egory dually separated space X and a given probability measure µ the conver-
gence in measure µ of a sequence of even continuous linear functionals may not
imply its everywhere convergence. However Theorem 4.1 leaves open a similar
question about a.e. convergence. We call a probability measure µ nearly atomic
if any sequence from X∗ that converges to zero in measure µ, converges also
µ-almost everywhere. It is evident that if for a given µ we have µ(Kµ) = 1,
then µ is nearly atomic. Our Theorem 5.2 asserts that, rather unexpectedly,
the following converse also is true: if µ is a nearly atomic Radon probability
measure such that Kµ = Hµ, then µ(Kµ) = 1. Our proof uses heavily the char-
acterization of the nuclear subspaces of L0 given in [12] and Minlos’ theorem.
Our formulation of Theorem 5.2 is closely related to (and covers) the following
result [10, Theorem 1]: let µ be a scalarly non-degenerate probability measure
on a separable Frechet space X, then µ(Kµ) = 1 if and only if (X∗, τµ) is a
nuclear (locally convex) space.

The question of existence in every Banach space of a probability measure µ
such that µ(Kµ) = 1 and µ does not charge finite-dimensional subspaces, posed
in [19, p. 68] has been answered positively in [10, Remark 3]: such a measure
exists in any (dually separated) topological vector space which contains at least
one infinite-dimensional compact subset. By our Theorem 5.4 a “good” measure
with this property does not exist: if µ is a Radon probability measure on a dually
separated space with properties µ(Kµ) = 1, Kµ = Hµ and (X∗, τµ) is a locally
bounded space, then dim(Kµ) < ∞. This result is applicable, e.g., for p-stable
measures with 0 < p ≤ 2, while a similar statement due to [2] covers only the
case 1 < p ≤ 2.
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2. “Kernels” of Topologies

Let, to begin with, X be a (not necessarily Hausdorff) topological vector
space over R. X∗ will denote the vector space of all continuous linear functionals
defined on X (i.e., X∗ is the dual space of X). We denote X∗a the algebraic
dual space of the vector space X∗, i.e., X∗a consists of all linear functionals
defined on X∗. For non-empty subsets U ⊂ X and V ⊂ X∗ and C ⊂ X∗a we
put

U◦ := {x∗ ∈ X∗ : |x∗(x)| ≤ 1 ∀x ∈ U},
◦V := {x ∈ X : |x∗(x)| ≤ 1 ∀x∗ ∈ V }

and

V � := {f ∈ X∗a : |f(x∗)| ≤ 1 ∀x∗ ∈ V },
�C := {x∗ ∈ X∗ : |f(x∗)| ≤ 1 ∀f ∈ C}.

Clearly, if U ⊂ X and V ⊂ X∗ are vector subspaces, then U◦ coincides with
the annihilator of U into X∗ and ◦V coincides with the annihilator of V into X.

We say that X is a dually separated space if X∗ separates the points of X.
Clearly, X is dually separated if and only if for any non-zero x ∈ X there exists
x∗ ∈ X∗ such that x∗(x) 6= 0.

Let us also say that X is an essentially dually separated space if the quotient
X/cl({0}) is a dually separated space (here cl({0}) is the closure into X of the
one-element set {0}).

We have: X is essentially dually separated if and only if for any non-zero
x ∈ X \ cl({0}) there exists x∗ ∈ X∗ such that x∗(x) 6= 0.

Thanks to the Hahn–Banach theorem, any Hausdorff locally convex space is
dually separated and any locally convex space is essentially dually separated.
Any dually separated space is Hausdorff, but the converse is not true in general:
it is known that when 0 ≤ p < 1 and λ is Lebesgue measure in [0, 1], then for
the space X = Lp([0, 1], λ) one even has that X∗ = {0}. On the other hand,
for 0 < p < 1 the sequence space lp presents an example of a non-locally convex
complete metrizable dually separated space.

When X is dually separated, we shall always identify X with its canonical
image into X∗a (i.e., any x ∈ X will be identified with the linear functional
x∗ → x∗(x)).

The notation σ(X, X∗) and σ(X∗, X) will have the usual meaning.
Suppose from now on that X is a dually separated space. In X∗ we shall

consider several topologies. As usual, τ(X∗, X) will be the Mackey topology
(= the topology of uniform convergence on weakly compact convex subsets of
X), k(X∗, X) will stand for the topology of uniform convergence on compact
subsets of X, kc(X∗, X) for the topology of uniform convergence on compact
convex subsets of X and pr(X∗, X) for the topology of uniform convergence on
precompact subsets of X.
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Let τ be a (not necessarily Hausdorff) vector topology in X∗. Denote by Nτ

the τ -closure of {0} (i.e., Nτ is the “nucleo” of τ). Let us put also Eτ := ◦(Nτ ).
Observe that Eτ is a weakly closed vector subspace of X.

The topological dual space of the topological vector space (X∗, τ) will be
denoted Hτ , i.e., Hτ := (X∗, τ)∗. We put Kτ := Hτ ∩X.

Consequently, Hτ consists of all linear functionals given on X∗ which are
τ -continuous, while Kτ consists of those x ∈ X for which the linear functional
x∗ → x∗(x) is τ -continuous.

The topologies τ for which Kτ = Hτ will play an important role in what
follows, so let us make for them a name. Recall that a vector topology τ is
called compatible with the duality (X,X∗) if Hτ = X.

Let us say that a vector topology τ given in X∗ is subcompatible with the
duality (X, X∗) if Hτ ⊂ X.

By the Mackey–Arens theorem a locally convex topology τ given in X∗ is
compatible with the duality (X,X∗) if and only if σ(X∗, X) ⊂ τ ⊂ τ(X∗, X).
In particular, since we have σ(X∗, X) ⊂ kc(X∗, X) ⊂ τ(X∗, X), the topol-
ogy kc(X∗, X) is compatible with the duality (X, X∗), while, if e.g., X is a
metrizable non-complete locally convex space, then the topology k(X∗, X) is
not compatible with the duality (X, X∗).

From the above comments it is clear that a vector topology τ given in X∗

is subcompatible if τ ⊂ τ(X∗, X). This condition is also necessary for the
subcompatibility provided τ is a locally convex topology (this follows easily from
Lemma 2.3(b) below). A similar characterization of general (sub)compatible
vector topologies seems not to be possible (cf. [9]).

Proposition 2.1. Let X be a dually separated topological vector space and
τ be a vector topology in X∗. Then:

(a) Always Nτ ⊂ K◦τ . Equivalently, always clw(Kτ ) ⊂ Eτ .
(b) Suppose that τ is subcompatible with the duality (X,X∗). Then the equality

Nτ = K◦τ or, equivalently, the equality clw(Kτ ) = Eτ

holds if and only if (X∗, τ) is an essentially dually separated topological vector
space.

(b′) Suppose that τ is subcompatible with the duality (X,X∗). Then the equal-
ity clw(Kτ ) = X holds if and only if (X∗, τ) is a dually separated topological
vector space.

In these statements, instead of the closure in the weak topology one can take
the closure in the original topology of X provided X is locally convex.

Proof. (a) Take x∗ ∈ Nτ and let us show that for any fixed x ∈ Kτ we have
|x∗(x)| ≤ 1. Since x, by the definition, is τ -continuous, V := {y∗ ∈ X∗ :
|y∗(x)| ≤ 1} is a closed neighborhood of zero in (X∗, τ). Hence x∗ ∈ Nτ ⊂ V.

(b) “If” part. Thanks to (a) we need to show only that K◦τ ⊂ Nτ . Take
x∗ 6∈ Nτ . Since τ is subcompatible, we have (X∗, τ)∗ = Kτ . Since (X∗, τ) is
essentially dually separated too, there is x ∈ Kτ such thet x∗(x) 6= 0, hence (as
Kτ is a vector subspace) we get x∗ 6∈ K◦τ .
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“Only if” part. Suppose we have the inclusion K◦τ ⊂ Nτ , but (X∗, τ) is not
essentially dually separated. Since τ is subcompatible, we have (X∗, τ)∗ = Kτ .
Consequently, there exists x∗ 6∈ Nτ such that for all x ∈ Kτ we have x∗(x) = 0,
i.e., x∗ ∈ K◦τ , which is a contradiction.

(b′) follows from (b).

Corollary 2.2. 1 Let X be a dually separated topological vector space and τ
be a vector topology in X∗. Then:

(a) Always Nτ ⊂ �Hτ . Equivalently, the σ(X∗a, X∗)-closure of Hτ is always
a subset of N�τ .

(b) The equality Nτ = �Hτ holds or, equivalently, the σ(X∗a, X∗)-closure of
Hτ is N�τ if and only if (X∗, τ) is an essentially dually separated topological
vector space.

(b′) (X∗, τ) is a dually separated topological vector space if and only if Hτ is
dense in (X∗a, σ(X∗a, X∗)).

Proof. Since (X∗a, σ(X∗a, X∗))∗ = X∗, (a) follows from Proposition 2.1(a) ap-
plied to the locally convex space (X∗a, σ(X∗a, X∗)). (b) and (b′) are true by
similar reasons (as τ is always subcompatible with the duality (X∗a, X∗)).

Using the next lemma, we shall clarify the structure of Kτ .

Lemma 2.3. Let X be a dually separated topological vector space, V ⊂ X∗

be a subset and τ be a vector topology in X∗. Then:
(a) If V is absorbing in X∗, then ◦V is a weakly closed and weakly bounded

absolutely convex subset of X.
(b) If V is a τ -neighborhood of zero and τ is subcompatible with the duality

(X, X∗), then ◦V is a weakly compact absolutely convex subset of X.
(c) If V is a kc(X∗, X)-neighborhood of zero, then ◦V is a compact absolutely

convex subset of X.
(c′) If X is locally convex, V is a τ ∩ pr(X∗, X)-neighborhood of zero and

τ is subcompatible with the duality (X, X∗), then ◦V is a compact absolutely
convex subset of X.

Proof. (a) is evident. (b) is simply Alaoglu’s theorem applied to (X∗, τ).
(c) Since V is a kc(X∗, X)-neighborhood of zero, there is a compact absolutely

convex subset A ⊂ X such that A◦ ⊂ V . Clearly A is weakly compact and
absolutely convex, too. Hence ◦V ⊂ ◦(A◦) = A. Since ◦V is closed in X and X
is Hausdorff, we get that ◦V is compact in X.

(c′) Since V is a pr(X∗, X)-neighborhood of zero, there is a precompact subset
A ⊂ X such that A◦ ⊂ V . Hence ◦V ⊂ ◦(A◦). Since X is locally convex and
A is precompact in X, ◦(A◦), the closed absolutely convex hull of A, is also
precompact in X. Hence its subset ◦V is precompact in X and is weakly
compact too by (b). These two conditions, according to [4, Ch. IV, §1, Prop.
3] imply that ◦V is compact in X.

1Suggested by the referee.
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Corollary 2.4. Let X be a dually separated topological vector space and τ
be a pseudometrizable vector topology in X∗. Then:

(a) Kτ is always a countable union of an increasing sequence of weakly closed
weakly bounded absolutely convex subsets of X.

(b) If τ is subcompatible with the duality (X,X∗), then Kτ is a countable
union of an increasing sequence of weakly compact absolutely convex subsets of
X.

(c) If τ ⊂ kc(X∗, X), then τ is subcompatible with the duality (X, X∗) and
Kτ is a countable union of an increasing sequence of compact absolutely convex
subsets of X.

(c′) If X is locally convex, τ ⊂ pr(X∗, X) and τ is subcompatible with
the duality (X, X∗), then Kτ is a countable union of an increasing sequence of
compact absolutely convex subsets of X.

Proof. Let Vn, n ∈ N, be a decreasing fundamental sequence of neighborhood
of zero in the topology τ . Denote Dn = ◦(Vn), n ∈ N. Evidently,

Kτ =
∞⋃

n=1

Dn. (1)

Now it is clear that (a) follows from (1) and Lemma 2.3(a), (b) follows from (1)
and Lemma 2.3(b).

(c) Since kc(X∗, X) ⊂ τ(X∗, X), we get τ ⊂ τ(X∗, X) and τ is subcompatible
by the Mackey–Arens theorem. The rest follows from (1) and Lemma 2.3(c).

(c′) follows from (1) and Lemma 2.3(c′).

3. Kernels of Measures

Hereafter X will be a dually separated topological vector space over R. The
expression “µ is a probability measure in X” will mean that µ is a probability
measure defined on a σ-algebra B of subsets of X, with respect to which all
continuous linear functionals are measurable. When we speak about (weak)
Borel or (weak) Radon measures, they will be supposed to be defined on the
(weak) Borel σ-algebra of X.

Fix a probability measure µ in X. We denote by τµ the topology in X∗ of
the convergence in measure µ. Then τµ is a pseudometrizable vector topology
in X∗.

All notions introduced in the previous section make their sense for τµ, too.
To simplify the notation, we will put, Nµ := Nτµ , etc.

We begin the consideration with Nµ and Eµ := ◦(Nµ).
Clearly, Nµ = {x∗ ∈ X∗ | x∗ = 0 µ-a.e.}. The measure µ is called scalarly

non-degenerate if Nµ = {0}. It turns out that τµ is a Hausdorff topology if and
only if µ is a scalarly non-degenerate measure.

Proposition 3.1. Let X be a dually separated topological vector space and µ
be a Borel probability measure in X which has a support. Then supp(µ) ⊂ Eµ,
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hence µ(Eµ) = 1 and the restriction of µ on the Borel σ-algebra of Eµ is a
scalarly non-degenerate measure in Eµ.

Proof. Take any x∗ ∈ Nµ. Then µ(ker x∗) = 1. Since ker(x∗) is closed in X,
we have supp(µ) ⊂ ker(x∗). Hence, supp(µ) ⊂ ∩x∗∈Nµker(x∗) = Eµ. The rest is
easy too.

For the proof of Theorem 4.1 below we shall use a non-trivial property of
scalarly non-degenerate measures formulated in the next statement.

Proposition 3.2 ([8]). Let X be a topological vector space and µ be a sca-
larly non-degenerate probability measure in X. Let also B ⊂ X∗ be a convex
subset that is compact in the topology σ(X∗, X). Then σ(X∗, X)|B = τµ|B.

In particular, (B, τµ|B) is a compact Hausdorff topological space and
(B, σ(X∗, X)|B) a metrizable topological space.

Remark 3.3. (1) In [20, Th. 1.5.3, p.77] a direct proof of Proposition 3.2 is
given when X is a normed space and B is the closed unit ball of X∗. The proof
works in the above general setting too.

(2) It is easy to see that when X is weakly separable, then in X there exists
a scalarly non-degenerate discrete Radon probability measure.

It is easy to see that when X is weakly separable, then in X there exists a
discrete Radon probability measure. Also, when X is weakly separable, then
Proposition 3.2 is easy to prove since, in such a case, the σ(X∗, X)-compact
subsets of X∗ are metrizable. The advantage of Proposition 3.2 is the fact (first
noted in [18]) that it allows one to prove the converse: if in a metrizable locally
convex spaces X there exists a scalarly non-degenerate probability measure,
then X is separable. From this conclusion and Proposition 3.1 it follows at
once, that in a complete metrizable locally convex spaces X, any weak-Borel
probability measure which has a support extends to a Radon measure in X (see
[18], [5] and [20, pp. 79–81], for some more consequences).

The kernel of a measure µ in X is defined as the dual space Hµ of (X∗, τµ)
(see [5, 6]). Consequently, we have Hµ = Hτµ .

We call the set Kµ := Hµ∩X the initial kernel of µ. Consequently, Kµ = Kτµ .
Observe that, since τµ is a pseudometrizable vector topology in X∗, we can

say that a functional f ∈ (X∗)a belongs to Hµ if and only if lim
n→∞ f(x∗n) = 0 for

an arbitrary sequence (x∗n) in X∗ which τµ-converges to zero.
In a similar way we have that an element x ∈ X belongs to Kµ if and only if

lim
n→∞x∗n(x) = 0 for an arbitrary sequence (x∗n) in X∗ which τµ-converges to zero.

In general, it is possible that for a given µ the topology τµ is Hausdorff, but
Hµ = {0} (see [5], where many such examples are given with the correspond-
ing references). The next statement describes the situation where a similar
phenomenon cannot happen and solves the problem posed in [5, p. 69].

Proposition 3.4. Let X be a dually separated topological vector space and
µ be a probability measure in X. Then:

(a) Always Nµ ⊂ K◦µ. Equivalently, always clw(Kµ) ⊂ Eµ.
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(b) Suppose that τµ is subcompatible with the duality (X, X∗). Then the equal-
ity

Nµ = K◦µ or, equivalently, the equality, clw(Kµ) = Eµ

holds if and only if (X∗, τµ) is an essentially dually separated topological vector
space.

(b′) Suppose that µ is scalarly non-degenerate and τµ is subcompatible with
the duality (X,X∗). Then the equality clw(Kµ) = X holds if and only if (X∗, τµ)
is a dually separated topological vector space.

In these statements, instead of the closure in the weak topology, we can the
closure in the original topology of X provided X is locally convex.

Proof. Apply Proposition 2.1 to the topology τµ.

Corollary 3.5. Let X be a dually separated topological vector space and µ
be a probability measure in X. Then:

(a) Always Nµ ⊂ �Hµ. Equivalently, always the σ(X∗a, X∗)-closure of Hµ is
a subset of N�µ .

(b) The equality Nµ = �Hµ holds, or equivalently, the σ(X∗a, X∗)-closure of
Hµ is N�µ if and only if (X∗, τµ) is an essentially dually separated topological
vector space.

(b′) (X∗, τµ) is a dually separated topological vector space if and only if Hµ is
dense in (X∗a, σ(X∗a, X∗)).

Proof. Apply Corollary 2.2 to the topology τµ.

Remark 3.6. (1) Originally, in [5, p. 69] the following problem was posed:
“Find a characterization of cylindrical measures µ on X such that Nµ = �Hµ”.
Since the topology τµ, as it is introduced in [5] for a cylindrical measure µ, is a
vector topology in X∗, from Corollary 2.2 we can conclude that for a cylindrical
measure µ on X we have Nµ = �Hµ if and only if (X∗, τµ) is an essentially
dually separated topological vector space.

(2) In Proposition 3.4(b) the supposition “τµ is subcompatible with duality
(X, X∗)” cannot be suppressed in general. Indeed, as it is shown in [7, p.7],
there exists a Hausdorff locally convex space X, a functional f ∈ (X∗)a \X and
a probability measure µ on the cylindrical σ-algebra of X, such that µ̂(x∗) =
exp(if(x∗)), ∀x∗ ∈ X∗. Clearly, for this measure we have Nµ = ker(f) 6=
X∗, Hµ = R·f and Kµ = {0}. Note that the considered measure does not
admit a Radon extension.

(3) In connection with (2), the following question raised by the referee is of
interest: is there a (Radon probability) measure µ in a space X with Hµ 6=
Kµ, K◦µ = �Hµ? The answer is positive. Indeed, in [11] an example is given of
a Radon probability measure in a sigma-compact inner product space X such
that Hµ 6= Kµ = X, hence K◦µ = �Hµ = {0}.

Corollary 3.7. Let X be a dually separated topological vector space and µ
be a Borel probability measure in X which has a support, τµ is subcompatible
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with the duality (X,X∗) and (X∗, τµ) is essentially dually separated. Suppose
further that dim(Kµ) < ∞ (or merely that Kµ is weakly closed).

Then Kµ = Eµ and µ(Kµ) = 1.
In particular, the conclusion is true whenever dim(X) < ∞.

Proof. The equality Kµ = Eµ follows from Proposition 3.4(b). Since, by suppo-
sition, µ has a support too, by Proposition 3.1 we get µ(Kµ) = 1.

As Remark 3.6(3) shows in general the kernel even of a Radon probability
measure µ in an inner product space may not be contained in the initial space
and hence the topology τµ may not be subcompatible with the duality (X,X∗).
To formulate a natural restriction on a measure which will allow us to avoid
such a “pathology”, let us say that a Borel probability measure µ in a Hausdorff
topological vector space X is convex-tight if for any ε > 0 there exists a compact
convex K ⊂ X such that µ(K) > 1− ε.

Recall also that a Hausdorff topological vector space X is said to have the
convex compactness property [14] if the closed convex hull of any compact subset
of X is again compact.

Proposition 3.8 (cf. [11, Prop. 3.8]). Let X be a dually separated topolog-
ical vector space and µ be a Borel probability measure in X. Suppose further
that at least one of the following suppositions is satisfied:

(0) µ is convex-tight.
(1) X has the convex compactness property and µ is Radon.
(2) X is a quasi-complete locally convex space and µ is Radon.
(3) X is a complete metrizable locally convex (=Frechet) separable space.
Then we have:

(4) τµ ⊂ kc(X∗, X), the topology τµ is subcompatible with the duality (X, X∗)
and Kµ is a countable union of an increasing sequence of compact abso-
lutely convex subsets of X.

Proof. (0) ⇒ (4). The proof of τµ ⊂ kc(X∗, X) is standard. The rest follows
from Corollary 2.4(c) applied to τµ.

(1) ⇒ (4). When X has the convex compactness property, we have that any
Radon probability measure in X is convex-tight and (0) ⇒ (4) is applicable.

(2) ⇒ (4) follows from (1) ⇒ (4) since any quasi-complete Hausdorff locally
convex space has the convex compactness property.

(3) ⇒ (4) follows from (2) ⇒ (4) since in any Frechet separable space any
Borel probability measure is Radon.

Remark 3.9. (1) The implication (3) ⇒ (4) of Proposition 3.8 is due to W.
Smolenski [16, Prop. 2].

(2) Proposition 3.8 does not cover one important case: it is known that for
any Gaussian Radon measure γ in an arbitrary locally convex space X, the
inclusion Hγ ⊂ X always holds [3] (see also [1, p. 359], where similar statement
for the symmetric Gaussian Radon measures was obtained earlier). Note that
this result cannot be derived from the implication (0) ⇒ (4) of Proposition 3.8
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since it is still the open problem whether any Gaussian Radon measure in any
locally convex space is convex-tight (cf. [17]).

(3) The implication (1) ⇒ (4) of Proposition 3.8 for the metrizable locally
convex spaces can give nothing new since for such a space the presence of the
convex compactness property implies its completeness [14, Th. 2.3].

4. Very Big Kernels

In this section we consider the question of the existence of probability mea-
sures whose (initial) kernels coincide with the whole space. Plainly, such mea-
sures exist in the finite-dimensional Hausdorff topological vector spaces. The
next statement shows that a certain converse assertion is also true.

Theorem 4.1. Let X be a dually separated topological vector space of second
category (in the Baire sense) for which there exists a probability measure µ in
X with Kµ = X, then dim X < ∞.

Proof. Fix a probability measure µ in X such that Kµ = X. Clearly, τµ is Haus-
dorff. So (X∗, τµ) is a metrizable topological vector space. Let us show that this
space is complete. Let (x∗n) be a Cauchy sequence in (X∗, τµ). Since the iden-
tity mapping (X∗, τµ) → (X∗, σ(X∗, X)) is continuous and linear, it is uniformly
continuous. This implies that (x∗n) is a Cauchy sequence in (X∗, σ(X∗, X))).
From this (as R is complete) we get that there is a mapping l : X → R such
that lim

n
x∗n(x) = l(x), ∀x ∈ X. Evidently, l is linear. Since X is of second cat-

egory, by the corresponding variant of the Banach–Steinhaus theorem, we can
conclude that l is continuous. Then (x∗n) tends to l in measure µ. Concequently,
(X∗, τµ) is a complete metrizable space.

By Corollary 2.4(a) (applied to τ = τµ) we can write X = Kµ =
∞⋃

n=1
Dn, where

(Dn) is a sequence of weakly closed weakly bounded subsets of X. Clearly,
Dn, n ∈ N, are closed sets in the topology of X, too. Since X is of second
category, we obtain that at least one of Dn, n ∈ N, has a non-empty interior.
So we have that in X there exists a σ(X, X∗)-bounded neighborhood of zero U .
Put B := U◦. Observe:

(1) Since U is a neighborhood of zero in X, clearly, the set B is absolutely
convex and, by Alaoglu’s theorem, is σ(X∗, X)-compact too.

(2) Since U is σ(X,X∗)-bounded, the set B is absorbing in X∗ (this is evi-
dent).

Now item (1), since µ is scalarly non-degenerate, according to Proposition
3.2, implies:

(3) B is compact in (X∗, τµ).

Then by item (2) we have X∗ =
∞⋃

n=1
n·B. Since (X∗, τµ) is a complete metriz-

able space, it is of second category. Hence, at least one of the τµ-compact sets
n·B, n = 1, 2, . . . , has a nonempty τµ-interior. Consequently, the space (X∗, τµ)
is locally compact. Therefore, dim(X∗) < ∞ and since X∗ separates the points
of X, we also have that dim X < ∞.
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Remark 4.2. For a separable Frechet space Theorem 4.1 follows at once from
the implication (3) ⇒ (4) of Proposition 3.8.

Remark 4.3. (1) If the space X is not of second category, then Theorem 4.1
is not valid. Indeed, let X be any dually separated space with the countable
algebraic dimension, A ⊂ X be an algebraic basis of X, and let µ be any
probability measure in X with µ{a} > 0 for all a ∈ A. Then σ(X∗, X) = τµ

and so Hµ = X.
(2) In view of (1) it seems very likely that if X is a Hausdorff locally convex

space such that for some Radon probability measure µ in X we have Kµ = X,
then X must be of at most countable algebraic dimension (cf. also [19, p. 68]).
But this is not so: if F is any nuclear Frechet space and X := (F, k(F ∗, F )),
then in X there exists a Radon probability measure µ for which Kµ = X and
µ(E) = 0 for any finite-dimensional vector subspace E ⊂ X [10, p. 199, Lemma
2].

(3) If µ is a probability measure in a dually separated space X such that
Kµ = X, then, clearly, the topologies σ(X∗, X) and τµ have the same sets of
convergent sequences, but σ(X∗, X) and τµ may not coincide (the coincidence
σ(X∗, X) = τµ will imply that σ(X∗, X) is a metrizable topology, which in turn
will give that the algebraic dimension of X is at most countable).

5. Nearly Atomic Measures

In the previous section we were considering the measures having very big
kernels in set-theoretic sense. Here we shall deal with measures, which will
have the big kernels in the measure-theoretic sense, i.e., with measures which
will have the kernels of full measure.

We shall use the following remarkable result.

Theorem 5.1 ([12, Th.8]; [13, p. 206, Th. 6A]). Let (Ω, ν) be a probability
space and Y be a vector subspace of L0(Ω, ν). The following statements are
equivalent:

(i) Any sequence from Y that converges to zero in measure ν, converges also
ν-almost everywhere.

(ii) Y is a nuclear locally convex space with respect to the topology of the
convergence in measure ν.

Let us say that a probability measure µ in a dually separated space X is nearly
atomic if any sequence from X∗ that converges to zero in measure µ, converges
also µ-almost everywhere. The following assertion provides a description of the
nearly atomic measures by means of their kernels.

Theorem 5.2. Let X be a dually separated topological vector space and µ be
a Radon probability measure in X such that τµ is subcompatible with the duality
(X, X∗). Then the following statements are equivalent:

(i) µ is nearly atomic.
(ii) (X∗, τµ) is a nuclear locally convex space.
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(iii) µ(Kµ) = 1.

Proof. (i)⇒(ii) is a particular case of the implication (i) ⇒ (ii) of Theorem 5.1.
(ii)⇒(iii). Evidently, the Fourier transform µ̂ considered as a functional on

Y := (X∗, τµ) is continuous and positive definite. Then according to the Minlos’
theorem [20, Th. 6.4.3, p.410] there exists a Radon probability measure µ′ in
(Y ∗, σ(Y ∗, Y )), whose Fourier transform coincides with µ̂. Since Y ∗ = Hµ =
Kµ ⊂ X (by supposition!), we get that in fact µ′ is a Radon probability measure
in (X, σ(X, X∗)). Since µ is Radon in X (again by the supposition!), it is also

Radon in (X, σ(X,X∗)). From this, as µ̂ = µ̂′, according to the uniqueness
theorem for the Fourier transform for Radon measures [20, Th. 4.2.2(b), p.200]
we get that µ and µ′ coincide on the Borel σ-algebra of (X, σ(X, X∗)). Finally,
since Kµ is a Borel set in (X, σ(X,X∗)) (by Corollary 2.4(a)), we get µ(Kµ) =
µ′(Kµ) = 1.

(iii)⇒(i) is evident (and is true for any weak Borel µ).

Remark 5.3. In [10, Th. 1] the equivalence (iii)⇔(ii) is proved for the case of
scalarly non-degenerate measures in a separable Frechet space; moreover, the
proof of the implication (iii)⇒(ii) is direct, i.e., does not use Theorem 5.1 (the
paper [12] is not mentioned at all; seemingly its existence was unknown for the
authors of [10]). Then from Theorem 1 of [10] a more precise version of our The-
orem 5.1 is derived in [10]. Namely, Theorem 2 in [10, p.200] asserts that when
Y is separable and (ii) is satisfied, then there exists Ω0 ⊂ Ω, ν(Ω0) = 1 such
that any sequence from Y that is convergent in measure ν, is also convergent
everywhere on Ω0.

We conclude the section by showing that (as this was expected) the nearly
atomic measures in “good” cases are degenerate.

Theorem 5.4. Let X be a dually separated topological vector space and µ be
a probability measure in X. Then the following statements are valid:

(a) If µ is nearly atomic and (X∗, τµ) is a locally bounded topological vector
space, then dim(Hµ) < ∞.

(b) If dim(Kµ) < ∞, µ is a Borel measure with a support such that τµ

is subcompatible with the duality (X, X∗) and (X∗, τµ) is an essentially
dually separated space, then µ(Kµ) = 1.

Proof. (a) The initial supposition together with the implication (i)⇒(ii) of The-
orem 5.1 implies that E := (X∗/Nµ, τµ/Nµ) is a Hausdorff nuclear locally convex
space. Since E by supposition is a locally bounded space, we get that E is a
normable nuclear space. Consequently, dim(E) < ∞. Therefore, Hµ, as the
dual space of this finite-dimensional space is also finite-dimensional.

(b) follows from Corollary 3.7.

Remark 5.5. (1) Theorem 5.4(a) is applicable for p-stable measures such that
0 < p ≤ 2, while an analogous assertion from [2] (cf., [5, pp. 62–63]) covers only
the case of p-stable measures with 1 < p ≤ 2 (see also [19]).
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(2) In Theorem 5.4(a) the supposition “(X∗, τµ) is a locally bounded topo-
logical vector space” cannot be suppressed, e.g., thanks to Remark 4.3(2).

(3) In Theorem 5.4(b) the supposition “(X∗, τµ) is essentially dually sep-
arated” cannot be suppressed since, e.g., in RN there exists even a scalarly
non-degenerate product probability measure µ for which Kµ = {0} [15].
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